A REMARK ON THE PROOF OF A THEOREM OF LAUFER AND TOMBER

HYO CHUL MYUNG

In this note we give a correction to the proof of the following theorem [1, Theorem 2].

THEOREM. Let \mathfrak{A} be a flexible, power-associative algebra, over an arbitrary algebraically closed field Ω of characteristic 0. If $\mathfrak{A}^{(-)}$ is a simple Lie algebra, then \mathfrak{A} is a simple Lie algebra isomorphic to $\mathfrak{A}^{(-)}$.

Step (i) of the proof, which proves that the Cartan subalgebra $\mathfrak{H}^{(-)}$ is a nil subalgebra of \mathfrak{A} , is incomplete. Assuming that \mathfrak{H} is not a nil subalgebra of \mathfrak{A} , there exists an idempotent $e \neq 0$ in \mathfrak{H} . Setting $ex - xe = \alpha x$, $ex = \beta x$, and $ey - ye = -\alpha y$, $ey = \beta' y$, where $\alpha \neq 0$ in Ω and $x \neq 0$ and $y \neq 0$ belong to the roots $\alpha(\mathfrak{H})$ and $-\alpha(\mathfrak{H})$, respectively, Laufer and Tomber conclude that $\beta + \beta' = 0$ by claiming that xy or yx belongs to the root $\beta + \beta'$ relative to e. But since the left multiplication L_e in \mathfrak{A} is not in general a derivation of \mathfrak{A} , xy may not belong to the root $\beta + \beta'$ of L_e .

In fact, from the flexible law $L_{xy} - L_y L_x = R_{yx} - R_y R_x$ we obtain $R_e - R_e^2 = L_e - L_e^2$ and this applied to x and y in turn implies that $\beta = \frac{1}{2}(1 + \alpha)$ and $\beta' = \frac{1}{2}(1 - \alpha)$, thus $\beta + \beta' = 1$. However, it follows from [2] that \mathfrak{A} is a nil algebra. Indeed, if \mathfrak{A} is not nil, then since \mathfrak{A} is a simple, flexible, power-associative algebra, it is shown in [2] that \mathfrak{A} has an identity element 1. Hence 1 belongs to the centre of $\mathfrak{A}^{(-)}$, but since $\mathfrak{A}^{(-)}$ is a simple Lie algebra, this is impossible and therefore \mathfrak{A} is nil and so is \mathfrak{H} .

References

- 1. P. J. Laufer and M. L. Tomber, Some Lie admissible algebras, Can. J. Math. 14 (1962), 287-292.
- 2. R. H. Oehmke, On flexible algebras, Ann. of Math. (2) 68 (1958), 221-230.

Michigan State University, East Lansing, Michigan

Received June 2, 1970.