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Some More Weak Hilbert Spaces
George Androulakis, Peter G. Casazza and Denka N. Kutzarova

Abstract. We give new examples of weak Hilbert spaces.

1 Introduction

The Banach space properties weak type 2 and weak cotype 2 were introduced and studied by
V. Milman and G. Pisier [MP]. Later, Pisier [P] studied spaces which are both of weak type
2 and weak cotype 2 and called them weak Hilbert spaces. Weak Hilbert spaces are stable
under passing to subspaces, dual spaces, and quotient spaces. The canonical example of
a weak Hilbert space which is not a Hilbert space is convexified Tsirelson space T(2) [CS],
[J1], [J2], [P]. Tsirelson’s space was introduced by B. S. Tsirelson [T] as the first example of
a Banach space which does not contain an isomorphic copy of c0 or �p, 1 ≤ p <∞. Today,
we denote by T the dual space of the original example of Tsirelson since in T we have an
important analytic description of the norm due to Figiel and Johnson [FJ]. In [J1], Johnson
introduced modified Tsirelson space TM . Later, Casazza and Odell [CO] proved the surpris-
ing fact that TM is naturally isomorphic to the original Tsirelson space T. At this point, all
the non-trivial examples of weak Hilbert spaces (i.e., those which are not Hilbert spaces)
had unconditional bases and had subspaces which failed to contain �2. A. Edgington [E]
introduced a class of weak Hilbert spaces with unconditional bases which are �2-saturated.
That is, every subspace of the space contains a further subspace isomorphic to a Hilbert
space but the space itself is not isomorphic to a Hilbert space. R. Komorowski [K] (or more
generally Komorowski and Tomczak-Jaegermann [KT]) proved that there are weak Hilbert
spaces with no unconditional basis. In fact, they show that T(2) has such subspaces. In
another surprise, Nielsen and Tomczak-Jaegermann [NTJ] showed that all weak Hilbert
spaces with unconditional bases are very much like T(2).

There are still many open questions concerning weak Hilbert spaces and T(2), due partly
to the shortage of non-trivial examples in this area. For example, it is still a major open
question in the field whether a Banach space for which every subspace has an uncondi-
tional basis (or just local unconditional structure—LUST) must be isomorphic to a Hilbert
space. If there are such examples, they will probably come from the class of weak Hilbert
spaces. It is an open question whether every weak Hilbert space has a basis, although Mau-
rey and Pisier (see [M]) showed that separable weak Hilbert spaces have finite dimensional
decompositions. Nielsen and Tomczak-Jaegermann have shown that weak Hilbert spaces
that are Banach lattices have the property that every subspace of every quotient space has
a basis. But it is unknown whether every weak Hilbert space can be embedded into a weak
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Hilbert space with an unconditional basis. In fact, it is unknown if a weak Hilbert space
embeds into a Banach lattice of finite cotype. It turns out that this question is equiva-
lent to the question of whether every subspace of a weak Hilbert space must have the GL-
Property [CN] which is slightly weaker than having LUST. In this note we extend the list of
non-trivial examples of weak Hilbert spaces by producing examples which are �2-saturated
but not isomorphic to the previously known examples.

2 Basic Constructions

If F is a finite dimensional Banach space then let d(F) denote the Banach-Mazur distance
between F and �dimF

2 . The fundamental notion of this note is the one of the weak Hilbert
space. Recall the following definition as one of the many equivalent ones (cf. [P, Theo-
rem 2.1]).

Definition 2.1 A Banach space X is said to be a weak Hilbert space if there exist δ > 0
and C ≥ 1 such that for every finite dimensional subspace E of X there exists a subspace
F ⊆ E and a projection P : X → F such that dim F ≥ δ dim E, d(F) ≤ C and ‖P‖ ≤ C .

We need to recall the definition of the Schreier sets Sn, n ∈ N [AA]. For F,G ⊂ N, we
write F < G (resp. F ≤ G) when max(F) < min(G) (resp. max(F) ≤ min(G)) or one of
them is empty, and we write n ≤ F instead of {n} ≤ F.

S0 = {{n} : n ∈ N} ∪ {∅}.

If n ∈ N ∪ {0} and Sn has been defined,

Sn+1 =
{ n⋃

1

Fi : n ∈ N, n ≤ F1 < F2 < · · · < Fn and Fi ∈ Sn for 1 ≤ i ≤ n
}
.

For n ∈ N a family of finite non-empty subsets (Ei) of N is said to be Sn-admissible if
E1 < E2 < · · · and

(
min(Ei)

)
∈ Sn. Also, (Ei) is said to be Sn-allowable if Ei ∩ E j = ∅ for

i �= j and
(
min(Ei)

)
∈ Sn.

Every Banach space with a basis can be viewed as the completion of c00 (the linear space
of finitely supported real valued sequences) under a certain norm. (ei) will denote the unit
vector basis for c00 and whenever a Banach space (X, ‖ · ‖) with a basis is regarded as the
completion of (c00, ‖ · ‖), (ei) will denote this (normalized) basis. If x ∈ c00 and E ⊆ N,
Ex ∈ c00 is the restriction of x to E; (Ex) j = x j if j ∈ E and 0 otherwise. Also the support
of x, supp(x), (w.r.t. (ei)) is the set { j ∈ N : x(j) �= 0}. We say that a vector x ∈ c00 is
supported after n in n ≤ supp(x). If f : R→ R is a function with f (0) = 0 then for x ∈ c00

f (x) will denote the vector f (x) =
(

f (xi)
)

in c00.
Let (X, ‖.‖) be a Banach space with an unconditional basis. Whenever a Banach space

is considered in this paper we assume that it has an unconditional basis. The norm of X is
2-convex provided that

‖(x2 + y2)1/2‖ ≤ (‖x‖2 + ‖y‖2)1/2
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for all vectors x, y ∈ X. The 2-convexification of (X, ‖.‖) is the Banach space (X(2), ‖.‖(2))
with an unconditional basis, where x ∈ X(2) if and only if x2 ∈ X and

‖x‖(2) = ‖x
2‖1/2.

Of course ‖.‖(2) is 2-convex. For C > 0, 1 ≤ p <∞, n ∈ N and x1, x2, . . . , xn ∈ X we say
that (xi)n

i=1 is C-equivalent to the unit vector basis of �np if there exist constants A,B > 0
with AB ≤ C such that

1

A

(∑
|ai|

p
)1/p

≤
∥∥∥
∑

aixi

∥∥∥ ≤ B
(∑

|ai|
p
)1/p

for every sequence of scalars (ai)n
i=1. For C > 0, we say that X is an asymptotic �p space

(resp. asymptotic �p space for vectors with disjoint supports) with constant C if for every n

and for every sequence of vectors (xi)n
i=1 such that

(
supp(xi)

)n

i=1
is S1-admissible (resp.

S1-allowable), we have that (xi)n
i=1 are C-equivalent to the unit vector basis of �np.

If (‖.‖n) is a sequence of norms in c00 then Σ(‖.‖n) will denote the completion of c00

under the norm

‖x‖Σ(‖.‖n) =

∞∑
n=1

‖x‖n.

Fix a sequence α = (αn)n∈N of elements of (0, 1) with

0 < inf
αn+1

αn
≤ sup

αn+1

αn
< 1 and

∑
n

αn = 1.

The last relationships will always be assumed whenever a sequence (αn) is considered in
these notes. Edgington defined a sequence of norms (‖.‖E,n) on c00 by

‖x‖E,0 = ‖x‖∞, ‖x‖
2
E,n+1 = sup

{∑
i

‖Eix‖
2
E,n : (Ei)i is S1-admissible

}
.

Then Edgington defined the norm ‖.‖Eα by

‖x‖Eα =
(∑

n

αn‖x‖
2
E,n

)1/2
.

Let Eα denote the completion of c00 with respect to ‖.‖Eα . It is shown in [E] that Eα is a
weak Hilbert space which is not isomorphic to �2, yet it is �2-saturated. It is easy to see
that the spaces constructed by Edgington are asymptotic �2 spaces for vectors with disjoint
supports. The main theorem that we prove in these notes (Theorem 3.1) shows that such
spaces are weak Hilbert spaces.

Let (|.|n)n∈N denote the sequence of the Schreier norms on c00:

|x|n = sup
S∈Sn

∑
j∈S

|x j |
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(if x =
∑

j x j e j). Then the weak Hilbert space Eα that was constructed by Edgington [E]
is the 2-convexification of Σ(αn|.|n). One can see that Σ(αn|.|n) is an asymptotic �1 space
for vectors with disjoint supports which is �1-saturated, yet not isomorphic to �1. In these
notes we give examples of sequences of norms that can replace (|.|n) in Σ(αn|.|n) to ob-
tain asymptotic �1 spaces for vectors with disjoint supports which are �1-saturated yet not
isomorphic to �1. The 2-convexification of each of these spaces will give �2 saturated weak
Hilbert spaces which are not isomorphic to �2.

Definition of the spaces V , W , V ′ and W ′ Let (θn)n∈N be a sequence of real numbers in
(0, 1) with lim

n
θn = 0 (this assumption will always be valid whenever a sequence (θn) will

be considered in these notes) and let s ∈ N. The asymptotic �1 spaces V = TM(θn, Sn)n and
W = TM(s)(θn, Sn)n were introduced in [ADKM] (following [AD]) as the completion of c00

under the norms:

‖x‖V = ‖x‖∞ ∨ sup
n

sup
{
θn

∑
i

‖Eix‖V : (Ei) is Sn-allowable
}
,

‖x‖W = ‖x‖∞ ∨ sup
n≤s

sup
{
θn

∑
i

‖Eix‖W : (Ei) is Sn-allowable
}

∨ sup
n≥s+1

sup
{
θn

∑
i

‖Eix‖W : (Ei) is Sn-admissible
}
,

respectively. These norms can also be defined as limits of appropriate sequences. For x ∈
c00 let

‖x‖V,0 = ‖x‖W,0 = ‖x‖∞

and for m ∈ N define:

‖x‖V,m+1 = ‖x‖∞ ∨ sup
n

sup
{
θn

∑
i

‖Eix‖V,m : (Ei) is Sn-allowable
}
,

‖x‖W,m+1 = ‖x‖∞ ∨ sup
n≤s

sup
{
θn

∑
i

‖Eix‖W,m : (Ei) is Sn-allowable
}

∨ sup
n≥s+1

sup
{
θn

∑
i

‖Eix‖W,m : (Ei) is Sn-admissible
}
,

Then
‖x‖V = lim

m
‖x‖V,m, ‖x‖W = lim

m
‖x‖W,m.

Then one can construct the spaces V ′ = Σ(αn‖.‖V,n), and W ′ = Σ(αn‖.‖W,n). We show
that V ′ and W ′ are �1-saturated asymptotic �1 spaces for vectors with disjoint supports.

It is known [CO] that if θn = δ
n for some δ ∈ (0, 1) then one can replace the “allowable”

by “admissible” in the definition of ‖.‖V to obtain an equivalent norm for V . For this choice
of (θn) the variant of the norm ‖.‖V,m+1 by replacing “allowable” by “admissible” can be
minorized and majorized up to a uniform multiplicative constant by the norms ‖.‖V,m and
‖.‖V,m+1 respectively. This is enough to conclude that the new norms lead to an equivalent
norm for V ′ (see [B]).
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3 The Main Theorems

The following result is the main tool of our paper for constructing weak Hilbert spaces. It
is based on results of Johnson, and it was proved (but not stated) in [NTJ, Section 4]. Since
it is hard for a non-specialist to extract it from the existing literature, we outline it here.

Theorem 3.1 If X is an asymptotic �2 space for vectors with disjoint supports then X is a
weak Hilbert space.

Proof Recall that the fast growing hierarchy is a sequence of functions on the natural num-
bers (gn) which is defined inductively by: g0(n) = n + 1, and for i ≥ 0, gi+1(n) = gn

i (n)
where gn = g ◦ g ◦ · · · ◦ g is the n-fold iteration of g and g0 = I.

Step I

If X is asymptotic-�2 with constant C for vectors with disjoint supports, then for
every i ≥ 0 any gi(n) normalized disjointly supported vectors with supports after n
are Ci-equivalent to the unit vector basis of �2.

We proceed by induction on i with the case i = 0 being trivial. So, assume Step I holds for
some i ≥ 0 and let {xk : 1 ≤ k ≤ gi+1(n)} be a sequence of disjointly supported vectors in
X with supports after n. For 1 ≤ j ≤ n let

E j = {k : g j−1
i (n) ≤ k ≤ g j

i − 1}.

Then,
∥∥∥

gn
i+1(n)∑
k=1

xk

∥∥∥ C
≈
( n∑

j=1

∥∥∥
∑
k∈E j

xk

∥∥∥
2)1/2

.

Applying the induction hypotheses to each sum on the right we continue this equivalence
as

Ci+1

≈
(gn

i+1(n)∑
k=1

‖xk‖
2
)1/2
.

Step II

If X is asymptotic-�2 with constant C for vectors with disjoint supports then every
n-dimensional subspace of X supported after n is 8C3-isomorphic to a Hilbert space
and 8C3-complemented in X.

If E is a 5(5n)-dimensional subspace of X supported after n, then by a result of Johnson (see
Proposition V.6 of [CS]) there is a subspace G of X spanned by≤ g3(n) disjointly supported
vectors supported after n and an operator V : E→ G with ‖V x− x‖ ≤ 1

2‖x‖, for all x ∈ E.
Now, by Step I, we have that E is 2C3-isomorphic to a Hilbert space. It follows [J2] that
every 5n-dimensional space of X∗ supported after n is 4C3-isomorphic to a Hilbert space
and 4C3-complemented in X∗. Therefore, every n-dimensional subspace of X supported
after n is 8C3-isomorphic to a Hilbert space and 8C3-complemented in X.
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Step III

Every asymptotic-�2 space for vectors with disjoint supports is a weak Hilbert space.

If E is a 2n-dimensional subspace of X, let F =: E∩ (spank≥n ek). Then F is supported after
n and dim F ≥ n implies F is K-isomorphic to a Hilbert space and K-complemented in X
by Step II, where K = 8C3. It follows from Definition 2.1 that X is a weak Hilbert space.

The 2-convexification of certain Tsirelson spaces for obtaining weak Hilbert spaces has
been used before (see [P], [ADKM]). More generally we have the following:

Corollary 3.2 If X is an asymptotic �1 space for vectors with disjoint supports then X(2) is a
weak Hilbert space.

Proof Let (X, ‖.‖) be an asymptotic �1 space for vectors with disjoint supports. Then there
exists C > 0 such that for every sequence of vectors (xi) with (supp xi) being S1-allowable,
we have that C

∑
‖xi‖ ≤ ‖

∑
xi‖. It suffices to prove that X(2) is an asymptotic �2 space

for vectors with disjoint support. Let (yi) be a sequence of vectors in X(2) with (supp yi)
being S1-allowable. Then

C1/2
(∑

‖yi‖
2
(2)

)1/2
= C1/2

(∑
‖y2

i ‖
)1/2
≤ ‖
∑

y2
i ‖

1/2 =
∥∥∥
(∑

y2
i

)1/2∥∥∥.

Also,

∥∥∥
(∑

y2
i

)1/2∥∥∥
(2)
=
∥∥∥
∑

y2
i

∥∥∥
1/2
≤
(∑

‖y2
i ‖
)1/2
=
(∑

‖yi‖
2
(2)

)1/2
.

The spaces V , W , V ′ and W ′ are asymptotic �1 spaces for vectors with disjoint supports.
Indeed, this is obvious for V and W . To see this for V ′ let n ∈ N and vectors (xi)n

i=1 with
disjoint supports with n ≤ xi for all i. Then:

∥∥∥
n∑

i=1

xi

∥∥∥ =
∞∑

m=1

αm

∥∥∥
n∑

i=1

xi

∥∥∥
V,m
≥
∞∑

m=1

αmθ1

n∑
i=1

‖xi‖V,m−1

≥ θ1u
n∑

i=1

∞∑
m=1

αm−1‖xi‖V,m−1 ≥ θ1u
n∑

i=1

‖xi‖V ′

The proof for W ′ is similar. Thus V (2), W (2), V ′(2) and W ′(2) are weak Hilbert spaces.

Proposition 3.3 The spaces V and W do not contain an isomorph of �1. The spaces V ′ and
W ′ are �1-saturated without being isomorphic to �1.

The following Lemma will be used in the proof of Proposition 3.3.

Lemma 3.4 For every m ∈ N the completion of (c00, ‖.‖V,m) is a c0-saturated space.
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In order to prove this Lemma we need a result of Fonf along with the notion of the
boundary.

Definition 3.5 A subset B of the unit sphere of the dual of a Banach space X is called a
boundary for X if for every x ∈ X there exists f ∈ B such that f (x) = ‖x‖.

Theorem 3.6 ([F1], also [F2], [H] [DGZ]) Every Banach space with a countable boundary
is c0-saturated.

Proof of Lemma 3.4 Define inductively on i ≤ m the sets Ki of the unit ball of the dual of
(c00, ‖.‖V,m). Let K0 = {±en : n ∈ N}. For i < m if Ki has been defined then let

Ki+1 = Ki∪{θk( f1+· · ·+ fr) : F j ∈ Km, for all j, (supp f j)
r
j=1 is Sk-allowable k = 1, 2, . . . }.

Then Km is a norming set for (c00, ‖.‖V,m):

‖x‖V,m = sup{| f (x)| : f ∈ Km}.

It is easy to see that Km ∪ {0} is a closed set in the topology of pointwise convergence,
since each Sk is closed in the same topology and lim

k
θk = 0. The previous Theorem of Fonf

finishes the proof of the Lemma.

For Tsirelson’s space a similar result to Lemma 3.4 was proved in [P, Lemma 13.8]; the
proof was by a simple direct calculation without the use of Fonf ’s result.

Proof of Proposition 3.3 The statement for V and W is proved in [ADKM].

V ′ is �1 saturated. Let (xi) be an arbitrary block basis of V ′. It is enough to construct a
normalized (in V ′) block basis (vi) of (xi) and an increasing sequence of positive integers
1 = p1 < p2 < p3 < · · · such that

pi+1−1∑
m=pi

αm‖vi‖V,m ≥
1

2

for all i. Once this is done then for (λi) ∈ c00

∥∥∥
n∑

i=1

λivi

∥∥∥
V ′
=

∞∑
m=1

αm

∥∥∥
n∑

i=1

λivi

∥∥∥
V,m
=

∞∑
j=1

p j+1−1∑
m=p j

αm

∥∥∥
n∑

i=1

λivi

∥∥∥
V,m

≥
∞∑
j=1

p j+1−1∑
m=p j

αm‖λ jv j‖V,m ≥
1

2

∞∑
j=1

|λ j |

which shows that (vi) is equivalent to the unit vector basis of �1. In order to choose such
(vi) and (pi) we use that for every m ∈ N the norms ‖.‖V,m and ‖.‖V,m+1 are not equivalent.
Thus for every m,M,K ∈ N there is u in the span of (xi) with

M ≤ u, ‖u‖V,m <
1

4
, and ‖u‖V,m+1 ≥ K.
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Then
m∑

i=1

αi‖u‖V,i <
1

4
and

∞∑
i=1

αi‖u‖V,i ≥ αm+1K.

Let v = u
‖u‖V ′

. By taking K large enough we can assume that

m∑
i=1

αi‖v‖V,i <
1

4
.

Also choose m ′ > m with
∞∑

i=m ′+1

αi‖v‖V,i <
1

4
.

Thus
m ′∑

i=m+1

αi‖v‖V,i ≥
1

2
.

It only remains to show that for every m ∈ N the norms ‖.‖V,m and ‖.‖V,m+1 are not equiv-
alent on the span of (xi). By the previous Lemma there is a block sequence (yi) of (xi) such
that ‖yi‖V,m = 1 for all i and

(
(yi), ‖.‖V,m

)
is 2-equivalent to the unit vector basis of c0.

For n ∈ N let k ∈ N with n ≤ yk+1 < yk+2 < · · · < yk+n. Thus

∥∥∥
k+n∑

i=k+1

yi

∥∥∥
V,m
≤ 2

yet
∥∥∥

k+n∑
i=k+1

yi

∥∥∥
V,m+1

≥ θ1n.

This proves the result.

W ′ is �1-saturated. Similar.

V ′ is not isomorphic to �1. If the statement were false then the basis of V ′ would be iso-
morphic to the unit vector basis of �1 (since every normalized unconditional basic sequence
in �1 is equivalent to the usual unit basis of �1 [LP]). Observe that for x ∈ c00,

‖x‖ =
∑

m

αm‖x‖V,m ≤ sup
m
‖x‖V,m = ‖x‖V .

By [ADKM] the norm of V can become arbitrarily smaller that the �1 norm on certain
vectors.

W ′ is not isomorphic to �1. Similar.
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Remark 3.7 Note that a space X with an unconditional basis contains �1 if and only if
X(2) contains �2. Since V and W do not contain an isomorph of �1, we obtain that V (2) and
W (2) are weak Hilbert spaces which do not contain an isomorph of �2. Since the spaces V ′

and W ′ are �1 saturated without being isomorphic to �1, we obtain that the spaces V ′(2),

and W ′(2) are �2-saturated weak Hilbert spaces which are not isomorphic to �2.

Thus the essential properties of the space Eα constructed by Edgington are shared by

V ′(2) and W ′(2).

Theorem 3.8 Let (θn) ⊂ (0, 1) with lim
n
θ

1/n
n = 1, s ∈ N, and β = (βn) ⊂ (0, 1) with

∑
n βn = 1 and 0 < inf βn+1

βn
≤ sup βn+1

βn
< 1. Then V ′(2) and W ′(2) are not isomorphic to Eβ .

Proof Let T : X → Eβ be an isomorphism where X is either V ′(2) or W ′(2). Since T is an
isomorphism there exists C > 0 such that

1

C
‖Tx‖Eβ ≤ ‖x‖X ≤ C‖Tx‖Eβ

for all x ∈ c00. Also, by [E, proof of Theorem 7] there exists δ > 0 such that

‖Tx‖Eβ ≤ C‖Tx‖T(2)(δ,S1).

Thus for x ∈ c00

‖x‖X ≤ C2‖Tx‖T(2)(δ,S1).(1)

Since the unit vector basis (ei) of X is weakly null, we can select a subsequence (eki ) of (ei),
a block sequence (ui) in T(2)(δ, S1) and a number K > 0 such that:

‖T(eki )− ui‖T(2)(δ,S1) <
ε

2i
and

1

K
≤ ‖ui‖T(2)(δ,S1) ≤ K for all i,

where ε > 0 will be chosen later. Let n ∈ N to be selected later. Let (xi)i∈I ⊂ (0, 1) for
some I ∈ Sn so that

∑
i∈I

x2
i = 1, and

∥∥∥∥
∑
i∈I

x2
i

u2
i

‖u2
i ‖T(δ,S1)

∥∥∥∥
T(δ,S1)

≤ δn + ε

([OTW, Theorem 5.2 (a)]). Then
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∥∥∥T
(∑

i∈I

xieki

)∥∥∥
T(2)(δ,S1)

≤
∥∥∥
∑
i∈I

xiui

∥∥∥
T(2)(δ,S1)

+
∑
i∈I

xi‖Teki − ui‖T(2)(δ,S1)

≤
∥∥∥
∑
i∈I

x2
i u2

i

∥∥∥
1/2

T(δ,S1)
+ ε

≤ K

∥∥∥∥
∑
i∈I

x2
i

u2
i

‖u2
i ‖T(δ,S1)

∥∥∥∥
1/2

T(δ,S1)

+ ε

≤ K(δn + ε)1/2 + ε.

On the other hand if Y = V ′ when X = V ′(2) or Y =W ′ when X =W ′(2) then

∥∥∥
∑
i∈I

xieki

∥∥∥
X
=
∥∥∥
∑
i∈I

x2
i eki

∥∥∥
1/2

Y
≥
( ∞∑

m=1

βmθn

∑
i∈I

x2
i

)1/2
=
√
θn

Therefore (1) gives √
θn ≤ C2

(
K(δn + ε)1/2 + ε

)
.

But since lim
n
θ

1/n
n = 1, n and ε can be chosen so that this inequality fails.
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