THE DIRICHLET PROBLEM FOR A THIN
RECTANGLE

by J. K. KNOWLES
(Received 20th February 1967)

We consider the Dirichlet problem for Laplace’s equation in a rectangle with
a view toward determining the asymptotic behaviour of the solution for the
case in which the width of the rectangle is small in comparison with its length.
Although the construction of an explicit representation of the solution is an
elementary matter, the resulting formula is inconvenient for present purposes,
and we accordingly proceed along different lines.

After formulating the problem suitably in the following section, we derive
in § 2 a formal expansion of the solution in powers of the width-to-length
ratio ¢ of the rectangular domain. This expansion, which involves the Bernoulli
polynomials, turns out to provide the asymptotic description of the solution
away from the short sides of the rectangle, as we prove in § 3.

While we shall not do so here, it is possible to obtain an asymptotic repre-
sentation valid uniformly on the closed rectangle by adding to our result the
* boundary layer * corrections required along the short sides. The deter-
mination of these corrections involves the solution of a Dirichlet problem for
a semi-infinite strip.

Boundary value problems in ‘‘ thin > domains are encountered in various
applications, notably in the theory of elasticity. Such problems for second
order elliptic equations, while much simpler than those arising in elasticity,
are nevertheless prototypes in certain respects. They have been discussed, for
example, in (1, 2, 3). Our purposes in this note are to point out that the present
problem is the simplest of these prototypes, and to record the explicit result
associated with it.

1. The boundary value problem
We require the solution U(X, Y; &) of the differential equation

Uxx+Uyy =0 Mt
on the open rectangle 0<X <1, 0< Y<eg, satisfying the boundary conditions
UQ©, Y; &) =g(Yle), 0= Y=g @
Ul, Y; e)=0, 0 Y<es 3)
UX,0;e)=fX), O0=X=1, @
Ulx,e;¢) =0, 0 X< 1. (5)

1 Subscripts X, Y and x, y indicate partial differentiation.
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The given functions f and g are required to be continuous t on [0, 1] and, for
simplicity, independent of &. They are also required to satisfy the conditions

g(0) = f(0), g(1) =f(1) =0, ©
so as to assure the continuity of the boundary values of U.

The existence of a solution U which is twice continuously differentiable
on the open rectangle and continuous on its closure is guaranteed, for each
£>0, by standard theorems.}

For a “ thin ™ rectangle, ¢ is small compared to unity. To avoid the situa-
tion in which the domain varies with ¢, and to put in evidence the role played
by the small parameter, we make the natural change of variables

x=X, y= Y, ulx,y; €)= Ux, ey; &). @)

If # denotes the open square 0<x, y<1, the boundary value problem becomes
Ay = eu,,+u,=0 onZ, ®

u©,y; ) =g, 0=sy=1, €)]

u(l, y; &) =0, 0sysl, (10)

u(x,0; &) =f(x), 0=x=1, (1)

ulx, 1, ) =0, 0xsL (12)

In view of the possibility of superposition, no significant loss of generality is
involved in the assumption of homogeneous boundary conditions in (10)
and (12).

2. The formal expansion

Since our interest is in small positive &, it is natural to inquire whether the
differential equation

u,, =0, 13)

obtained from (8) by setting ¢ = 0, can provide a useful approximation. There
is, in fact, a solution of (13) which satisfies the boundary conditions (11) and
{12) at y = O and y = 1, respectively. It is given by

u = (1-y)f(x). 14)

Viewed as an approximate solution of the boundary value problem (8)-(12),
(14) must certainly be of poor quality near the ends x = 0 and x = 1, since it
will not in general satisfy the boundary conditions imposed there.

An obvious way to generalise the ““ approximation >’ (14) (without consider-
ing the corrections which will prove to be necessary along the edges x =0
and x = 1) is to expand the solution # in powers of ¢ and determine the co-
efficients successively from the differential equation (8) and the boundary

+ More restrictive assumptions will be made in § 3.
1 See § 4, Chapter IV of (4).
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conditions (11) and (12), ignoring the boundary conditions (9) and (10). While
this programme can be carried out without difficulty, we prefer to proceed in the
following purely symbolic way.

We rewrite the differential equation (8) in the form

u,,+&2D*u =0, (15)
where D = d/0x. The * solution ” suggested by (15) is
u = [cos (eyD)]A(x)+ [sin (ey D)}B(x), (16)

where A and B are arbitrary functions to be determined. If we formally impose.
the boundary conditions u = faty =0and u =0 aty = 1, we find

_ sin [e(1—y)d/ox]
"= { sin (¢0/3%) }f - 1n

A formal expansion in powers of ¢ is now obtained from (17) by utilising
the known Taylor series

. . © 2n+1
sin (1~y)z _ %, (- 2 B2, |z|<n (19)

sin z n's 2n+1)!
where B,(t) is the Bernoulli polynomial of degree k given by
k k!B; ;
Bt = I gk 19
0= 2, e 19

and the constants B; are the Bernoulli numbers. Equation (18) follows from
a consideration of the generating function for the polynomials B(f); the
necessary formulas may be found in (5) and elsewhere.

The formal expansion of u in powers of ¢ which comes from (17) upon
substitution from (18) with z replaced by £d/0x is given by

_1ynt1 (2n) 2n
o( D @nt D) +1)!an+1()’/2)f (x)e*". (20)

In the following section we shall give meaning to this formula.
The first few Bernoulli polynomials are

By(t) = 1, Bi(t) = t—4, By(f) = > —t+4, By(t) = 3> +41.  (21)
Some of their properties which we shall use are listed below. (See (5).)
By(0)= —1; Bi(})=0; By+1(0)=Bu+:H=0,k=1,2,..; (22)

22n+1
un~
n

8

Bi()=kB,_;(t), k=1,2,.... (23)
If only the first term is retained on the right side of (20), we recover (14):
u~(1=p)f(x); (24)
if the first two terms are retained, (24) is replaced by ,
un (L= ) f(x)+ @ - ”3 + %) & (x). (25)
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A similar symbolic calculation can be applied to the Neumann problem
for Laplace’s equation in a rectangle, and the resulting formal expansion
involves the Euler polynomials. While in the case of the Dirichlet problem
treated here the boundary conditions at x = 0 and x = 1 do not influence
the expansion (20), this is not the case for the Neumann problem.

3. The asymptotic nature of the expansion

We now prove a theorem which describes the relation of the formal expansion
(20) to the exact solution u(x, y; ).

Theorem. In the boundary value problem (8)-(12), let
geC’[0, 1], fe C?™*20, 1],
where m is a fixed nonnegative integer. Let f and g satisfy (6). Then as ¢—0,
a2+l
(2n+1)!
uniformly in (x, y) for 6 £ x £1-6,0 <y £ 1, for any 6 €(0, %).

u(x,y; )= ¥ (—1y! Banr (VIDf PR 0, (26)

In the proof we make use of two preliminary results, the first of which is
a consequence of the maximum principle for second order elliptic operators.
Let v be continuous on the closure Z of £, twice continuously differentiable
on Z and a solution of the differential equation

Ay =F on, 27
where F is continuous on #. If v vanishes on the boundary of £, then
|v| < max| F| on4. (28)
%

This result follows from an argument based on the maximum principle and
differing only in minor details from the discussion on pp. 329-331 of (4).

The second result which we require refers to the following boundary value
problem. Let w be continuous on #, twice continuously differentiable on %
and such that

Aw=0 on#,
w(0, y; &) = G(y; ¢), (29)
w(l, y; &) =w(x, 0; &) =w(x, 1; &) =0,

where G is a continuously differentiable function of y for each é>0. Then

—nxfe

| wix, y; s)|§5max|c|lf 0<x<1, 0<y<1l  (30)

e —nxfe’

This inequality follows from an elementary estimate based on the Fourier
series representation of the explicit solution of the boundary value problem
(29). We omit the detailed proof.
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Turning now to the proof of the theorem, we introduce the abbrevatiation
22n+ 1
(2n+1)!

for the truncation of (20). The properties (22) of the Bernoulli polynomials
show that, for every m = 0, u'2™ satisfies the boundary conditions (11), (12)
imposed on u:

W (x, yi )= 3 (=1 By 0@ (31)
n=0

u®m(x, 0; &) = f(x), u®(x, 1; &) =0. ¢2)
Property (23) enables us to compute

m m— 22m+1 m m
AP = (=" s Bama O O 200
= —F(x, y; ¢). (33)
With the notation
U=u—ut®m, (34)

we conclude from (8)-(12), (31) and (32) that U is a solution of the following
boundary value problem:

AU=F on %,
U(x,0; &)= U(x, 1; &) =0, (35)
U, y; &) =Gy(y; &), u(l, y; &) = Gy(y, &),
where
Gi(y; &) =g —u®™(0, y; &), Guly; &)= —u®"(1,y;¢). (36
We decompose the problem for U into three simpler problems by setting
U=v+wi+w,, 37)
where v, w, and w, are defined by the following Dirichlet problems:

Ayv=F onZ,
(38)
v=0 on the boundary of £,
Aw,=0 on £,
wi(x, 0; &) =wy(x, 1; ¢) =0, ¢ (39
wi(0, y; &)= Gy(y; &), wi(l,y; &=0,
Aw,=0 on 4,
walx, 05 &) = walx, 15 ) =0, . (40)

w2(0, y; &) =0, wy(l, y; &) = Gy(y; e).
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It is now only necessary to observe that the estimate (28) applies to the
solution » of (38), so that, bearing in mind the definition (33) of F, we have
|v| < K,e™"*? on4, 41

where
2 2m+1

K,= ——
2m+1)!
The estimate (29) applies to the solution w, of (39), yielding

—-nx/fe
| wix, 3 )] < Smax | Gy ) -

max | B,y 1()’/2)f(2m+2)(x)|-
E]

0<x<1, 0Sy<1l (42

—nx/fe’

The transformation x—1— x allows us to apply (29) to the solution w, of (40)
to obtain

| walx, y; &)] < S(max | G, |) oG

e—n(l —-x)/e
0<x<l, 0<y<1l (43)

Since G; and G, are polynomials in ¢, we conclude from (37), (41), (42) and
(43) that

U(x, y; &) = 0(g™*%) as -0, (44)
uniformly in (x, ) for6 £ x £ 1-6,0<y <1, for any 6 (0, 3). The proof
is thus complete.
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