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Helgason's number

and lacunarity constants

R.E. Edwards and Kenneth A. Ross

This paper studies the connection between the best possible

value of a constant in the compact abelian case of a known

inequality due to Helgason and the Ap-constants of sets of

characters. Various estimates of and expressions for the best

possible value are given.

1. Introduction; the numbers w_ and h
G "

1.1. Helgason ([7], p. 2U5; [S], (36.10)) shows that if G is a

CAG (= compact Hausdorff abelian group), then the inequality

(a) ||*||2 < Wsupjllfc*/^ : f „ S l }

holds for all ft € L2(G) with M = /2 . [Note that the supremum in (a) is

unaltered if we write / € £{G) in place of / € I^iG) , where T(G)

denotes the set of complex-valued trigonometric polynomials on G .]

Moreover (see 1.3 below), (a) is equivalent to the inequality

(b) I|F|I2 « AfeuplllFrili : / € C{G), \\f\\u < l}

holding for al l F £ (r , where G denotes the character group of G and
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188 R.E. Edwards and Kenneth A. Ross

C(G) the se t of continuous complex-valued functions on G . Inequality

(b) appears in Theorem (2.1) of [3].

For a given G , we wi l l denote by #„ the smallest number M 2 0

for which (a) (or (b)) i s t r u e . Clearly, M^ i 1 for every CAG G .

In what follows we introduce a certain number h. , defined in terms of

A2-constants of large f in i t e sets (see 1.1* and 1.5 below), which we ca l l

the Helgason nurrber. The reason for the name is that we shal l prove the

following facts :

( i ) i f c < k for every CAG G (Corollary 1.8);

( i i ) MQ = & for certain specifiable CAGs G (Corollary 1.12,

Theorem 3.6, Corollary 3.8) .

Helgason's r e su l t i s included in the inequali t ies

( i i i ) 2H 7 < | 5 2 ' (Theorem 2 .11 , Corollary 2 .5) ,

which we shal l prove on the way.

We introduce also a somewhat similarly-defined number 1L for every

posi t ive integer n , showing that

( iv) h < h^ and h, = lim h^ (Lemma 1.6).

We w i l l also show that

(v) hg = TT/2/U (Theorem 2.10), and that

f r(vi) h^ = sup I

B l - d6n

where

and c. , ..., a denote nonnegative real numbers, not all zero

(Corollaries 2.7 and 2.U).

In Section 3, we show that each h can be given in terms of sets of
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characters of T (the circle group) only.

We have been unable to evaluate h. ; it would be very interesting to

know whether or not h_ < V2 .

We start with a simple lemma.

LEMMA 1.2. If G is a CAG and g i 1(G) , then

\\g\\ = supll : / € C(G), \\f\\ 2 l ) .

Proof. If \n denotes normalised Haar measure on G , then

l^ = J \g\d\G =

= sup

= sup||
I

I

: / i C(G), \\f\\u < l j

: f € C(G), | | / | | M 5

: / « C(G), [\f\\u S l j .

1.3. Now we verify the equivalence of (a) and (b) in 1.1. The

supremum on the right of (a) is

supll ln a(x)«~(X)X

which, by Lemma 1.2, is equal to

finite , ||a|| S l lu 1

finite, ||a|| S 1, / € C(G), \\f\\ S l )

= sup sup II
/ a U

, \\f\\u 2

12(G)Thus (a) is equivalent to (b) for F (= h") in 12(G) ; but this is
/\

easily seen to be equivalent to (b) for arbitrary F € C

1.4. If G is a CAG and £ is a subset of G , we write Tg.(G) for

the set of / € l ( c ) s u c h t h a t /~(x) = 0 for every x € S\£ . We also
write

AG(£) = sup{||/il2 : / f TgtO, ||/|l1 = 1} < -
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and ca l l k~(E) the A -constant of E . I t i s easy to see that hn(E)
u 2 * G

i s a f in i te assumed maximum whenever E i s f i n i t e . Moreover,

AG(£) = supfAJF) : F f i n i t e , F c E) .

1.5. Define sets S and 5 (w a positive integer) of nonnegative

rea l numbers as follows.

S i s the se t of rea l numbers K 2 0 with the property tha t , for

every positive integer n , there exists a CAG K and an n-element

subset E of K such that

n

S is the se t of rea l numbers K > 0 with the property that there

exis t s a CAG K and an n-element subset E of K such that

hK(E) 5 K .

The proof of Corollary 2.k below shows incidentally that 2 € S .

We now define

h = infS , h^ = infSM .

It is simple to verify that

00

5 c S , S = fl 5 .
n=l n

These observations render the next lemma obvious.

LEMMA 1.6. We have h 2 h for every positive integer n , and

k = lim h^ .

THEOREM 1.7. Let n be a positive integer. Then (b) of 1.1 holds

with M = h for every CAG G and every F € C whose support has

cardinal v(suppf) at most n .

Proof. Let < € S and l e t # be a CAG such that there exists ann
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n - e l e m e n t s u b s e t E = {c , . . . , ? } o f K f o r wh ich A^(ff) £ K . Suppose

v ( s u p p F ) = r S n and e n u m e r a t e suppF a s {x-,> • • • . Xy} • Then , f o r

e v e r y x € G , we h a v e

r
F[Xj)x.(x)l.(y) d\K(h

Integrating over G and using Fubini's Theorem, this gives

which shows that

1% II v

f I |F(XJ|2]*5K|f F[X)C\)X
y=i J J "j=i J J ° t7

for some y £ K . Using Lemma 1.2, i t follows that

J—1

< KSUp{ I | F ( x , ) r ( x J I : / « C(G), Il/H S l l .

Since this is true for every K € 5 , i t remains true with h^ in place

of K . Thus, (b) of 1.1 is true with M = h for the stated functions

F .

COROLLARY 1.8. We have « < h for every CAG G .

Proof. By Lemma 1.6 and Theorem 1.7, (t>) of 1.1 holds with U = ĥ

for every f £ CT having a f in i te support. But then (b) holds with H - h.

for every F EC , and so M < h .
u —

REMARK. From Theorem 1.7 it follows that, if G is of finite order
i f jr.

n , then M_ £ h which, by Corollary 2.U, i s at most (2-1/n) < 2 .

Thus Helgason's inequality (that i s , 1.1 (a) with M = 2* ) is not best

possible when only groups of given f in i te order n are considered. In
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addition i t can be shown that , if G is the subgroup {-1, l} of T ,

then MG = 1 whereas (by Theorem 2.10) h^ = Tr/2/U > 1 .

THEOREM 1.9. Suppose that C is a CAG, that E is a Sidon subset

of G j and that SJE) is the Sidon constant of E 3 that is, the

smallest nonnegative real number < for which

\\r\\x 2 <\\f\\u

for every f € 2g(G) • Then

AG{E) " W * } •

Proof. Let / € Tj?(G) . Using (b) of 1.1 with M = Mr , we have

11/11 = liriU £ ̂ up{ L |r(x)^(x)| : 9
2 l

#JJJ : ff « C(C) , Hffll < 1 , W €

where fl = T . Writing K for SJE) , a known property of Sidon sets

[LSI, (37'2)) asserts that every w € ft agrees on E with u~ for some

satisfying | |u j | < K . I t follows that

: kII/IL s
2 " l l x ^ c

the last step by Lemma 1.2. Thus ^G(E)

COROLLARY 1.10. Let G be a CAG. Then

(1) » < h < « . lim inf inf {5 (E) : E c G, v(E) = n} .
G ~ G " °

(The infimum of the empty set is understood to be °° .)

Proof. The f i rs t inequality in (l) is Just Corollary 1.8. For the

res t , le t t denote the infimum appearing in ( l ) , which we may assume to
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be f i n i t e . I f E c G and v(£) = n , then A~(£) € 5 and so
— Lr n

( ' ) 2 h . B y Theorem 1.9 we t h e r e f o r e h a v e

From this it follows that

(2) h 2 Mrt .
=n G n

The second i n e q u a l i t y i n ( l ) follows from (2) and Lemma 1.6.

1.11. I f G i s a CAG, a subset E of G w i l l be termed strongly

independent i f , whenever XT> •'••> )C, denote d i s t i n c t elements of E and

m1, . . . , m denote i n t e g e r s , the r e l a t i o n

V V = 1

*1 • • • *n

implies that m = ... = m = 0 . For example, if J is any set and
G = T , then the set of projections

with iQ (. I i s a strongly independent subset of G .

We l i s t several properties of strongly independent sets which wi l l be

useful in the sequel.

(i) If G is a CAG and E a subset of G , then E is strongly

independent if and only if the mapping <}> : x •—•• (x(#)) eE
 maps G onto

T j where T denotes the circle group.

Proof. The image E = (J>(G) is a closed subgroup of T •. If the

character group of T be identified with 2 (the additive group of

integers) in the usual fashion, the annihilator A in [T ) of H is

precisely the set of Z-valued functions X •""* "*(x) on E having finite

supports and such that

TTxm(x) = i .
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The strong independence of E is equivalent to the assertion that A is

the trivial subgroup of P* _ Z . Since H is the annihilator in r of

A , this occurs if and only if H = r .

(££>> J / G ie a CAG and E a strongly independent subset of G ,
then SAE) = 1 .

Lr

Proof. This follows at once from (i) and the definition of SJE) in
Lr

1.9-

C-£ii>> Suppose that G is a CAG and that E is a strongly independ-

ent subset of G . If X]> • • • > X- av& distinct elements of E and

c , ..., a are complex numbers, then

Ik=l K
dX G I

k=l
Proof. For k € { l , 2 n) , choose at, € I7 such that

c, = |e- |to, . By (i), there exists a € G such that Xr.(a) = <°T.

n n
k € { l , 2, . . . , « } . Then £ e.Xt, i s the a- t ranslate of \

fc=l " K k=l
and the stated equality follows from translation-invariance of A_ .

Lr

COROLLARY 1.12. Let G be a CAG with the properly that, for every

positive integer n , G contains an n-element strongly independent set.

Then M~ € S and h = M„ .
Lr — Lr

Proof. For each posi t ive integer n , l e t I be an w-element

strongly independent subset of G . By 1.11 (ii) , we have S^[l^ = 1

and so, by Theorem 1.9, A.(l ) - " - . Since this i s the case for every

posi t ive integer n , i t follows tha t M~ € S . This entai ls that h, S AT,

and the res t ensues from Corollary 1.8.

REMARK. From Corollaries 1.8 and 1.12 i t follows that h i s the

maximum of the numbers Mg when G ranges over the class of CAGs.
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1.13. We inser t here some remarks about the effect of continuous

group homomorphisms.

Let G and K be CAGs and suppose that <j> is a continuous

homomorphism of G onto K . Write <)>* for the dual isomorphism of K

into G defined by $*(?) = t, ° <j> for C, € K , and l e t $ denote the

mapping f ^*'f ° <t> of C(K) into C(G) . In what follows, E denotes a

subset of K and F = (})*(£') c G . I t i s plain that

(1) $ preserves uniform norms

and that

(2) $ maps CE(K) onto Cf(C) .

[CE(K) denotes the set of g € C(K) such that g~(c.) = 0 for ? €

and CAG) is defined analogously.)

By considering the functional f *-* (*/)dX_ and invoking the

uniqueness of normalised Haar measure on K , we infer that

(3) f (J*4)d\r = f fdX

for every / € C(K) .

From (3) we may infer f i r s t that

(It) <j> preserves Z."-norms (0 < p < °°)

and second tha t , i f X ^ 5 and / € C{K) , then

(5) (/°<J>r(x) = r(**"1(x)) if X « **(£) and 0 otherwise.

In particular,

In view of (U) and ( 2 ) , i t follows t h a t the A 2 -constant of F i s

equal t o the A2~constant of E . S i m i l a r l y , from ( l ) , (2) and (6) i t

appears t h a t t he Sidon cons tan t of F i s equal t o the Sidon constant of

E .
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From (3) i t follows also that

(7 ) (f°<$>) • (ff°<!>) = (/*<?) ° <f>

for / and g in C(K) . If I)I i s an isomorphism (which occurs i f and

only i f <f>* maps K onto G , that i s , i f and only i f <j> maps C(K)

onto C(G) ) , we infer from (7) and reference to 1.1 (a) that M„ = Mj. .

We end this section by recording another property of the number W_

for a given G .

LEMMA 1.14. Suppose that G is a CAG, that 1 5 p £ 2 , and that

q = 2p/(2-p) . For F € & we have

\\F\\q =

Proof. We have

Now ||(|i|| r = 1 i f a n d o n l y i f ||<J> | L i = 1 ; a n d e v e r y n o n n e g a t i v e
P W

satisfying ll'Plli^r = 1 has the form $ for some 41 satisfying

\\<\>\\ , = 1 . So the above supremum eqioals

Since (%p ' ) ' = p / ( 2 - p ) = kq , t he supremum equals

I | F \ = \\Ffq .

THEOREM 1.15. Let G be a CAG, 1 < p £ 2 and q = 2p / (2 -p ) .

Then

\\F\\ < WGsup{||Frilp : / ^ C(G), \\f\\u < l}

/o r every F i CG . If F (. (P and Ff € lP{G) for every f (. C(G) ,

then F i lq(G) . [Cf. [ 3 ] , Corol lary ( 2 . 3 ) . )

Proof. By Lemma l.Xh and (b) of 1 . 1 , we have
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s Mr sup sup \mr\\,
G IIO>llp,=l 11/11,51 X

= M^ sup sup

= MG sup HF/lp •

The res t follows from the closed graph theorem.

2. Estimates for h^ and h_

THEOREM 2 .1 . Let n be a positive integer, K any CAG and I any

n-element strongly independent subset of K . Let G be any CAG and E

a subset of G having at least n elements. Then

Proof. Enumerate I as {? , . . . , £ } and choose n dis t inct

elements X-,> • • •» X, of E • Any / £ JLjW can be written

the Cj, being complex numbers. For y € K l e t

so that / € Tf,(G) . Then

(

and so also (using Fubini's Theorem)

' G

ll/ll2 ^

https://doi.org/10.1017/S0004972700043100 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043100


198 R.E. Edwards and Kenneth A. Ross

By 1.11 (Hi), the inner integral is equal to

! n

I
>K k=l

which i s independent of x € G . Thus

showing that A-,(J) £ A«(£) .
A U

COROLLARY 2 . 2 . Let K and I be as in Theorem 2 . 1 . Then

h = Ttd.n{hAE) : G a CAG, E c G, v{E) = n) = AM) .

Proof. Let

a = inf{AG(£) : C a CAG, J c f i , v(£) = «} .

Ihe definitions in 1.5 show that a = h . On the other hand, Theorem 2.1

shows that o is an assumed minimum equal to A,,(J) .

REMARK 2.3. Corollary 2.2 shows that h can be computed in terms

of Ag-constants of n-element strongly independent sets of characters.

Although there are no nontrivial independent subsets of T , Theorem 3-5

below shows that h can nevertheless be given in terms of Ap-constants

of n-element subsets of T .

COROLLARY 2.4. We have ĥ  5 (2-l/n)% .

Proof. In view of Corollary 2.2, i t suffices to show that

hK(P) £ (2-l/n)% ,

where K = T and P = {TT , . . . , TI } is the set of a l l projections of

K . There exists f € Tp(K) such that | | / | | = 1 and

(1) AK(P) = \\f\\2 .

Write

https://doi.org/10.1017/S0004972700043100 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043100


Lacunarity constants 199

n
f = I

k=i
where the e, are certain complex numbers. Then

t ^ • n 1

\f\ dK = I afk°lcm VfcVmdXK '
>K K j,k,l,m=X ° >K 3 K <-m K

the integrals remaining being equal to 1 or 0 according as the

integrand is or is not the character 1 of K . It follows that

(2)

On the

(3)

l/l d\v =

other hand,

n
I K

— 1 )

n

fe=l

1"

ck

+ 2

A
h

\c,\2\c\2
3 K

Write \a,\2 = 4, for fc € {l , 2, . . . , n} . We claim that

n- l n - l m-1 n- l
(U) J A + 2 y i 4 / l £ (2-1/n) J A + £ 4 /

that i s , that

n- l n - l

I V s £ (M"1) E r •
i>,e=0,r^s 3°=0

In fact , define p : Z * {0, 1, . . . , - n - l } by

t = qn + p(t) ,

where q € Z . Then

n- l n - l n - l

which, since mi—»• p(i»tm) maps {l , 2, . . . , n- l} one-to-one onto

{0, 1, . . . , n-l}\{r} , equals
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n- l n-l n - l n- l

Jo Ji VP(«»> = Ji Jo

(T . f (
Since r •—•• p(w-m) maps {0, 1, . . . , n- l} one-to-one onto i t s e l f , th i s

equals

n - l ( n - l „•> n - l „
I X 4 - (n-l) I A\ ,

m=l r=0 ' r = 0

w h i c h v e r i f i e s ( 1 * ) . C o l l e c t i n g ( 2 ) , ( 3 ) a n d ( k ) , w e s e e t h a t

Il/HJ < (2-l/n)||/||J ,

and hence

(5) ll/llu £ (2-l/n)lA| |/ | |2 .

From (5) and Holder's inequality i t follows that

(6) | |/ | |2 < (2-l/n)h\\f\\x = (2-1/n)* ,

and the proof i s completed by reference to ( l ) .

COROLLARY 2 .5 . We have & < /2 .

Proof. Lemma 1.6 and Corollary 2.U.

Corollaries 1.8 and 2.5 provide an al ternative proof of Helgason's

version of 1.1 (a ) .

COROLLARY 2.6. Let K be a CAG euch that K contains an infinite

strongly independent set I . J7ien

ti = min{Ac(E) : G a CAG, E c G, E infinite) = A^(J) .

In particular,

T 1

where T° = T with N = {l, 2, . . .} and ir is the n-th projection of
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Proof. Let G be a CAG and E an infinite subset of G . Let F

be any finite subset of I . By Theorem 2.1 and Corollary 2.2, we have

(1) hG(E) > hK(F) = b^ where n = v(F) .

Hence AJ£) > h for a l l n and so, by Lemma 1.6, AJ#) > h.

( l ) and Lemma 1.6, we also have

hK(I) = svp{AK(F) : F c l , F f i n i t e }

= supfh^ : n = 1, 2, . . .} = h ,

and this completes the proof.

COROLLARY 2.7. J / n i s a positive integer, then

Using

sup
i n

Ui
where

and tfce supremwi is taken over all nonnegative numbers e^» — , c , not

aiZ zero.

Proof. Applying Corollary 2.2 with K = "f1 and J the set of al l

projections of JT , we see that

the cv being con^lex and not all zero. By 1.11 (Hi) ,

and so we may assume all the a, to be real and nonnegative. Finally,

since X = (n factors),
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k
l
=1 Vfcl^Mv ••" °J •

REMARK 2.8 . Corollary 2.7 indicates connections between the numbers

h and .the so-called Pearson random walk ([ '0D, pp. Ul9-l»21; [9 ] ,

pp. U96-5OO; [ 7 ] , pp. 10-13), wherein the walker begins at the origin and

walks in the plane for a distance c. at random angle 61 , then proceeds

for a distance o^ at a random angle 6p , and so on. The in tegral

En[c , . . . , a ) p la inly denotes the expected distance of the walker from

the origin after completing the f i r s t n s teps. A search of the

l i t e r a t u r e indicates tha t the numbers E [a , . . . , a J have not yet been

computed or estimated by machine.

LEMMA 2.9. (i) Let G be a CAG and let ^ and x2 be elements

of G sueh that <{> = X-.Xo ^s °f infinite order. Then

Ac({xr X2}) = T / 2 A . '

(ii) If G ia a connected CAG, then AG(E) = ir/2/lt for every two-

element subset E of G .

Proof. (i) Let E = {\ , x^} • We need to show that the maximum of

llffl̂ /llffll-L . f o r g = c 1 x 1 + c2Xg subject to [c^ c^ t (0, 0) , i s

TT/2/U . In doing th is we may plainly assume that \o \ £ |c_ | = 1 and

also that e_ = 1 . Let r = | e . | and select w € T so that wr = c. .

Then we have

The character <(> is of i n f in i t e order i f and only i f {<(>} i s strongly

independent, and (by 1.11 (i)) this i s so i f and only i f $(<?) = T . Also

we have g = (f°$))U where f{s) = c^z + 1 for z € T . Hence by

1.13 (3) , we have
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| \fi*)\dkT(z) = | \oxz+l\dXT(z

|ru3+l|dX (a)

= |r3+l|dX_(3) (by invariance of A )

= (2TT)"1 [ |rei9+l|de

= if1 [ (l+r2+2rcos9)%d6 .
J0
[
J0

Thus we have to show that the maximum of

( l + r 2 ) ^ " 1 f (l+r2+2rcose)%d6 ,

subject to 0 S r 5 1 , is IT/2/U , that i s , that the minimum of

(l+r2)~% f (l+r2+2rcos6j%de ,
J0

subject to 0 5 !" S 1 , is 2/2 . On putting a = (l+r )~ 2r , i t comes to
the same thing to show that the minimum of

Ha) = (l+acos6)?d6 ,
J0

subject to 0 £ a < 1 , is 2/2 . Now

1(1) = I (l+cos6)*de = /2 [ cos^Sde = 2/2 [ cosada = 2/2 ,
Jo Jo Jo

and so i t will suffice to show that I'{a) £ 0 for 0 < a < 1 . But

I'(a) = % f cose(l+acos6)"*d9 = % f + % f
h '0 J%7r

= % cos6(l+acos8) d6 - % cos^d-acosij))"*^
JO J 0

= % [ cose[(l+acos6)"*-(l-acose)"*]d6 ,
Jo
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which is nonpositive since the integrand is nonpositive throughout the

range of integration.

(ii.) This statement follows from (i) because, i f G is connected,

<t>(G) is a closed connected subgroup of T and so coincides with T if

and only i f i t has at least two elements, that i s , i f and only i f <}> is

not the constant character 1 .

THEOREM 2.10. We have h^ = TT/2/U .

Proof. By Lemma 2.9, we have

AT2(P) = TT/2A

where P = {IT , IT,,} is the set of projections of X . Now apply

Corollary 2.2.

REMARK. I t is evident from Lemma 1.6 and Theorem 2.10 that

h 2 ^ = h2/k = 1.1107 . . . .

Here is a sl ight improvement on this estimate.

THEOREM 2 . 1 1 . We have

h > 2if* = 1.128U . . . .

Proof. Our aim is to apply the two-dimensional central limit theorem;

see, for example, [4J, Section VIII.k, Theorem 2. The underlying

probability space wil l be (5, m) , where 5 = IT , N = {l , 2, . . . } and

m i s normalised Haar measure on S . As before, i f k € N , IT, denotes

the fc-th projection of r . Let

[x) i= [xk
Then X. , X^, . . . are mutually independent two-dimensional real random

variables with a common distribution. Moreover, E\X. = 0 for a l l

k € N and a € {l, 2} and the common covariance matrix

is e.ual to
ex,6=1,2
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2 2
where a^= Q^ = % and p = 0 . Consequently the central limit theorem

asserts that the distributions V of the random variables

5 = n^ix, + ... + X }
n K 1 n'

converge (weakly) to the distribution

v == g\Rz

p
where X_2 denotes Lebesgue measure on R and

We now show that

(1) |x|2d\> {x) = 1 for a l l n ,
1R2 n

( p pi p

aj.+x2 for x € R . In f ac t , by def in i t ionof v we haven

We also find that

\R2 l * ! 2 ^*) - QJTl

= n" 1 \\ I Reir + [ Imir \dm .

(2)
f f n r ? f 12

2 R e 1 Ti . <^"= I (Re'irj.J
J 717 VI*—1 ^ J 7-—T J M

Yl fiT

= I (2V)-1

fe=l •'-it
= %n ,

and similarly
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f f r ) 2

(3) 2 Ijn7rjJ dm = in .

E q u a l i t i e s (2) and (3) l e ad d i r e c t l y to ( l ) .

From ( l ) and Lemma 2.12 proved below (with F(x) = \x\ + 1 and

fix) = \x\ ) , we ob ta in

lim [ \x\dv (x) = [ \x\d»(x) ,

and hence

(10 lim | n~*|x1 + . . . + Xn\dm = J ^ \x\g(x)d\RZ{x) .

I n t h e n o t a t i o n i n t r o d u c e d i n C o r o l l a r y 2 . 7 , t h e l e f t h a n d s i d e o f (h) i s

e q u a l t o

l i m n ~ * f f M ( l , . . . , 1 ) ,

w h i l e t h e r i g h t h a n d s i d e o f (k) i s e q u a l t o

»2iT f 2 f*> 2 f° i
IT" I r e " rdrdft = 2 r e " d r = e~ s da

'0 >0 *Q '0

= T(3/2) = %TT% ,

so tha t

(5) lim n~*Ejl l ) = %ir% .

Hence, by Lemma 1.6 and Corollary 2.7,

h, = sup h^ > lim nyff^d, ..., l) = 2Tr"* .

REMARK. It seems quite possible that the supremum appearing in
Corollary 2.7 is attained when all the c. are equal, that i s , that

If this is so, 2.11 (5) and Lemma 1.6 imply that ^ = 2TT~* . Note that
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Corollary 2.7 and examination of the proof of Lemma 2.9 confirm that

LEMMA 2.12. Let. v and u (n = 1, 2, . . . ) be positive Radon

measures on K . Let F be a positive continuous function and f a

complex-valued continuous function on IT . Suppose that

(i) \i •*• \i weakly in the dual of CQ0(i?"!) ;

(ii) M = sup Fdv < °° ;

(Hi) lim |/(ar) |/*•(*) = 0 .

Then

(iv) sup j |f|dUn < °° ;

(v) j Fdv s M , [ \f\dv < °° ;

(vi) lim J fdvn = | fdv .

Proof. By (Hi), there i s a nonnegative number C such that

(1) \f\ S CF

and hence (iv) follows from (ii) . For the res t of the proof we may assume

without loss of generality that / is real-valued and nonnegative. Let

(/ iJk= 1 be an increasing sequence of functions in C^Q [FT) such that

( 2 ) 0 £ fk < 1 , fk(x) = 1 for \x\ £ k .

By (i), (2) and (ii) we have

f,Fdv - lim I f.Fdv £ lim inf Fdv 2 M

for every k and so monotone convergence shows that

(3) j FdV 5 M .
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Now (1) and (3) en ta i l fdv < °° . Thus (v) i s t rue . Next, i f we define

: \x\ 5 k) ,

(Hi) shows that

(M lim e. = 0

and (2) shows that ( W j J / s E ^ •

V s ' - V+ Mt)' - V
and (ii) implies that

Letting n •*• °° , i t follows from (i) that

I / . fdv £ lim inf j /dp £ lim sup [ /dp £ [ / , / dp + e,M .

Now we l e t k •*• °° and use (1+) and monotone convergence to conclude that

fdv £ lim inf fdv £ lim sup /dp £ /dp ,

which completes the proof.

2.13. We consider br ie f ly the "change-of-arguments" operators 2"

introduced in [3] . This w i l l lead to a s l ight improvement of Helgason's

inequality 1.1 (a) and an al ternat ive characterisation of t .

si

Let G be a CAG and write fi for T . (The present Q is denoted

by ft* in [3] . ) For x € G > ^ denotes the X-th projection on ft , so
X

that TT (co) = w(x) for every d) Z ft .
X

For to € Q , T denotes the unitary endomorphism of L^(ff) defined

TJ = L »(x)r(x)x •
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THEOREM 2.14. Let G be a CAG and let the notation he as in 2.13.

(i) We have

(i) \\T^nx * Hfil2 =

/or uQ € fi and / € L2(G) .

(ii) If E is an infinite siibset of G and k a peal number sudh

that

( 2 ) < k

for every f € 2g(G) , then k > h •

Proof', (i) The first inequality is trivial, since

For the rest , i t is sufficient to deal with the case in which / € %{G) ,
for then a simple approximation argument extends the inequality to a

2
general element of L (G) . We then have, by Fubini's Theorem,

f WTjLdX (u) = f {[ u)(X)r(x)x(*)

= f (f
By Corollary 2.2 or Corollary 2.6, the A.-constant of the set of al l

projections IT of fl is at most t , so that the last-written inner
A

integral is not less than

=k"1n/ii

and the second inequality in (l) follows.

(ii) By Corollary 2.6, applied with fi in place of G and
E = {IT : x € E} in place of I , i t suffices to show that
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This in turn will follow, if it be shown that

(3) /

for arbitrary distinct XT> • • • > X, * E • To this end, let

F = j a.ir

and

" I G,-X, '
J=l 3*3

where the a. are complex numbers. By (2) we have
3

wn2 = [ i \o.\2} = II/II s * f \\TJ\\
\7=1 ' ^

Using Fubini's Theorem, this gives

n

"U e.)tf(x)irv ((0) d\ (iu)K<*» •
By 1.11 (Hi), the inner integral here is independent of x (. G and equal

to

L a.ir (<o)
J X

\j(u) = II^II-L •

Thus, ||f||2 2 fc||F|| , which verifies (3) and completes the proof.

COROLLARY 2.15. The notation is as in 2.13. Suppose also that

E c f f and Zet

^ : f € ̂ ( C ) , ll/l^ = 1, u € 0} .

K < £ hK .

In partiaularj E is a k^-set if arid only if < < °> .

Proof. The inequality K 5 A (E) follows from the first inequality
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in 2.1U (1) , since \\f\\2 < hG{E)\\f\\1 for every / € T^G) . The

inequality A-j(£) 5 hK follows from the second inequality in 2.lU ( l ) .

3. h, in tenns of subsets of T

In th i s section we show that each of the numbers ^ can be given in

terms of n-eleaent subsets of T . In view of Lemma 1.6, h can

therefore be given in terms of f in i t e subsets of T .

NOTATION 3 .1 . Here we consider the (compact) c ircle group T ; n

wil l denote a fixed positive integer. For integers ( t i 2 , we write

E , for the set of characters 2 •—• z of T corresponding to
Tl $ K.

j i {l, 2, ..., n}. In Theorem 3-5> we will prove that

For each k , $, wi l l denote the mapping of T into "f1 defined by

k k2 A:""1

and B, wi l l denote the image ^TAT) of T . I t i s evident that <ta is

a topological isomorphism of T onto H. .

DEFINITION 3.2. Let H denote the set of a l l closed subgroups of

the compact group G . We endow H with the topology for which an open

basis consists of sets of the form

U[K; £/., . . . . y j = {H € H : H n K = 0 and H n U. * 0 for a l l i) ;

here X is a compact subset of G and £A., . . . , U are nonvoid open

subsets of G . A net (^Oyer i n ^ i S s a i d t o c o n v e r 6 e in the sense

of Hausdorff to H in H provided i t converges to B in th i s topology;

in this case we write

lim B = H [Hausdorff].
Y y

Since G belongs to U(K; U , ..., uj if and only if K = 0 , itfollows
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that

(i) lim H= G [Hausdorff]
Y T

i f and only i f

( i i ) whenever y , . . . , V are given nonvoid open siibsets of

G , there exis ts a y. € T such that Y > Yo implies

H n U. * 0 for a l l j € { l , 2, . . . , m} .
T 3

We need the following lemma due to Fel I (see appendix to [6]) and to

Bourbaki [2]; see also [5].

LEMMA 3.3. If [H ) is a net of closed subgroups of a compact group

G y and if

(i) lim H = G [Hausdorff ]s
Y Y

then for all F in C(G) we have

(ii) [ Fd\n = lim ( FdK
lG G v J f l . H-Y 'Hy Y

where X,, and Xr, denote normalised Haar measure on G and H ,
Y ^

respective ly.

LEMMA 3.4. Let (^i.)j,=p denote the sequence of closed subgroups of

"f1 defined in 3 .1 . Then

lim fi, = f1 [Hausdorff].
fe-KD K

Proof. We establ ish some local terminology for th is proof. By a

k -sector of T we sha l l mean a subset of T of the form

{exp(2Tri8) : jk~r < 9 < (j+l)fe"r} ;

here r denotes a nonnegative integer and j any integer. A subset E

of ly w i l l be termed fc-dense i f for every choice of n ^-sectors

Sx, ..., Sn of T , the set
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is nonvoid. We f i rs t prove that

(l) each H, is k-dense in "f1 .

We begin with an observation. If r is a nonnegative integer, i f R

is a kr-sector of T , and if S is a k-sector of T , then there is

some k -sector if1 c R such that z '—• s maps R' into 5 . In

fact, we can write

R = {exp(2TTi6) : mk~r £ 6 < (m+l)fc~r}

and

5 = {exp(2iri6) : jk~ £ 6 < (j+ijk"1} ,

where mil and j € {o, 1, . . . , fc-l) , and then set

R = (exp(2irt6) : (rrik+j)k £ 8 < (mk+j+ljk } .

Now let S^, — , 5 be given k-sectors of r . The preceding

observation allows us to choose by recurrence k -sectors R for

kr-l
r € {l , 2, . . . , n} such that i? c R c . . . c R and 3 •—•• z maps

fl into Sp for r € ( l , 2, . . . , n} . Select any z from R . Then

s belongs to S for r € {l, 2, . . . , n} and so ^ C 3 ) l i e s i n

5. x S x . . . x 5 ; thus

This proves (l).

To complete the proof of the lemma, we verify 3.2 (ii) in the present

setting. So consider nonvoid open subsets £/.., ..., U of 'f1 . A simple

argument shows that for each • j (. {l, 2, ... , m) , there is an integer k.
J

such that E n U. f 0 whenever E is a subset of Jr that is k-dense
3
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for some k > k. . Thus i f k > max(&.,, k , ..., k) , then ( l ) shows that

r

lim H, = if1 in the sense of Hausdorff.

H-, n U. + <D for a l l j € { l , 2 m} . This v e r i f i e s 3.2 ( i i ) and so
K 0

THEOREM 3.5. For the sequence [E jjj,-o °f n-element subsets of

T defined in 3 .1 , we have

Proof. Since « is fixed throughout the argument, we will write E.

in place of E , . The definition of h in 1.5 shows that Am(£t) - k,

for all k > 2 and so

lim inf A (ff J > h .

I t therefore suffices to prove that

(1) lim sup A [E.) £ h .

Assume that ( l ) f a i l s . Then there is a subsequence [k j of integers and

a number K > h so that A £, > K for a l l r . Then for each r we

have

(2) | !

for sui table complex numbers c. , j € { l , 2, . . . , n} . We may clearly

suppose that

(3) I I U^f] =1 for all r .( i U(.r)|T

Let <>, and fl, be as in 3 .1 . Since <{>, i s a continuous

homomorphi sm of T onto H, , 1.13 (3) shows that
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f fdkB = f
Jfl, "k 'T

for a l l funct ions / continuous on H, . Let IT , . . . , IT denote the

p r o j e c t i o n s of ? " . We apply (h) t o t h e r i g h t hand s i de of ( 2 ) , t a k i n g

k = and f = F , where

F =

and so obtain

(5)

here we have written X for normalised Haar measure on H, . In view of
r

(3)> we may suppose (by passing to further subsequences of [k^ i f

•\ (r)
necessaryj that the limits lim c. exist. Let

(6)

and define

a. = l i m a\. f o r 3 € { l , 2 , . . . , « } ,

1—1 V V

By Lemma 3-h, we have lim H. = 'r in the sense of Hausdorff, and so
fe-KO «

Lemma 3-3 applies to show that

(7) f FdX
V 2 l im Fd\p .

From (6) and (3) i t follows that

(8) l im P = I \o/ - 1 •

https://doi.org/10.1017/S0004972700043100 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043100


216 R.E. Edwards and Kenneth A. Ross

From (6) it also follows that F converges uniformly to F and so

(9) lim F dX -
if i* y* I

FdX = 0 .

r r

R e l a t i o n s ( 7 ) , ( 8 ) and ( 9 ) t o g e t h e r w i t h (5) y i e l d

FdX _ ,
i n \% r
I \a.\2\ > K

that is,

(10)

Since (8) shows that both sides of (10) are nonzero, we conclude that

which contradicts Corollary 2.2.

We end by using the sets E . to establish the following interesting

extension of Corollary 1.12.

THEOREM 3.6. We have M. = k .

Proof. In view of Corollary 1.10, i t i s enough to show that the Sidon

constant of E , i s at most sec(27r/fe) for k > 5 . To achieve th is we
ft j /C

will show that, if a., ..., a are arbitrary complex numbers, then

(1)
n (I n , j - l i

s(2it/fc) I \a.\ < sup{ I a . 3 : 2 € TV

where i s as in 3 .1 . We wil l use 3.U ( l ) and the terminology

introduced thereabouts. For each j , a • = \a •|exp(2Tri6 .) , where 9 •
3 3 3 3

belongs to the in terval \m-i^~ > [m-+l)k for some integer
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m. £ {o, 1 k-l) . Let 5 . denote the fe-sector
0 0

•Uxp(2irie) : [-m.-i)k~1 < 9 < -m k'1) .
\ 0 J J

By 3.*t ( l ) , some w in H, has the property tha t 0). € S . for a l l
K 0 0

j € { l , 2 , . . . , « } . Then each u>.exp(2Tri9 .) belongs t o
0 0

{exp(2irie) : -k~l 5 6 < k'1}

and so Re (u .a .) > cos(2tr/fe) |a .| . I t follows that
J J 0

n I n \
c o s ( 2 v / k ) I | a . | < R e £ w a . <

j=l J V=l 3 3)

n
J a) a

0=1 3 °
and hence (l) holds.

REMARK 3.7. It is clear from 3.6 (l) that the Sidon constant of the

k3'-1

inf in i te set of characters z *—* z of T corresponding to
3 € {l, 2, 3, . . . } is at most sec(2ir/fc) when k > 5 •

COROLLARY 3.8. Let G be a CAG such that G contains an element

XQ of infinite order. Let n and k be positive integers and

: 3" € U , 2, . . . ,

27ien

(£J h = lim A^ff , ) j

Cii; h = MG .

Proof. We apply the substance of 1.13 with K = T , 41 = XQ and

E = E . ; since XQ is o f inf in i te order, {XQ} is strongly independent

and <j)(G) = T by 1.11 ( i ) . Then F . = <(>*(£, v) and so
ft jK 71 »K

SG^Fnk} = 5 T ^ n k ^ a n d A C ^ « ^ = hT^nk) ' S t a t e m e n t ^ ^ accordingly

follows from Theorem 3.5, while (ii) follows from Corollary 1.10 and the

fact (established in the

sec(2ir/fe) for large k .

fact (established in the proof of Theorem 3.6) that S_(ff ,1 is at most
l n ,/C
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