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Helgason’s number

and lacunarity constants

R.E. Edwards and Kenneth A. Ross

This paper studies the connection between the best possible
value of a constant in the compact abelian case of a known

inequality due to Helgason and thi- A2-constants of sets of

characters. Various estimates of and expressions for the best

possible value are given.

1. Introduction; the numbers M, and h

1.1. Helgason ([71, p. 245; [83, (36.10)] shows that if G is a
CAG (= compact Hausdorff abelian group), then the inequality

(a) Il = wsup sl - 7 € 4@, 1, < 1)

holds for all h € L°(G) with M = v2 . [Note that the supremum in (a) is

unaltered if we write f € T(G) in place of f € Ll(G) , where T(G)
denotes the set of complex-valued trigonometric polynomials on G .]

Moreover (see 1.3 below), (a) is equivalent to the inequality

(v) IEll, = mwp{lEF~, ¢ £ € c(@), Ifll, =1}

~

holding for all F € CG , where G denotes the character group of (G and
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C{(G) the set of continuous complex-valued functions on G . Inequality
(b) appears in Theorem (2.1) of [3].

For a given G , we will denote by MG the smallest number M = O

for which (a) (or (b)) is true. Clearly, M, 2 1 for every CAG G .

In what follows we introduce a certain number h , defined in terms of

A2-consta.nts of large finite sets (see 1.4 and 1.5 below), which we call

the Helgason number. The reason for the name is that we shall prove the

following facts:

(i) M, =h for every CAG G (Corollary 1.8);

(ii) M, = for certain specifisble CAGs G (Corollary 1.12,

1
=2

Theorem 3.6, Corollary 3.8).
Helgason's result is included in the inequalities

(iii) on ¥ < h = ¥ {Theorem 2.11, Corollary 2.5),
which we shall prove on the way.
We introduce also a somewhat similarly-defined number gn for every

positive integer n , showing that

X < =

(iv) h <h,, and h }li:gn (Lemma 1.6).
We will also show that

{v)

k__);z mv2/4 (Theorem 2.10), and that

n ¥
(vi) b, up[kzl ci] /E‘n(cl, e cn) = (2-l/n)}5 ,

where
w (T T ‘Lel ien
En(cl, o5 @) = (2m) j J ce T+ +ee "ldo de
- -
and cl, cees cn denote nonnegative real numbers, not all zero

(Corollaries 2.7 and 2.4).

In Section 3, we show that each —h=n can be given in terms of sets of
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characters of T (the circle group) only.

We have been unable to evaluate h ; it would be very interesting to

know whether or not h < v2 .
We start with a simple lemma.

LEMMA 1.2. If G s a CAGand g € T(G) , then

loll, = sw{| 1 a"005° 0] ¢ £ €ctor, 1, =) .

X<C

Proof. If )\G denotes normalised Haar measure on G , then

[ lgldr, = sup{ [ g(x)f(x‘l)dAG<x)| : £ ec@, lfl, }

=1
~ -1
s I o700 [ xtzirla e : £ € oo, i, < 1)
X6

sup{

1.3. Now we verify the equivalence of (a) and (b) in 1.1. The

gl

1}

) g"(x)f"(x)‘ : fece, lfll, < 1} .
xeG

supremum on the right of (a) is

o

which, by Lemma 1.2, is equal to

1 a00w 00x| + supa sinite, lall, = 1}
X€G 1

(
supf| I aGom 00570 + sumpa sinste, lal,, <1, £ € 00, 161, < 1}
Xf
= sup sup { 23 a(X)hA(X)fv‘(X)l}
foa Uy

swpllin”fll, : £ ece), Ifll, =1} .

Thus (a) is equivalent to (b) for F (= %") in 22(3) ; but this is

<

easily seen to be equivalent to (b) for arbitrary F €C
1.4. If G is a CAG and E is a subset of G , We write EE(G) for

the set of f € P(G) such that f7(X) = 0 for every X € G\E . We also

write

A(E) = supllifily : £ eZ(0), IFl =1} ==
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and call /\G(E) the Az-constant of E . It is easy to see that AG(E)
is a finite assumed maximum whenever £ is finite. Moreover,

Ay(E) = sup{A (F) : F finite, F C E} .

1.5. Define sets S and Sn (n a positive integer) of nonnegative

real numbers as follows.

S 1is the set of real numbers K = 0 with the property that, for

every positive integer n , there exists a CAG Kn and an n-element

~

subset En of Kn such that

A B) =k .

n
Sn is the set of real numbers K Z 0 with the property that there
exists a CAG KX and an n-element subset £ of I? such that

AK(E) =k .

The proof of Corocllary 2.4 below shows incidentally that 2}5 €S .

We now define

b =infS, b = 1nfSn .
It is simple to verify that
-]
S cs5 , §= N s .,
n+l n n=1 n

These observations render the next lemma obvious.

LEMMA 1.6. We have b <h, for every positive integer n , and
h=1limbh .
noe

THEOREM 1.7. Let n be a positive integer. Then (b) of 1.1 holds

with M = h, for every CAG G and every F € CG whose support has
cardinal v(suppF) at most n .

Proof. Let K € Sn and let X be a CAG such that there exists an
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n-element subset E = {C

19]
cees Cn} of K for which A,(F) =« . Suppose
V(suppF) = r = n and enumerate suppF as {Xl’ . Xr} . Then, for
every x € G , we have
r %
2
(1 12617 <
J=1

Integrating over

[ l Z F(x )x (2)8(y) | ()
X

=1 J

[ o L rxdeson]
which shows that

G and using Fubini's Theorem, this gives
r %
2
[T 170
j=

AK(y) s

=1

£ e

for some Yo €K

2LICALS N

Using Lemma 1.2, it follows that

[j§1 lF(Xj] |2]55 - Ksup{ .7':1

)2 ) 7 () |

f €,

I, =1}
r
<vow{ I 1P ()] ¢ 7 i, sl =1} .
ot J J u
J=1
Since this is true for every K €S _, it remains true with gn in place
of K Thus, (b) of 1.1 is true with M = h, for the stated functions
F .
COROLLARY 1.8. We have MG <h
Proof.

for every CAG G
By Lemma 1.6 and Theorem 1.7

. k]
for every [ € CG having a finite support
for every F € C

(b) of 1.1 holds with M =}
But then (b) holds wit
, and so M, =h .
REMARK.

M=

n , then

=3

From Theorem 1.7 it follows that, if &
<
MG <h

is of finite order
which, by Corollary 2.k, is at most

(2-1/m)¥ < 2% .
Thus Helgason's inequality [that is, 1.1 (a) with M =2 ) is not best

possible when only groups of given finite order n are considered

In
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addition it can be shown that, if G is the subgrowp {-1, 1} of T

3

then M. = 1 whereas (by Theorem 2.10) h, = mwa/h > 1 .

THEOREM 1.9. Suppose that G <is a CAG, that E <is a Sidon subset
of c » and that SG(E‘) 18 the Sidon comstant of E , that is, the

smallest nonnegative real number Kk for which
TaREHS
for every f EgE(G) . Then
AG(E) < MG‘SG(E) .

Proof. Let f G_EE(G) . Using (v) of 1.1 with M = MG , we have

I = 171, < M| I I7(08°001 = ¢ € 0, Tl = 1)
Al o SHMp XEG l l "
= wsw{| I r00uie" 0| g €0, lgll, =1, v € af
X<E
where {1 = TG . Writing «k for SG(E’) » & known property of Sidon sets

(cea, (37.2)) asserts that every w € R agrees on E with u; for some

u, € M(G) satisfying "“w“ <=k . It follows that

Ifll, = MGsup{ Z& RO = ke c(e), Ik, = K}
X€
= Mstup{ R f(X)kA(X){ : k€ c(G), ”k”u = 1}
X€G
= Mxlfly s

the last step by Lemma 1.2. Thus AG(E') < MGK .

COROLLARY 1.10. Let G be a CAG. Then

(1) M, =h =M, lim inf inf{S,(E) : E G, v(E) = n} .

nro
(The infimum of the empty set is understood to be = .)

Proof. The first inequality in (1) is just Corollary 1.8. For the

rest, let tn denote the infimum appearing in (1), which we may assume to
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be finite. If EC G and Vv(E) = n , then AG(E) €5,  andso
AG(E) zh . By Theorem 1.9 we therefore have

h < AG(E) < MGSG(A)
From this it follows that

(2) h =Mt

The second inequality in (1) follows from (2) and Lemma 1.6.

1.11. If G is a CAG, a subset E of { will be termed strongly
independent if, whenever Xy» +++» X, denote distinct elements of E and

Mys vees M denote integers, the relation
m m
1 n _
xl e X, T 1
implies that m, = ... =m_ =0 . For example, if I is any set and

1 n

G = TI , then the set of projections

ot @ dger ™ =y

with io €I is a strongly independent subset of 8 .

We list several properties of strongly independent sets which will be

useful in the sequel.

(1) If G is a CAG and E a subset of G , then E 1is strongly

independent if and only if the mapping ¢ : z+> (x(x)) maps G onto

X€E
TE > where T denotes the cirecle grouwp.

Proof. The image H = ¢(G) is a closed subgroup of TE-. If the
character group of T be identified with Z (the additive group of

integers) in the usual fashion, the annihilator 4 in (TE) of H is
precisely the set of 2Z-valued functions X+ m(xX) on E having finite

supports and such that

TTH0 =0,

X<E
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The strong independence of £ is equivalent to the assertion that 4 is

the trivial subgroup of P;(eE, Z . BSince H 1is the annihilator in TE of

A , this occurs if and only if H = TE .
(ii) If G <8 a CAG and E a strongly independent subset of G,
then SG(E’) =1.

Proof. This follows at once from (Z) and the definition of SG(E) in

1.9.

(1ii) .S"uppose that G is a CAG and that E <8 a strongly independ-
ent subset of G . If Xp> »+vs X, are distinet elements of E and
s -» ¢, are complex numbers, then

n n
) cx'dA =j 'Z |c|xld)\ .
'{G |k=l k% .G ¢ k=1 k' TG

Proof. For k € {1, 2, ..., n} , choose w, € T such that
e = ]cklwk . By (%}, there exists a € ¢ such that xk(a) = w, for

n n
k€{1,2, ..., n} . Then z ckxk is the a-translate of z Icklxk ,
k=1 k=1

and the stated equality follows from translation-invariance of )\G .

COROLLARY 1.12. Let G be a CAG with the property that, for every
pogitive integer n , G contains an n-element strongly independent set.
Then MGES and p_==MG.

Proof. For each positive integer =n , let In be an n-element
strongly independent subset of ¢ . By 1.11 (iZ), we have SG(In) =1
and so, by Theorem 1.9, AG(In) < MG . Since this is the case for every
positive integer n , it follows that MG € 5 . This entails that h = MG

and the rest ensues from Corollary 1.8.

REMARK. From Corollaries 1.8 and 1.12 it follows that h is the

maximum of the numbers MG when G ranges over the class of CAGs.

https://doi.org/10.1017/50004972700043100 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043100

Lacunarity constants 195

1.13. We insert here some remarks about the effect of continuous

group homomorphisms.

Let G and K be CAGs and suppose that ¢ is a continuous
homomorphism of G onto X . Write ¢* for the dual isomorphism of 2
into G defined by o¢*(¢) =g o ¢ for [ € R , and let ¢ denote the
mapping fr++f o ¢ of (C(k) into C(G) . In what follows, E denotes a
subset of K and F = ¢*(E) C G . It is plain that

(1) ¢ preserves uniform norms
and that
(2) $ maps CE(K) onto CF(G) .

(CE(K) denotes the set of g € C(X) such that g™(g) =0 for ¢ € K\E ,

and CF(G) is defined analogously.)

By considering the functional f +—* J (¢f)de and invoking the
G

uniqueness of normelised Haar measure on K , we infer that
(3) f (fe¢)dxr =J fdx
G ¢ K K

for every f € C(XK) .

From (3) we msy infer first that

() ¢ preserves P-norms (0 < p < =)

and second that, if X € ¢ and f € C(K) , then

(5) (Fo) (%) = £ (0*"1(x) if x € ¢*(K) end O otherwise.
In particular,

(6) Io ™l = I8

In view of (4) and (2), it follows that the A2—constant of F is

equal to the A2-constant of E . Similarly, from (1), (2) and (6) it

appears that the Sidon constant of F is equal to the Sidon constant of
E .
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From (3) it follows also that
(n (Ffod) » (god) = (frg) o ¢
for f and g in C(X) . If ¢ is an isomorphism (vhich occurs if and
only if ¢* maps P onto G , that is, if and only if ¢ maps C(X)
onto C(G) ), we infer from (7) and reference to 1.1 (a) that My =M, .

We end this section by recording another property of the number MG

for a given G .
LEMMA 1.14. Suppoge that G is a CAG, that 1 <p =2, and that
q = 2p/(2-p) . For F ¢ € ve have
P, = swiilFell, = llell,v = 1} .
Proof. We have
su{lF012 + 1ol = 1} = su{iF6RH, < Mol = 2}
Now |I¢>|Ip. =1 if and only if ”¢2”15p' =1 ; and every nonnegative ¢

satisfying IIwII%p, = 1 has the form ¢2 for some ¢ satisfying

||¢||p. =1 . So the above supremum equals

sup{IF20l, Wl = 1} = 1PN 0.
Since (4p')’' = p/(2-p) = %q , the supremum equals
2
1721, = IFIZ
THEOREM 1.15. Let G be a CAG, 1 =p =2 and q = 2p/(2-p) .
Then

||Fl|q = MGsup{llFf"llp s fecd), lfll, = 1}

for every F e€c® . If Fec® and Ff € 1P(8) for every f € C(G),
then F € zq(é) . [Cf. (3], Corollary (2.3).)

Proof. By Lemmas 1.14 and (b) of 1.1, we have
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Iz, sup{lIFell, ol = 1}

A

M, sup sup ”Fsi’f’\”l
||¢||p.=l ”f”uﬂ

M, sup sup [IFf7¢]l
¢ P % 1

M, S;p lFF™ Ilp .

The rest follows from the closed graph theorem.

2. Estimates for nn and h

THEOREM 2.1. Let n be a positive integer, K any CAG and I any
n-element strongly independent subset of XK. Let G be any CAG and E
a subset of G having at least n elements. Then

AK(I) = AG(E) .

Proof. Enumerate I as {Cl, cens Cn} and choose 7 distinct
elements Xp> cres Xy of E. Any [ € LI(K) can be written
)
f= et
k=1 kk

the ¢ being complex numbers. For y € K let

n
f iz e, b (y)x (x) ,
y kzl k7k k

so that f'y € _E_E(G) . Then
n 5 %
il = 1 o I = g, < agmis 1

= A (E) J

and so also (using Fubini's Theorem)

I, = g8 | {,

n
e, 6, (y)x (x)|dr (x) ,
L emxto |ag

n
L ag @ |agwlage .
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By 1.11 (iZit), the inner integral is equal to

Il

which is independent of x € G . Thus

Il = AgEIF,

Z o) |dly) = 171,

showing that AK(I) =< AG(E)

COROLLARY 2.2. Let K and I be as in Theorem 2.1. Then
b, = min{AG(E’) : G a CAG, E< G, v(E) = n} = A ()

Proof. 1Let
c=1int{A,(B) : 6 acCAG, B C G, V(E) = n}
The definitions in 1.5 show that ¢ = gn . On the other hand, Theorem 2.1

shows that ¢ 1is an assumed minimum equal to AK(I)

REMARK 2.3. Corollary 2.2 shows that gn can be computed in terms
of Aa-constants of n-element strongly independent sets of characters.

Although there are no nontrivial independent subsets of % s, Theorem 3.5

below shows that g% can nevertheless be given in terms of A2-constants

of n-element subsets of T .

COROLLARY 2.4. We have h = (2-1/m)¥ .

Proof. 1In view of Corollary 2.2, it suffices to show that

n(P) = (2-1m)¥

where K= 7' and P = {nl, cens "n} is the set of all projections of
K . There exists f € T (K) such that ||f||l =1 and
(1) A(P) = IIfl,

Write
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rf
f= e,m, ,
k=1 KK

where the ck are certain complex numbers. Then
[ista, = ¥ c: 7
fldr, = c.c.e.C f T W, dA,
X )4 Fk, 1 J k L'm x 9 k'l'm K

the integrals remaining being equal to 1 or 0 according as the

integrand is or is not the character 1

y t y 4
(2) J lfl dAK = z |ckl + 2 . z . lcj|2|0k|2
K k=1 J.k=1,J#k
On the otﬁer hand,
2 n 2
2 2
(3) [ 19P0y) = [T 1e1?)
X K k=1 K
n n
L 2 2
=1 'ckl + ! . |cj| Ickl .
= J,k=1,5#k
Write |ck|2 =4, , for k€{1, 2, ..., n} . Ve clain that
n-1 2 . n-1 n=-1 2 n-1
(%) I 4, +2 ) AA < (2-1/n)[ I A+ )
r=0 r,8=0,r#s r=0 r,8=0,r#s
that is, that
nil nil 2
AA = (n-1) AS .
r,s8=0,r#s re r=0 r
In fact, define p: 2 + {0, 1, ..., n-1} by
t=gqn+ p(t) ,
where q € Z . Then
nil n-il nil
AA = A A
r,6=0,r#8 T 2 p=0 8=0,8#¢r ' °

which, since

{0, 1,

m > p(r+m) maps
.» n=-1}\{r} , equals

of K .

{1, 2,

https://doi.org/10.1017/50004972700043100 Published online by Cambridge University Press

It follows that

) -

., n-1} one-to-one onto


https://doi.org/10.1017/S0004972700043100

200 R.E. Edwards and Kenneth A. Ross

n~1 n-1 n-1 n-1

I I a4 =] I a4
r=0 m=1 rp(r+m) m=1 r=0 v p(r+m)
nl m-l yEmel %
=7 I a 1 4 Y|
m=1 ‘r=0 r r=0 p(r+m
Since r+> p(r+m) maps {0, 1, ..., n-1} one-to-one onto itself, this

equals
n-1 n-1 2
Z[{A]:(n-l){Ar,
m=1 ‘r=0 r=0

which verifies (4). Collecting (2), (3) and (4), we see that

Ilfllh (2-1/n) llfll

and hence

1/h

(5) Il = (-1m Mg,

From (5) and Hdlder's inequality it follows that
(6) Il = e-1m)¥isl, = (e-1m)®

and the proof is completed by reference to (1).
COROLLARY 2.5. We have p < v2 .
Proof. Lemma 1.6 and Corollary 2.h4.

Corollaries 1.8 and 2.5 provide an alternative proof of Helgason's

version of 1.1 (a).

COROLLARY 2.6. Let K be a CAG such that K contains an infinite
strongly independent set I . Then

b=min{A(E) : G a CAG, EC G, E infinite] = A (I) .

In particular,

=
]

A w({‘ﬂl, Ty, U 3 IS

T

where T = Pl with ¥ =1{1, 2, ...} and L is the n-th projection of
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Proof. Let G be a CAG and E an infinite subset of G . Let F
be any finite subset of I . By Theorem 2.1 and Corollary 2.2, we have

(1) AG(E') > AK(F) =h, where n= v(F) .

Hence AG(E) > gn for all n and so, by Lemma 1.6, AG(E) 2 h . Using
(1) and Lemma 1.6, we also have

A (T)

sup{A(F) : FC I, F finite}

sup{gn tn=1, 2, } =h,
and this completes the proof.

COROLLARY 2.7. If n s a positive integer, then

n ¥
by = sl L o] /o,y onne)
=1

where

i1 16 18

eye + ...+ce Mdo, ... dsd

3 (PN (2m)™ J-T-Tn f_"

and the supremum ig taken over all nomnegative numbers eys +-es C 5, MOt

all zero.

Proof. Applying Corollary 2.2 with X = [ and I the set of all

projections of In s, Wwe see that

b = sup[k:z:ll Ick|2]%/”k§1 ck"k”l s

the e being complex and not all zero. By 1.11 (ii%),

|2 I lel
k=1 'k 1 k=1 Kk 1
and so we may assume all the ck to be real and nonnegé.tive. Finally,

since A = ATQ @/\T {n factors),

s
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n
“Z c'n‘l‘=E'(c s cees )
k=1 k k i n\’1 n
REMARK 2.8. Corollary 2.7 indicates connections between the numbers
h ~and .the so-called Pearson random walk (C10], pp. b419-k21; [91,
pp. 496-5005 [711, pp. 10-13), wherein the walker begins at the origin amd

walks in the plane for a distance cl at random angle 61 , then proceeds

for a distance 02 at a random angle 92 , and so on. The integral
En (cl, cees cn) plainly denotes the expected distance of the walker from

the origin after completing the first 7 steps. A search of the

literature indicates that the numbers En (cl, NN cn) have not yet been
computed or estimated by machine,

LEMMA 2.9. (i) Let G be a CAG and let X, ad Xy be elements
of G such that ¢ = xlx;l i8 of infinite order. Then
AG({xl, x,z}] = m/2/4 .7

(i2) If G ie a conmnected CAG, then AG(E) = /2/4 for every two-
element subset E of G .

Proof. (i) Let E = {xl, x2} . We need to show that the maximum of
"9”2/”9“1 » for g =e X, + c,X, subject to (cl, 02] # (0, 0) , is
m/2/4 . In doing this we may plainly assume that Icl| = |02| =1 and

also that e, =1 . Let r = |cl| and select w € T so that wr =c

2 1°

Then we have

lall, = (r?)% .

The character ¢ is of infinite order if and only if {¢} is strongly
independent, and (by 1.11 (i)) this is so if and only if ¢(G) = T . Also
we have g = (f0¢)x2 where f(z) = c,z+ 1 for z €T . Hence by

1.13 (3), we have
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oty = ool = [ 1@)angta) = [ leysalana

JT Imz+1ld>\T(z)

I |rz+l|d)\T(z) (by invariance of )‘T)
T

fl

T .
(e [ ret®)as
-T

m
nt f (l+r2+2rcos9]%d6 .
0

Thus we have to show that the maximum of

m
(l+r2)%/1r-l f [l+r'2+2rcos 8) a0 .
0

1A
=
|

<1, is m?2/4 , that is, that the minimum of

(1+r°) -¥ J

subject to O

Ui
(l+r2+2rcos 8) %de .
0

subject to 0 Sr =<1, is 2v/2 . On putting a-= [1+r2)_12r , it comes to

the same thing to show that the minimm of
" %
I(a) = j (1+acos6)?de ,
o]
subject to 0 <a=<1,is 2v2 . Now
T ¥ Ul AT
(1) = [ (1+cos6)°d8 = v2 f cos)¥6d6 = 2v/2 [ cosada = 2v2 ,
0 0 0
and so it will suffice to show that I'(a) =0 for 0 <a <1 . But

G

A

ul

-% <1
I'(a) = % J cosf(1+acos8) *de = %J + %J
0

0

¥ % & ¥
= % f cos@(1+gcosB) *d6 - % J cos¢{l-gcosd) ‘dé
0 0

£
= % f cosf[(1+gcos® )-15- (1-aqcos6 )_%} a ,
0
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which is nonpositive since the integrand is nonpositive throughout the

range of integration.

(i1) This statement follows from (i) because, if G is connected,
$(G) 1is a closed connected subgroup of T and so coincides with T if
and only if it has at least two elements, that is, if and only if ¢ is

not the constant character 1 .

THEOREM 2.10. We have = m/2/bh .

h,
Proof. By Lemma 2.9, we have

Apa(P) = m/2/h

where P = {'nl, n2} is the set of projections of T2 . Now apply
Corollary 2.2.
REMARK. It is evident from Lemma 1.6 and Theorem 2.10 that

h2h, = yn2/4 = 1.1107 ...

Here is a slight improvement on this estimate.
THEQREM 2.11. We have

h= on¥ = 1.1084 ... .

Proof. Our aim is to apply the two-dimensional central limit theorem;
see, for example, [4], Section VIII.4, Theorem 2. The underlying

probability space will be (S, m) , where S = ZJV , ¥=1{1,2, ...} and

m is normalised Haar measure on S . As before, if k € ¥ | "k denotes
the k-th projection of TN . Let
= _ (1) (2)
X, = (Rem, Imm ) = [xk . X
Then X., X2, ... are mutually independent two-dimensional real random

a
variables with a common distribution. Moreover, E X1(< )] =0 for all

k €N and o € {1, 2} and the common covariance matrix

55,

is equal to
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po.0, O

where oi = 02 =% and p =0 . Consequently the central limit theorem

asserts that the distributions \)n of the random varisbles

converge (weakly) to the distribution

V= ngZ »

where )‘RZ denotes Lebesgue measure on R? and

g(zl, :c2] = ﬂ_lexp[—[mi+xg]]

We now show that

(1) J lezdv (x) =1 for all n ,
R2 n

¥
vhere |xz| = |[a:l, x2]| = [:ciﬂx:g] for z € R° . 1In fact, by definition

of \)n we have

1

=nt ITN [(kgl Renk]2+[k§1 Imnk]Z]dh .

2 2. -1 2
Lez |2, () fs s, |2 = js %, + ...+ x |%m

We also find that

(2) JTN [kzl Renk]edn kgl JTN [Renk]zdw
721 (em)~t fﬂ cos26d8 = n |

=] -7

and similarly
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(3) L/v

Equalities (2) and (3) lead directly to (1).

n 2
[ ) ImTrkJ dn = m .
k=1

From (1) and Lemma 2.12 proved below (with F(z) = [:x:|2 + 1 and
flz) = |z| ), ve obtain

ain | Jeld, @ = | lelavie

n—boo
and hence

(L) lim

[ (ad fTIV

%
n |X1 + ...t ana}n = " [xlg(x)d)\ﬁz(x) .
In the notation introduced in Corollary 2.7, the left hand side of (k) is

equal to

lim n ¥ (1, ..., 1),
n-ro n

while the right hand side of (4) is equal to

27 2 2
at f r re’ " pdrdd = 2 r ree? v = r %5 %ds
0 0 0 0

r(3/2) = 4* ,

so that

(5) Yim w %8 (1, ..., 1) = BT .

n
n-o
Hence, by Lemma 1.6 and Corollary 2.7,

h=suph 2 1imn;s/En(l, ceay 1) = zn'}’.
n

= " oo

REMARK. It seems quite possible that the supremum appearing in
Corollary 2.7 is attained when all the ck are equal, that is, that

B, = nJ’/En(l, veey 1)

-%.

If this is so, 2.11 (5) and Lemma 1.6 imply that h = 27 Note that
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Corollary 2.7 and examination of the proof of Lemma 2.9 confirm that
R 1

h,=2 /E2(1, 1) .
LEMMA 2.12. Let w and M, (n=1, 2, ...) be positive Radon

measures on R' . Let F be a positive continuous function and f a

comp lex-valued continuous function on . Suppose that

(i) B, > H weakly in the dual of 00 (Rm) H

(i2) M= supIqun < o .
n

(¢i1)  lim |f(2)|/F(x) = 0 .

||+
Then
(iv) sup J |Ffldp. < = ;
n n
(v) IqusM, Jlfldu<°°;
(vi) 1lim J fdun = J fau .
ne
Proof. By (iii), there is a nonnegative number C such that
(1) |f]l s cF

and hence (Zv) follows from (ZZ). For the rest of the proof we may assume

without loss of generality that f is real-valued and nonnegative. Let
(-]

[fk]k=l be an increasing sequence of functions in COO (Hm) such that

(2) Osfksl,fk('a:)=l for |x| =k .

By (i), (2) and (i) we have

[ fiFdu = lim f fiFdu, < lim int f Fdu =M

n-o 7190

for every k and so monotone convergence shows that

(3) IquEM.
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Now (1) and (3) entail J fdu < ® | Thus (v) is true. Next, if we define
g, = sup{f(x)/F(z) : || = &} ,

(i1i1) shows that

(k) lim g, =0

ko0

and (2) shows that [l-fk)f s gFf . Thus
fkf5f= fkf+ (l‘fk)fsfkf+ EkF N

and (Z71) implies that

1A

[ fran, = [ san, = [ rosan, + o [ ran,

1A

f fkfd“n e M.
Letting n + ® , it follows from (Z) that

J fkfdu < lim inf f fdun < lim sup f fdun = f fkfdu + ekM .

7-+00 o0

Now we let k -+ © and use (4) and monotone convergence to conclude that

J fdu = lim inf f fdun < lim sup J fdun < J fdu ,
bl

n-roo
which completes the proof.
2.13. Ve consider briefly the '"change-of-arguments" operators Tw

introduced in [3]). This will lead to & slight improvement of Helgason's

inequality 1.1 (a) and an alternative characterisation of h .

Let G be a CAG and write 2 for © . (The present  1is denoted
by 0* in [3].) For X €G , "X denotes the X-th projection on £ , so

that nx(w) = w(yx) for every w € § .
2]
For w€Q, Tw denotes the unitary endomorphism of L°(G) defined
by

Tf= ) wxX)fF(x)x .
wf xZG
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THEOREM 2.14. Let G be a CAG and let the notation be as in 2.13.
(i) We have

(1) 15,71y = 151, = 1 [ 12,70 00(w)

for w, €Q and f € L2(

o 6) .

(ii) If E is an infinite subset of G and k a real number such
that

(2) Il = % [ 1,00, 000

for every f € gE(G) » then k=h .
Proof. (i) The first inequality is trivial, since
12,7l = 12, Fll, = 171, -

For the rest, it is sufficient to deal with the case in which f € T(G) ,

for then a simple approximation argument extends the inequality to a

general element of L2(G) . We then have, by Fubini's Theorem,

CFCRORS] {l. 1, 5005 Gox(@) B Jrg(w)
-1 Al PRAVEING Dot Jarg(a) .

By Corollary 2.2 or Corollary 2.6, the A2—constant of the set of all
projections nx of §§ is at most h , so that the last-written inner
integrel is not less than

%

-1 2 -1
Y [XA |7 (x)] ] =plfl, .
XeG
and the second inequality in (1) follows.
(i1) By Corollary 2.6, applied with £ in place of G and

B = {nx : X € E} in place of I , it suffices to show that

A(E)) = & .
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This in turn will follow, if it be shown that

(3) AQ[{ﬂXl, nxn}]

for arbitrary distinct Xpo cees Xy € E . To this end, let

1A
X

and

Zcx’
JlJ

where the cJ. are complex numbers. By (2) we have
n - %
HM2=jLI%I]=Hﬁ25kknqﬂﬂ%w)

Using Fubini's Theorem, this gives

el < [ {[

By 1.11 (iZi), the inner integral here is independent of & € G and equal

ng eX; (z)m .(w){dAQ(w)}d)\G(:z:)

to

f h et ‘“”l‘” (w) = 17l
Q lg=1

Thus, ”F||2 < kIIFlll , which verifies (3) and completes the proof.

COROLLARY 2.15. The notation is as in 2.13. Suppose also that
EcCG and let

k= sup{lIT fll; : f € Z(6), lIflly = 1, w € @} .

Then
K £ A(F) = bK .

In particular, E 18 a Aa-set if and only 1f K < =,

Proof. The inequality Kk = AG(E') follows from the first inequelity
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in 2.14 (1), since II_ﬂl2 < AG(E)”fnl for every f € _EE,(G) . The

inequality AG(E) = hk follows from the second inequality in 2.14 (1).

3. h in terms of subsets of T
In this section we show that each of the numbers 1_1n can be given in

terms of n-element subsets of 7 . In view of Lemma 1.6, h can

therefore be given in terms of finite subsets of T .

NOTATION 3.1. Here we consider the (compact) circle group T ; =
will denote a fixed positive integer. For integers k = 2 , we write
-1
En k for the set of characters 2 H> z of T corresponding to
3
Jj e, 2, ..., n}. In Theorem 3.5, we will prove that
h = lim AL(E ) .
7 e T'nk

For each k , ¢k will denote the mapping of T into 7 defined by

H

2 n-1
¢k(z) = (z, zk, zk s eees zk ]

and Hk will denote the image ¢k(T) of T . It is evident that ¢k is

a topological isomorphism of T onto Hk .

DEFINITION 3.2. ILet H denote the set of all closed subgroups of
the compact group G . We endow H with the topology for which an open

basis consists of sets of the form

U[K;Ul, ...,Um]={H€H:HnK=¢ and Hnuj¢¢ for al1 4} ;

here XK is a compact subset of G and Ul, ey Um are nonvoid open

subsets of G . A net [HY]YEF in H is said to converge in the sense

of Hausdorff to Ho

in this cese we write

in H provided it converges to Ho in this topology;

lim ¥ = H_ [Hausdorff].
y ¥ 0

Since G belongs to U(K; Ul’ cees Um) if and only if X = @ , it follows
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that

(i) 1im H_ = G [Hausdorff]
Y Y

if and only if
(ii) whenever Ul’ vees Um are given nonvoid open subsets of
G , there exists a YO € T' such that vy > YO implies

HYnt¢¢ for a1l 4 € {1, 2, ..., m} .

We need the following lemma due to Fell (see appendix to [6]) and to
Bourbaki [2]; see also [5].

LEMMA 3.3. IF [HY] 18 a net of closed subgroupe of a compact growp
G, and if

(i) lim H_ = G [Hausdorff],
Y Y

then for all F in C(G) we have

(i) f Fd\. = lim [ Fd\
¢ G i

Y Y

where A, and }‘H denote normalised Haar measure on G and H

G >
Y Y

respectively.
LEMMA 3.4. Let (Hk):=2 denote the sequence of closed subgroups of
7' defined in 3.1. Then

lim #, = 7 [Hausdorff].

Koo K
Proof. We establish some local terminology for this proof. By a

kr-sector of T we shall mean a subset of T of the form

{exp(2mie) : j&7 =8 < (j+41)x 7} ;
here r denotes a nonnegative integer and J any integer. A subset FE
of T' will be termed k-dense if for every choice of n k-sectors

Sl’ ""Sn of T , the set
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x

Eo s, xs,x ... xsn)
is nonvoid. We first prove that

(1) each H; is k-dense in .

We begin with an observetion. If r is a nonnegative integer, if R
is a k¥-sector of T , and if S 1is a k-sector of T , then there is

r+l a
some k  ~~sector R' € R such that z+> 3 maps R' into S . In

fact, we can write

r

R {exp(211i9) :mk T <6< (ml)k-r}

and

1

S = {exp(2miB) : k- =6 < (j+1)k_1} .

where m € Z and j € {0, 1, ..., k-1} , and then set

R' = {exp(2mi®) : (mk+)k "1 < 0 < (mkaj+1)K 71} .

Now let Sl’ e Sn be given k-sectors of T . The preceding
observation allows us to choose by recurrence kr—sectors Rr for
kr—l
r € {1, 2, ..., n} such that Rn_C_Rn_lE...SRl and 2+ z maps
Rr into Sr for r € {1, 2, ..., n} . Select any z from Rn . Then
kr—l
2 belongs to 5, for » €{1, 2, ..., n} and so ¢k(8) lies in

SleZX”' XSn; thus

Hyn (S; xS, x...x5)#p.

This proves (1).

To complete the proof of the lemma, we verify 3.2 (ii) in the present

setting. So consider nonvoid open subsets U . Urrv of T" . A simple

l’
argument shows that for each - J € {1, 2, ..., m} , there is an integer kj

such that E n Uj # @ whenever E 1is a subset of In that is k-dense

https://doi.org/10.1017/50004972700043100 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043100

214 R.E. Edwards and Kenneth A. Ross

for some Xk = k., . Thus if k = max(k,, k

J 1’ 2
H, n UJ. #P for all j € {1, 2, ..., m} . This verifies 3.2 (ii) and so

. km) , then (1) shows that

lim Hk =T in the sense of Hausdorff.
ko

THEOREM 3.5. For the sequence (En k):=2 of n-element subsets of

T defined in 3.1, we have

h = 1lim A (
3,

ko

n,k) )

Proof. Since n is fixed throughout the argument, we will write Ek
: N . >
in place of En,k . The definition of gn in 1.5 shows that AT(E’k) z gn

for all k = 2 and so

It therefore suffices to prove that

(1) 11m : sup A k) =

Assume that (1) fails. Then there is a subsequence (kr) of integers and

a number K > h, so that AT(Ek ] >K for all r . Then for each r we
r

have

(2) [Jnl

P [kr)j"l
c. <

d=1

(r)l ] IT

for suitable complex numbers c;.r) , Jefl1,2, ..., n} . We may clearly

|d>\T(z)

suppose that

(3) [J_zl

2v%
] =1 for all r .

Let ¢k and IIk be as in 3.1. Since ¢k is a continuous

homomorphism of T onto H, , 1.13 (3) shows that
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(%) L]k fdAHk = IT (Foo, Jdry,

for all functions f continuous on Hk . Let w T denote the

10 cce

projections of T' . We apply (4) to the right hand side of (2), taking

k=kr and f=Fr,where

>

o)
Fr = l cj .
i=1 J

and so obtain

)%
cQ”)I ] > Kk [ Fdxr_
J g rr
kI’

(5) (jgl

here we have written >‘r for normalised Haar measure on Hk . In view of
r

(3), we may suppose (by passing to further subsequences of (k’_) if

necessa.ry) that the limits 1lim c(.r) exist., Let
o J
(6) c; = lim cgr) for § € {1, 2, ..., n} ,
o

and define

n
jzl CJ.‘II’J.

F =

By Lemma 3.4, we have 1lim Hk = T' in the sense of Hausdorff, and so

K+

Lemma 3.3 applies to show that

(1) I Fd\ _ = lim f Fa\, .
"

po T el

From {(6) and (3) it follows that

2 n
A R

E
(8) 1i
im i i

o g=1
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From (6) it also follows that F, converges uniformly to F end so

(9) ii:: ”y Fd\, - fH Fdxrl =0 .
r r
Relations (7), (8) and (9) together with (5) yield
[VXZ |c.|2]%2|<J Fdx
j=1 7 7

that is,

n
z e.m.ldA

7 J=1 dd

Since (8) shows that both sides of (10) are nonzero, we conclude that

(10) [El ch|2]%zl< J

j:

o

A (s s m ) ze>n

7

which contradicts Corollary 2.2.
We end by using the sets En k to establish the following interesting
k]

extension of Corollary 1.12.

THEOREM 3.6. We have M,=h.

Proof. 1In view of Corollary 1.10, it is enough to show that the Sidon

constant of En k is at most sec(2m/k) for k 25 . To achieve this we

will show that, if a an are arbitrary complex numbers, then

12 v

n n J-1
(1) cos(2n/k) § Ja.| = sup{ ) a,df ’ iz € T}
. ‘ =1 J

= Y
sup{

where Hk is as in 3.1. We will use 3.4 (1) and the terminology

n
jgl wJ.aJ.l W= (wj] € Hk} R

introduced thereabouts. For each J , aJ. = 'Iajlexp(emlej) , where BJ.

belongs to the interval [mjk-l, (mj+l)k—l] for some integer
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mJ. €{o, 1, ..., k~1} . Let Sj denote the k-sector

{exp(2ni9) : (-mj—l)k—l =6c< -mjk—l} .

By 3.k (1), some w in H, has the property that w; € Sj for all

Jg € {1, 2, ..., n} . Then each wjexp[?ﬂiej) belongs to

{explemio) : k1 <0 < k1)

and so Re (wjaj) = cos(en/k)lajl . It follows that

n
-Zl “’j"j’

cos(2n/k a.l = Re
J :

J=1 J

5 ) -

1 44

and hence (1) holds.

REMARK 3.7. It is clear from 3.6 (1) that the Sidon constant of the
J-1
infinite set of characters z+* 2 of T corresponding to
Jg ef, 2, 3, ...} is at most sec(2m/k) when k =5 .
COROLLARY 3.8. Let G be a CAG such that G contains an element
Xo of infinite order. Let n and k be positive integers and

W
Fk={)§o :36{1,2,...,71}}.

n’
Then
(i) h_ = lim A [F 3
1im 1,05, ;)
(i) h = MG .

Proof. We apply the substance of 1.13 with X =7, ¢ = Xo and
E = En,k 3 Since XO is of infinite order, {xo} is strongly independent
= i = *
and ¢(G) =T by 1.11 (i). Then Fop=¢ (En,k) and so
T

follows from Theorem 3.5, while (ZZ) follows from Corollary 1.10 and the
fact (established in the proof of Theorem 3.6) that ST(En k) is at most

3

SG(Fn,k) = ST(En,k) and AG[Fn,k) = A (En,k) . Statement (i) accordingly

sec(2n/k) for large k .
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