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Subregular Nilpotent Elements
and Bases in K-Theory
Dedicated to Professor H. S. M. Coxeter

G. Lusztig

Abstract. In this paper we describe a canonical basis for the equivariant K-theory (with respect to a C∗-action)
of the variety of Borel subalgebras containing a subregular nilpotent element of a simple complex Lie algebra
of type D or E.

Introduction

Let e be a nilpotent element in a semisimple Lie algebra g over C. Let Be be the variety of all
Borel subalgebras of g that contain e. This variety has a very complicated geometry which
is of great interest for representation theory. For example, the ordinary cohomology of Be

carries representations of the Weyl groups (Springer) which enter in the character theory
of reductive groups over a finite field; on the other hand, the equivariant K-theory KH(Be)
of Be (with respect to a torus H acting on Be and maximal in a suitable sense) carries
a representation of an affine Hecke algebra which enters in the representation theory of
reductive groups over a p-adic field.

It is known [S] that Be lies naturally inside a smooth variety Λe of twice its dimension,
with the same homotopy type as Be.

In [L4], [L5] I gave a conjectural definition of a canonical (signed) basis B±Be
of KH(Be)

and one, B±Λe
, of KH(Λe), as modules over the representation ring RC∗ . This conjectural

definition is trivially correct in the case where e is regular; as shown in [L4], it is also correct
in the case where e = 0 and in the case where e is subregular in type D4.

In this paper we show that the conjectural definition of B±Be
, B±Λe

is correct in the case
where e is subregular in type Dn(n ≥ 5) or E6, E7, E8. (Here we have H = C∗.) In these
cases it turns out that B±Be

is just± the canonical basis of the reflection representation of the

affine Hecke algebra considered in [L1]. On the other hand, it turns out that B±Λe
, which

in some definite sense, is dual to B±Be
, consists of certain natural vector bundles on Λe.

These vector bundles can be considered as examples of the “tautological vector bundles”
on quiver varieties (Nakajima [N1]), via Kronheimer’s realization [Kr] of Λe, and seem to
be also related to the vector bundles considered by Gonzales-Sprinberg and Verdier [GV].

This leads us to the following question (for not necessarily subregular e): can one repre-
sent any element in the conjectural signed basis B±Λe

as ± a vector bundle on Λe?
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Subregular Nilpotent Elements 1195

1 Preliminaries on Hilbert Schemes

1.1

Let Γ be a finite group. Let CΓ be the category whose objects are C-vector spaces with
a given linear Γ-action and such that the space of morphisms from M to M ′ is the set
HomΓ(M,M ′) of linear maps from M to M ′ compatible with the Γ-action. Let C0

Γ be the
full subcategory of CΓ whose objects are finite dimensional over C. For M,M ′ ∈ C0

Γ we set
(M,M ′)Γ = dim HomΓ(M,M ′).

1.2

Let T be a two-dimensional C-vector space with a given non-singular symplectic form
〈, 〉 : T × T → C. For r ∈ N let Tr = T ⊗ T ⊗ · · · ⊗ T (r factors) and let Sr be the r-
th symmetric power of T regarded as a quotient of Tr . Let S† =

⊕
r∈N Sr be the symmetric

algebra of T (a quotient of the tensor algebra T† =
⊕

r∈N Tr). Let T ′ be the dual space of
T.

1.3

Assume now that Γ is a finite subgroup 
= {1} of the symplectic group Sp(T). Then Γ acts
naturally on T†, S† preserving each subspace Tr , Sr .

Let Ĩ be the set of isomorphism classes of irreducible Γ-modules over C. For each i ∈ Ĩ
we assume given a simple Γ-module ρi in the class i. Following McKay [M], we regard Ĩ as
the set of vertices of a graph in which i 
= i ′ ∈ Ĩ are joined by

(ρi ⊗ T, ρi ′)Γ = (ρi ′ ⊗ T, ρi)Γ

edges. (The number above will be denoted by−i · i ′; we also set i · i = 2.) This graph is an
affine Coxeter graph.

Let ♥ ∈ Ĩ be the class containing the unit representation C of Γ. Let I = Ĩ − {♥}. We
regard I as the set of vertices of a full subgraph of the affine Coxeter graph; this is called the
Coxeter graph.

The quiver varieties attached by Nakajima [N1] to the affine Coxeter graph can be also
described directly in terms of objects of C0

Γ as follows.

Let M,M ′ be objects of C0
Γ. Let Λs

M,M ′ be the set of all triples (x, p, q) where x is a T†-
algebra structure on M ′ compatible with the natural Γ-action, p ∈ HomΓ(M,M ′), q ∈
HomΓ(M ′,M) and the following hold:

(a) if e, e ′ is any basis of T such that 〈e, e ′〉 = 1, then e⊗ e ′ − e ′ ⊗ e ∈ T2 acts on M ′ as
the map pq;

(b) p(M) generates M ′ as a T†-module.

Let Λsn
M,M ′ be the set of all triples (x, p, q) ∈ Λs

M,M ′ such that q = 0 and such that, for

the T†-module structure defined by x, there exists r0 ≥ 1 such that Tr acts on M ′ as zero
for all r ≥ r0.
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1.4

Let GM ′ be the group of automorphisms of the Γ-module M ′. Then GM ′ acts naturally on
Λs

M,M ′ leaving stable the subset Λsn
M,M ′ , and these actions are free. Nakajima [N1] shows

that
(a) GM ′ \ Λs

M,M ′ is naturally a smooth variety of pure dimension

(M ′,M ′ ⊗ T)Γ − 2(M ′,M ′)Γ + 2(M,M ′)Γ

and with trivial canonical bundle.
On the other hand, as a consequence of [L2, 12.3]:
(b) GM ′ \ Λsn

M,M ′ is naturally a projective variety of pure dimension

1

2
(M ′,M ′ ⊗ T)Γ − (M ′,M ′)Γ + (M,M ′)Γ.

1.5

For an integer r ≥ 1, let T ′[r] be the set of all ideals J of S† of codimension r. This is
naturally an algebraic variety, the Hilbert scheme of r points on T ′. Let Symr(T ′) be the
r-th symmetric product of T ′, that is, the quotient of the r-fold product T ′ × T ′ × · · · ×
T ′ by the natural action of the symmetric group Sr . Let π : T ′[r] → Symr(T ′) be the
canonical (Hilbert-Chow) morphism. The fibre T ′[r]

0 = π(0, 0, . . . , 0) is the subvariety of
T ′[r] consisting of the ideals J ∈ T ′[r] such that Sr ′ ⊂ J for large enough r ′.

For M ′ ∈ C0
Γ, we denote by HM ′

the set of all ideals J in S† which are Γ-submodules
such that S†/ J ∼= M ′ in CΓ. Note that HM ′

is a closed subvariety of the Hilbert scheme

T ′[dim M ′]. Let HM ′

0 = HM ′
∩ T ′[dim M ′]

0 , that is, the set of all ideals J in S† which are Γ-
submodules such that S†/ J ∼= M ′ in CΓ and such that J contains Sr for large enough r. (A
closed subvariety of HM ′

.)

1.6

Assume now that M = C (the unit representation of Γ). If (x, p, q) ∈ Λs
C,M ′ , then we

have automatically q = 0. Indeed, applying [N2, Proposition 2.7] to (x, p, q) (with the Γ-
module structures ignored), we see that q = 0 on the T†-submodule M ′

1 of M ′ generated
by p(C). But M ′

1 = M ′ by 1.3(b). Hence q = 0.
We now apply [L3, 6.14] (which simplifies due to the previous paragraph) and we see

that there is a natural isomorphism

GM ′ \ Λs
C,M ′

∼
−→ HM ′

.

Similarly, applying [L3, 6.15] we see that there is a natural isomorphism

GM ′ \ Λsn
C,M ′

∼
−→ HM ′

0 .

From 1.4(a), (b) we deduce:
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(a) HM ′
is naturally a smooth variety of pure dimension

(M ′,M ′ ⊗ T)Γ − 2(M ′,M ′)Γ + 2(C,M ′)Γ

and with trivial canonical bundle;
(b) HM ′

0 is naturally a projective variety of pure dimension

1

2
(M ′,M ′ ⊗ T)Γ − (M ′,M ′)Γ + (C,M ′)Γ.

In the remainder of this section, let M ′ = [Γ] be the regular representation of Γ. We have
[Γ]⊗ T ∼= [Γ]⊕ [Γ] in CΓ and (C, [Γ])Γ = 1. Hence

(c) H[Γ] is a smooth variety of pure dimension 2 and with trivial canonical bundle; H[Γ]
0 is

a projective subvariety of H[Γ] of pure dimension 1.

1.7

Let r = |Γ|. Let
(
Symr(T ′)

)Γ
be the fixed point set of the natural Γ-action on Symr(T ′).

Note that the obvious map

Γ \ T ′ −→
(
Symr(T ′)

)Γ
is an isomorphism. (We use the fact that Γ acts freely on T ′ − {0}.)

Ito and Nakamura [IN] have proved that

(a) The map H[Γ] →
(

Symr(T ′)
)Γ
= Γ \ T ′ (restriction of π) is a minimal resolution of

singularities of Γ \ T ′.
We sketch a proof. It is easy to see that our map restricts to an isomorphism H[Γ] −

H[Γ]
0 → Γ \ (T ′ − {0}). Since H[Γ] is smooth of pure dimension 2 and the fibre at 0, that

is H[Γ]
0 , is of pure dimension 1 (see 1.6), it follows that H[Γ] −H[Γ]

0 is dense in H[Γ]. Hence
our map is a resolution of singularities of Γ \ T ′. This resolution is minimal since H[Γ] has
trivial canonical bundle. (a) follows.

1.8

From now on we assume that Γ is not cyclic. Let (Sr)Γ be the space of Γ-invariants in Sr

and let (S†)Γ be the algebra of Γ-invariants in S†. Then (S†)Γ =
⊕

r(Sr)Γ is generated as an
algebra by three elements P1, P2, P3 with P j ∈ Sru for u = 1, 2, 3 where 0 < r1 ≤ r2 < r3.
Moreover, the vector spaces CP1 + CP2 and CP3 are independent of the choice of P1, P2, P3,
that is, they are canonically attached to Γ. Also, r1, r2, r3 are canonically attached to Γ; we
have r1r2 = 2|Γ|, r1 + r2 = r3 − 2 and h ′ = r3/2 is an integer equal to half of the Coxeter
number of the Coxeter graph. (We have h ′ = n − 1 in type Dn and h ′ = 6, 9, 15 in type
E6, E7, E8 respectively.)

Let Γ̃ be the set of all g ∈ GL(T) such that g acts trivially on CP1 + CP2 and acts by
multiplication by ±1 on CP3. It is known that Γ̃ is a subgroup of GL(T) containing Γ
with index 2 and that Γ̃ is generated by the (complex) reflections of order 2 in T that it
contains. Now Γ̃ acts naturally on S† by algebra automorphisms. Let (Sr)Γ̃ be the space of
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Γ̃-invariants on Sr . Let I be the ideal in S† generated by
⊕

r>0(Sr)Γ̃. We have an induced
action of Γ̃ on the algebra S̃ = S†/I which, by a theorem of Chevalley, is isomorphic in CΓ̃
to the regular representation of Γ̃. By restricting to Γ, we see that S̃ ∼= [Γ]⊕ [Γ] in CΓ.

Let H̃0 be the set of all ideals J̃ of S̃ such that J̃ is a Γ-submodule and S̃/ J̃ ∼= [Γ] in CΓ.
(a) We have an isomorphism H̃0

∼
→ H[Γ]

0 .
(It attaches to J̃ the inverse image of J̃ under the canonical map S† → S̃.)
We shall only verify that the map (a) is an isomorphism at the level of sets. It suffices to

show that
(b) any ideal J in H[Γ]

0 must contain I.
Let J ∈ H[Γ]

0 . Let P ∈ Sr be a Γ-invariant element with r > 0. Assume that P /∈ J. We
show that

(c) the Γ-linear map C⊕ C→ S†/ J given by (a, b) �→ a1 + bP mod J is injective.
Indeed, assume that a1 + bP ∈ J with (a, b) 
= (0, 0). From our assumption on P we see

that a 
= 0. Hence 1− cP ∈ J, where c = −b/a.
Since Sr ′ ⊂ J for large enough r ′, we have (1 − cP)(1 + cP + c2P2 + · · · + csPs) = 1

mod J if s is large enough. (We use r > 0.) Hence 1 ∈ J, so that J = S†, a contradiction.
This proves (c).

From (c) we see that [Γ] ∼= S†/ J contains the trivial representation ofΓwith multiplicity
at least 2. This is absurd. Thus, our assumption that P /∈ J leads to a contradiction.

We see therefore that J contains anyΓ-invariant element in Sr where r > 0. In particular,
J contains any Γ ′-invariant element in Sr where r > 0. Since these elements generate the
ideal I, we see that J contains I. This proves (b), hence (a).

We have clearly I =
⊕

r(I ∩ Sr). Hence S̃ =
⊕

r S̃r where S̃r = Sr/(I ∩ Sr) is the image
of Sr in S̃.

1.9

We have

I = {i1
0, i

1
1, . . . , i

1
a1
} ∪ {i2

0, i
2
1, . . . , i

2
a2
} ∪ {i3

0, i
3
1, . . . , i

3
a3
}

(a disjoint union except for i1
0 = i2

0 = i3
0) where a1, a2, a3 are≥ 1, i, i ′ ∈ I satisfy i · i ′ = −1

precisely when {i, i ′} = {iu
t , i

u
t+1} with u ∈ {1, 2, 3}, 0 ≤ t < au.

We denote i1
0 = i2

0 = i3
0 by i0.

1.10 The Polynomials Bi

The requirements

B♥ = 1,

(v + v−1)Bi −
∑

j∈Ĩ;i· j=−1

B j = 0, if i ∈ I − {i0},

(v + v−1)Bi −
∑

j∈Ĩ;i· j=−1

B j = vh ′(v − v−1), if i = i0,
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define uniquely elements Bi ∈ Q(v) for all i ∈ Ĩ. Here v is an indeterminate. One can easily
compute the elements Bi in each case. In the following tables the elements Bi are attached
to the elements of Ĩ in an obvious way (two vertices are joined in Ĩ if they are consecutive
in the same horizontal line or the same vertical line). The vertex ♥ is marked with the
polynomial 1.

Type Dn.
vn−2

vn−3 + vn−1 vn−2

vn−4 + vn−2

· · ·
v2 + v4

v + v3 1
v2

Type E6.
v4

v3 + v5

v2 + v4 + v6 v + v5 1
v3 + v5

v4

Type E7.
1

v + v7

v2 + v6 + v8

v3 + v5 + v7 + v9 v4 + v8

v4 + v6 + v8

v5 + v7

v6

Type E8.
v7 + v13

v6 + v8 + v12 + v14

v5 + v7 + v9 + v11 + v13 + v15 v6 + v10 + v14

v4 + v8 + v10 + v12 + v14

v3 + v9 + v11 + v13

v2 + v10 + v12

v + v11

1

In particular, we have Bi ∈ Z[v] for all i ∈ Ĩ.
The polynomials Bi were introduced in [L1, p. 647].

1.11

From [GV, 5.3] one can extract that

(a)
∑
r≥0

(S̃r, ρi)Γvr = Bi + v2h ′ B̄i
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for any i ∈ Ĩ. Here ¯: Q(v)→ Q(v) is the field involution such that v̄ = v−1.

1.12

Let S̃r
i be the ρi-isotypic component of S̃r . Using 1.11(a) and the tables in 1.10, we see that

the following hold.

(a) S̃r
i 
= 0 implies 0 ≤ r ≤ 2h ′.

(b) S̃r
i
∼= S̃2h ′−r

i for 0 ≤ r ≤ 2h ′.

(c) S̃h ′

i0
∼= ρi0 ⊕ ρi0 .

(d) If i 
= ♥ and i = iu
t with t > 0 then S̃h ′−t

i
∼= S̃h ′+t

i
∼= ρi and S̃h ′−t+1

i = S̃h ′−t+2
i = · · · =

S̃h ′+t−1
i = 0.

(e) If i = ♥ then S̃0
i
∼= S̃2h ′

i
∼= ρi and S̃r

i = 0 for 0 < r < 2h ′.

Lemma 1.13 Let V be a Γ-submodule of S̃h ′

i0
such that V ∼= ρi0 . For any k ∈ Ĩ, define a

subspace J̃k of
⊕

r≥0 S̃r
k by

J̃k =

{⊕
r>h ′ S̃r

k ⊕V, if k = i0,⊕
r>h ′ S̃r

k, if k 
= i0.

Then J̃V =
⊕

k∈Ĩ J̃k ⊂ S̃ belongs to H̃0.

Lemma 1.14 Assume that i ∈ I is of the form iu
t where t > 0. Let j = iu

1 . Let V be a
Γ-submodule of S̃h ′

i0
such that

V ∼= ρi0 , S̃1S̃h ′−1
j ⊂ V, S̃1V ∩ S̃h ′+1

j = 0.

Let V ′ be a Γ-submodule of S̃h ′−t
i ⊕ S̃h ′+t

i such that V ′ ∼= ρi . For any k ∈ Ĩ, define a subspace
J̃k of
⊕

r≥0 S̃r
k by

J̃k =




⊕
r>h ′+t S̃r

k ⊕V ′, if k = iu
t ,⊕

r>h ′+t ′ S̃r
k ⊕ S̃h ′−t ′

k , if k = iu
t ′ , 0 < t ′ < t,⊕

r>h ′ S̃r
k ⊕V, if k = i0,⊕

r>h ′ S̃r
k, for all other k ∈ Ĩ.

Then J̃V,V ′ =
⊕

k∈Ĩ J̃k ⊂ S̃ belongs to H̃0.

Let J̃ be J̃V,V ′ or J̃V in 1.13. It is clear that J̃ ∼= [Γ] in CΓ. Since S̃ ∼= [Γ] ⊕ [Γ] in CΓ,
it follows that S̃/ J̃ ∼= [Γ] in CΓ. To prove that J̃ is an ideal of S̃, it is enough to check that
multiplication by S̃1 maps J̃ into itself. This follows immediately from the assumptions and
the properties 1.12(a)–(e), using the inclusion

S̃1S̃r
k ⊂

∑
k ′∈Ĩ;k·k ′=−1

S̃r+1
k ′ .

Lemma 1.15 Assume that M is both an S†-module and a Γ-module, so that the module
structure S† ⊗M → M is Γ-linear. Assume also that the Γ-module M has at most two non-
zero isotypic components. Then S2M = 0.
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As explained in [L3, Section 6], giving M is the same as giving a module M over the
preprojective algebra of the corresponding affine Coxeter graph. Our assumption on M
implies that

(a) M has a zero component at all but two vertices.
We must show that any path of length 2 acts as 0 on M. But this clearly follows, using

(a), from the relations of the preprojective algebra. The lemma is proved.

Lemma 1.16 Let u ∈ {1, 2, 3}. Let j = iu
1 . There exists a unique Γ-submodule V (u) of S̃h ′

i0

such that

V (u) ∼= ρi0 , S̃1S̃h ′−1
j ⊂ V (u), S̃1V (u) ∩ S̃h ′+1

j = 0.

To prove this, we define subspaces S̃ ′ =
⊕

k∈Ĩ S̃ ′k, S̃
′′ =
⊕

k∈Ĩ S̃ ′ ′k of S̃ by

S̃ ′k =
⊕

r>h ′+1

S̃r
k for k = j,

S̃ ′k =
⊕
r>h ′

S̃r
k for k 
= j,

S̃ ′ ′k =
⊕

r≥h ′−1

S̃r
k for k = j,

S̃ ′ ′k =
⊕
r≥h ′

S̃r
k for k 
= j.

Then S̃ ′ ⊂ S̃ ′ ′ are ideals of S̃. Hence M = S̃ ′ ′/S̃ ′ is naturally an S̃-module (hence
an S†-module) and it is also a Γ-module with only two isotypic components Mi0 ,M j

(corresponding to i0 and j). Moreover, Mi0 ,M j inherit Z-gradings from S̃. We have

Mi0 = Mh ′

i0
∼= ρi0 ⊕ ρi0 and M j = Mh ′−1

j ⊕ Mh ′+1
j with Mh ′−1

j
∼= Mh ′+1

j
∼= ρ j . Let

X = S̃1Mh ′−1
j . Equivalently, X is the image of the Γ-linear map S̃1 ⊗Mh ′−1

j → Mh ′

i0
given

by the S̃-module structure. Since Mh ′−1
j

∼= ρ j and T ⊗ ρ j contains ρi0 with multiplicity
one, it follows that either X = 0 or X ∼= ρi0 in CΓ.

Let X ′ be the set of all m ∈ Mh ′

i0
such that f m = 0 for any f ∈ S̃1. Equivalently, X ′ is

the kernel of the Γ-linear map Mh ′

i0
→ S̃1 ⊗Mh ′+1

j given by m �→ e ⊗ (e ′m) − e ′ ⊗ (em),

where e, e ′ form a symplectic basis of T. Since Mh ′−1
j

∼= ρ j and T ⊗ ρ j contains ρi0 with

multiplicity one, it follows that either X ′ = Mh ′

i0
or X ′ ∼= ρi0 in CΓ. Applying Lemma 1.15

to M we see that S̃2M = 0. In particular, we have X ⊂ X ′. Hence there are four possibilities:

(a) X = 0, X ′ ∼= ρi0 ;
(b) X = X ′ ∼= ρi0 ;
(c) X ∼= ρi0 , X ′ = Mh ′

i0
;

(d) X = 0, X ′ = Mh ′

i0
.
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To prove the lemma, it is enough to show that there is a unique Γ-submodule X0 of Mh ′

i0

such that X0
∼= ρi0 and X ⊂ X0 ⊂ X ′. This is clear in cases (a), (b), (c): we take X0 to be

X ′, X = X ′, X respectively.

It remains to show that the case (d) cannot occur. Assume that we are in case (d).
Then any Γ-submodule V of S̃h ′

i0
such that V ∼= ρi0 automatically satisfies S̃1S̃h ′−1

j ⊂ V ,

S̃1V ∩ S̃h ′+1
j = 0. Applying Lemma 1.14 with i = iu

1 = j for any V as above and any

Γ-submodule V ′ of S̃h ′−1
i ⊕ S̃h ′+1

i such that V ′ ∼= ρi , we obtain a two-parameter family
of distinct points of H̃0. (Both V and V ′ run through a P1.) This contradicts the fact that
H̃0 = H[Γ]

0 has pure dimension 1. The lemma is proved.

1.17

Let Πi0 be the set of points J̃V ∈ H̃0 = H[Γ]
0 attached in Lemma 1.13 to the various Γ-

submodules V of S̃h ′

i0
such that V ∼= ρi0 . This is a projective line contained in H̃0 = H[Γ]

0 .

For any i ∈ I of the form i = iu
t with t > 0, letΠi be the set of points J̃V,V ′ ∈ H̃0 = H[Γ]

0

attached in Lemma 1.14 to V = V (u) (as in 1.16) and to the various Γ-submodules V ′ of
S̃h ′−t

i ⊕ S̃h ′+t
i such that V ′ ∼= ρi . This is a projective line contained in H̃0 = H[Γ]

0 .

The projective lines Πi(i ∈ I) are clearly distinct. From 1.7(a) it follows that H[Γ]
0 has

exactly |I| irreducible components, each of dimension 1. It follows thatΠi(i ∈ I) are exactly
the irreducible components of H[Γ]

0 so that H[Γ]
0 =

⋃
i∈I Πi .

1.18

Let k ∈ Ĩ. We consider the vector bundle Ek over H[Γ] whose fibre Ek
J at J ∈ H[Γ] is

HomΓ(ρk, S†/ J). This is a vector bundle with fibres of dimension dim ρk.

The action of C∗ on T given by λ : x �→ λx extends to an action of C∗ on S† by algebra
automorphisms; an element λ ∈ C∗ acts on Sr as multiplication by λr . We denote this
automorphism of S† by τλ. Note that, if J is an ideal of S†, then τλ( J) is an ideal of S†. If
furthermore, J ∈ H[Γ], then τλ( J) ∈ H[Γ]. (This is because the C∗-action on S† commutes
with the Γ-action on S†.) Note also that, if J ∈ H[Γ], then τλ induces an isomorphism
S†/ J

∼
→ S†/τλ( J) in CΓ and this, in turn, induces an isomorphism Ek

J
∼
→ Ek

τλ( J) of vector

spaces. We see that H[Γ] has a natural C∗-action and that the vector bundle Ek is natu-
rally C∗-equivariant. Now H̃0 = H[Γ]

0 is a C∗-stable subvariety of H[Γ]; hence each of its
irreducible componentsΠi , (i ∈ I) is C∗-stable.

The C∗-action λ : x �→ λ−1x on T ′ induces a C∗-action on Γ\T ′ and one on Symr(T ′);
the last action is λ : (x1, x2, . . . , xr) �→ (λ−1x1, λ

−1x2, . . . , λ
−1xr). This, in turn, restricts to

a C∗-action on
(
Symr(T ′)

)Γ
when r = dim([Γ]) which is compatible with the C∗-action

on Γ\T ′ under the identification in 1.7. Note that the map H[Γ] →
(
Symr(T ′)

)Γ
= Γ\T ′

in 1.7(a) is C∗-equivariant. Indeed it is enough to show that p : T ′[r] → Symr(T ′) in 1.5 is
C∗-equivariant. This follows immediately from the definitions.

Lemma 1.19 Let V be a Γ-submodule of S̃h ′

i0
such that V ∼= ρi0 . The fibre of Ek at J̃V ∈ Πi0
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is canonically ⊕
r<h ′

HomΓ(ρk, S̃
r
k)⊕HomΓ(ρk, S̃

h ′

k /V ), if k = i0,

⊕
r<h ′

HomΓ(ρk, S̃
r
k), if k 
= i0.

Lemma 1.20 Assume that i ∈ I is of the form iu
t where t > 0. Let V (u) ⊂ S̃h ′

i0
be as in 1.16.

Let V ′ be a Γ-submodule of S̃h ′−t
i ⊕ S̃h ′+t

i such that V ′ ∼= ρi . The fibre of Ek at J̃V (u),V ′ ∈ Πi

is canonically⊕
r<h ′−t

HomΓ(ρk, S̃
r
k)⊕HomΓ

(
ρk, (S̃h ′−t

i ⊕ S̃h ′+t
i )/V ′

)
, if k = iu

t ,

⊕
r<h ′−t ′

HomΓ(ρk, S̃
r
k)⊕HomΓ(ρk, S̃

h ′+t ′

k ), if k = iu
t ′ , 0 < t ′ < t,

⊕
r<h ′

HomΓ(ρk, S̃
r
k)⊕HomΓ

(
ρk, S̃

h ′

k /V (u)
)
, if k = i0,

⊕
r<h ′

HomΓ(ρk, S̃
r
k), for all other k ∈ Ĩ.

This and the previous lemma follow directly from definitions, since the fibre of Ek at a
point J̃ ∈ H̃0 is HomΓ(ρk, S̃/ J̃).

1.21

Let i ∈ I. We define a line bundle Oi on Πi as follows. If i = i0, the fibre of Oi at J̃V ∈ Πi0

is the line

Hom(ρi , S̃
h ′

i0
/V ).

If i = iu
t with t > 0, the fibre of Oi at J̃V (u),V ′ ∈ Πi is the line

Hom
(
ρi , (S̃h ′−t

i ⊕ S̃h ′+t
i )/V ′

)
.

Oi has a unique C∗-equivariant structure such that the following holds:
If i = i0 (so that C∗ acts trivially on Πi), then C∗ acts trivially on each fibre of Oi . If

i = iu
t with t > 0 (so that C∗ acts on Πi with exactly two fixed points, J̃V (u),S̃h ′−t

i and

J̃V (u),S̃h ′+t
i ), then λ ∈ C∗ acts on the fibre of Oi at J̃V (u),S̃h ′−t

i as multiplication by λt and on

the fibre of Oi at J̃V (u),S̃h ′+t
i as multiplication by λ−t .

For any m ∈ Z we define the line bundle Om
i on Πi to be O⊗m

i , if m ≥ 0, or the dual of

O⊗(−m)
i if m < 0. This line bundle inherits a C∗-equivariant structure from Oi .

We shall generally use the following notation. If E is a C∗-equivariant vector bundle on a
variety with C∗-action and r ∈ Z, we denote by vrE the C∗-equivariant vector bundle given
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by the tensor product of E with the trivial line bundle C with C∗-equivariant structure in
which λ ∈ C∗ acts as multiplication by λr. We denote by C the trivial vector bundle with
the obvious C∗-equivariant structure.

Proposition 1.22 (a) If k = ♥, then Ek = C.
(b) If k ∈ Ĩ and i ∈ I are such that k 
= i, then Ek|Πi is a trivial vector bundle (if we forget

the C∗-equivariant structure).
(c) For any J̃ ∈ Πi0 (necessarily a fixed point of the C∗-action) we have Ek| J̃ ∼= vc1 ⊕ vc2 ⊕

· · · ⊕ vcs as a C∗-equivariant vector bundle over a point. (Here Bk = vc1 + vc2 + · · · + vcs is as
in 1.10.)

(d) If k ∈ I, then Ek|Πk
∼= vh ′O1

k ⊕U , where U is a C∗-equivariant vector bundle overΠk

which is trivial if we forget the C∗-action.

This follows immediately from Lemmas 1.19, 1.20 and from 1.11(a).

Corollary 1.23 For k ∈ Ĩ, let E ′k be the vector bundle on H[Γ] dual to Ek with the C∗-
equivariant structure inherited from Ek.

(a) If k = ♥, then E ′k = C.
(b) If k ∈ Ĩ and i ∈ I are such that k 
= i, then E ′k|Πi is a trivial vector bundle (if we forget

the C∗-equivariant structure).
(c) For any J̃ ∈ Πi0 we have E ′k| J̃ ∼= v−c1 ⊕ v−c2 ⊕ · · · ⊕ v−cs as a C∗-equivariant vector

bundle over a point. (Here Bk = vc1 + vc2 + · · · + vcs is as in 1.10.)
(d) If k ∈ I, then E ′k|Πk

∼= v−h ′O−1
k ⊕U ′, where U ′ is a C∗-equivariant vector bundle

over Πk which is trivial if we forget the C∗-action.

1.24

For u ∈ {1, 2, 3}, 0 ≤ t < au, we denote by pu
t,t+1 the unique point in the intersection

Πiu
t
∩Πiu

t+1
, that is,

pu
t,t+1 = J̃V (u),S̃h ′−t

i = J̃V (u),S̃h ′+t+1
i ′ , if t > 0, i = iu

t , i ′ = iu
t+1,

pu
0,1 = J̃V (u) = J̃V (u),S̃h ′+1

i ′ , if t = 0, i ′ = iu
1 .

Note that p1
0,1, p

2
0,1, p

3
0,1 are distinct points of Πi0 (a consequence of 1.7(a)) and that all

intersectionsΠi ∩Π j other than those just considered are empty.

For u ∈ {1, 2, 3}, let i = iu
au

and let qu = J̃V (u),S̃h ′−au
i ∈ Πi .

The C∗-actions on H[Γ],H[Γ]
0 have the same fixed point set:

(H[Γ])C∗ = (H[Γ]
0 )C∗ =

⊔
i∈I

µi

where µi is the connected component of (H[Γ])C∗ = (H[Γ]
0 )C∗ defined as

Πi0 if i = i0,

{pu
t,t+1}, if i = iu

t with u ∈ {1, 2, 3} and 0 < t < au,

{qu}, if i = iu
t with u ∈ {1, 2, 3} and t = au.
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1.25

The equivariant K-groups KC∗() are as in [L4, 6.1]; RC∗ is the representation ring of C∗,
that is, KC∗ of a point.

Consider the homomorphism⊕
u,t ;0≤t<au

KC∗(pu
t,t+1)

a
−→
⊕

i

KC∗(Πi)

with components KC∗(pu
t,t+1) → KC∗(Πiu

t
) (direct image map) and KC∗(pu

t,t+1) →
KC∗(Πiu

t+1
) (minus the direct image map); the other components are 0. The homomor-

phism
⊕

i∈I KC∗(Πi) → KC∗(H[Γ]
0 ) with components given by the direct image maps is

zero on the image of a hence it induces a homomorphism coker(a)→ KC∗(H[Γ]
0 ).

Lemma 1.26 a is injective and KC∗(H[Γ]
0 ) = coker(a).

The same statement can be formulated in the case where H[Γ]
0 is replaced by a variety

X of pure dimension 1 with C∗-action such that each irreducible component is a P1, any
two components are either disjoint or intersect at exactly one point, no point belongs to
three components and the pattern of intersection of the components is given by a tree. We
prove this more general statement by induction on the number of irreducible components
of X. If X has exactly one component, the result is clear. Assume now that X has N ≥ 2
components. Then we have X = X ′ ∪X ′ ′ where X ′ is a closed subset of X of the same type
as X but with only N − 1 components and X ′ ′ is a component of X which intersects X ′ in
exactly one point p. The desired result holds for X ′ by the induction hypothesis; it gives an
exact sequence of the form

0 −→ A ′ −→ A −→ KC∗(X ′) −→ 0.

We would like to show that we have an analogous exact sequence

0 −→ A ′ ⊕ KC∗(p) −→ A⊕ KC∗(X ′ ′) −→ KC∗(X) −→ 0.

We have a commutative diagram

0 0 0� � �
0 −−−−→ A ′ −−−−→ A ′ ⊕ KC∗(p) −−−−→ KC∗(p) −−−−→ 0� � �
0 −−−−→ A −−−−→ A⊕ KC∗(X ′ ′) −−−−→ KC∗(X ′ ′) −−−−→ 0� � �
0 −−−−→ KC∗(X ′) −−−−→ KC∗(X) −−−−→ RC∗ −−−−→ 0� � �

0 0 0
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with exact horizontal lines. The vertical lines (except possibly for the middle one) are exact.
But then the middle vertical line is automatically exact. The desired statement for X follows.
The lemma is proved.

2 Preliminaries on Be,Λe

2.1

Let G be a connected, semisimple, almost simple, simply connected algebraic group of
simply laced type. Let g be the Lie algebra of G. Let gn be the variety of nilpotent elements
in g. Let B be the variety of all Borel subalgebras of g. A parabolic subalgebra p of g is said
to be almost minimal if there exists b ∈ B such that b ⊂ p, dim(p/b) = 1.

Let I ′ be a finite set indexing the set of G-orbits on the set of almost minimal parabolic
subalgebras (for the adjoint action). A parabolic subalgebra in the G-orbit indexed by i
is said to have type i. Let Pi be the variety of all parabolic subalgebras of type i. Let
πi : B→ Pi be the morphism defined by πi(b) = p where b ∈ B, p ∈ Pi , b ⊂ p.

Let X be the set of isomorphism classes of algebraic G-equivariant line bundles on B

where G acts on B by the adjoint action. Then X is a finitely generated free abelian group
under the operation given by tensor product of line bundles. For each i ∈ I ′, let Li ∈ X be
the tangent bundle along the fibres of πi : B→ Pi .

Let X be a free abelian group (in additive notation) with a given isomorphism X
∼
→ X

denoted by x �→ Lx. Let αi ∈ X be defined by Lαi = Li . If x ∈ X, the Euler characteristic
of any fibre of πi (a projective line) with coefficients in the restriction of Lx is equal to
α̌i(x) + 1 where α̌i(x) ∈ Z. Then α̌i : X → Z is a homomorphism. For i ∈ I ′, let x �→ σi x
be the (involutive) map X → X given by σi x = x − α̌i(x)αi . The involutions x �→ σi x are
the standard generators of the Weyl group W , a finite Coxeter group with length function
l : W → N. Let w0 be the longest element of W .

2.2

Let A = Z[v, v−1] where v is an indeterminate. Let AX be the group algebra of X with
coefficients in A. The basis element of AX corresponding to x ∈ X is denoted by [x]. The
affine Hecke algebra H is the A-algebra with generators T̃w(w ∈W ) and θx(x ∈ X) subject
to the relations

(a) (T̃σi + v−1)(T̃σi − v) = 0, (i ∈ I ′);
(b) T̃wT̃w ′ = T̃ww ′ if l(ww ′) = l(w) + l(w ′);
(c) θxT̃σi − T̃σiθσi x = (v − v−1)θ [x]−[σi x]

1−[−αi ]
;

(d) θxθx ′ = θx+x ′ ;
(e) θ0 = 1.

Here we use the following convention: for p =
∑

x∈X cx[x] ∈ AX (finite sum with cx ∈ A)
we set θp =

∑
x∈X cxθx ∈ H.

Let H0 be the subalgebra of H generated by the elements T̃σi (i ∈ I ′) or equivalently, the
A-submodule of H generated by the elements T̃w(w ∈W ).

Let χ �→ χ� be the involutive antiautomorphism of the A-algebra H defined by T̃w �→
T̃w−1 for all w ∈W and T̃−1

w0
θw0 xT̃w0 �→ θ−x for all x ∈ X. (See [L4, 1.22, 1.24, 1.25]).
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2.3

We fix an sl2-triple (e, f , h) in g that is, three elements e, f , h of g such that [h, e] =
2e, [h, f ] = −2 f , [e, f ] = h.

Let ζ : SL2 → G be the homomorphism of algebraic groups whose tangent map at 1
carries

(
0 1
0 0

)
to e,

(
0 0
1 0

)
to f ,

(
1 0
0 −1

)
to h.

2.4

Let Λ = {(y, b) ∈ gn ×B | y ∈ b}. Let z( f ) be the centralizer of f in g and let

Σ = {y ∈ gn | y − e ∈ z( f )},

Λe = (Σ×B) ∩ Λ,

Be = {b ∈ B | e ∈ b}.

We identify Be with a closed subvariety of Λe by b �→ (e, b), that is, Be is the fibre at 0 of
pr1 : Λe → Σ.

Now C∗ acts on Λe by

λ : (y, b) �→

(
λ−2 Ad ζ

(
λ 0
0 λ−1

)
y, Ad ζ

(
λ 0
0 λ−1

)
b

)
.

This restricts to a C∗- action on Be.
Throughout this paper we assume that e is subregular. Then, for each i ∈ I ′ there is a

unique irreducible component Vi of Be which is a single fibre of πi : B → Pi (hence a P1)
and any irreducible component of Be is equal to Vi for a unique i ∈ I ′ (a result of Tits).

According to Brieskorn [B], we can find Γ ⊂ Sp(T) as in 1.3 and an isomorphism

(a) Γ \ T ′
∼
→ Σ;

moreover, according to Slodowy [S], the isomorphism (a) can be chosen so that the C∗-
action

λ : y �→ λ−2 Ad ζ

(
λ 0
0 λ−1

)
y

onΣ corresponds to the C∗-action on Γ \T ′ induced by the C∗-action on λ, x �→ λ−1x on
T ′. We shall assume that (a) has been chosen with this additional property.

Brieskorn also shows that pr1 : Λe → Σ is a minimal resolution of singularities of Σ;
using 1.7(a), we see that there exists a unique isomorphism

(b) H[Γ] ∼→ Λe
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such that the diagram

H[Γ] ∼
−−−−→ Λe� pr1

�
Γ \ T ′

∼
−−−−→ Σ

is commutative. (Here [Γ] is the regular representation of Γ, the lower horizontal map is
as above, and the left vertical map is as in 1.7(a).) In particular, Λe is irreducible, smooth,
of dimension 2.

In the remainder of this paper we shall assume that G is of type Dn (n ≥ 4) or En

(n ∈ {6, 7, 8}).
This is equivalent to the assumption in 1.8 that Γ is not cyclic. It is also equivalent to the

equality

{y ∈ g | [y, e] = [y, f ] = [y, h] = 0} = 0.

The isomorphism (b) automatically carries the subvariety H[Γ]
0 of H[Γ] onto the subva-

riety Be of Λe (these are fibres of the vertical maps over corresponding points). Hence it
carries an irreducible componentΠi of H[Γ]

0 (where i ∈ I) onto an irreducible component
Vi ′ of Be (where i ′ ∈ I ′). The map i �→ i ′ is a bijection I

∼
→ I ′. We use this bijection

to identify I = I ′. We identify H[Γ] = Λe, H[Γ]
0 = Be using the isomorphisms above.

This identification is compatible with the C∗-actions. Indeed, we know already that in
the commutative diagram above, all maps except possibly for the upper horizontal one are
compatible with the C∗-actions. But then the upper horizontal isomorphism is compatible
with the C∗-actions at least when restricted to the complement of the exceptional divisors;
then it must be compatible everywhere.

We also identifyΠi = Vi for i ∈ I = I ′.

2.5

The equivariant K-groups KC∗(Be), KC∗(Λe) will be regarded as H-modules as in [L4,
12.5]. Note that KC∗(Be),KC∗(Λe) are naturally RC∗-modules. We will identify RC∗ = A

in such a way that vm corresponds to the one dimensional representation of C∗ in which λ
acts by multiplication by λm.

3 Matrix Entries of the Action of the Generators T̃σi on KC∗(Be)

3.1

There is a unique homomorphism n0 : X→ Z such that

n0(α j) = −2 if j 
= i0, n0(αi0 ) = 0.

For i ∈ I = I ′ we define a homomorphism ni : X→ Z by ni0 = n0 and

ni(x) = n0(σiu1
σiu2
···σiut x)
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if i = iu
t , u ∈ {1, 2, 3}, 0 < t ≤ au.

If x ∈ X, then the G-equivariant line bundle Lx on B will be regarded as a C∗-equivariant

line bundle by restriction, via the homomorphism C∗ → G given by λ �→ Ad ζ

(
λ 0
0 λ−1

)
.

In particular, we obtain a C∗-action on the fibre of Lx at a C∗-fixed point on Be.

Lemma 3.2 Let i ∈ I, x ∈ X and let b ∈ µi ⊂ BC∗
e . Then C∗ acts on the fibre of Lx at b

through the character vni (x).

We prove the result for i = iu
t with fixed u by induction on t ≥ 0. The case t = 0 is left

to the reader. Assume now that t ≥ 1 and that the result is known for t − 1. Let i ′ = iu
t−1.

We have b ∈ Vi . We can find b ′ ∈ Vi such that b ′ ∈ µi ′ . Since b, b ′ are distinct points in
the same fibre of πi , we can use [L4, 7.4] and we see that the fibre of Lx at b is canonically
isomorphic to the fibre of Lσi x at b ′. Using the induction hypothesis, we deduce that C∗

acts on the fibre of Lx at b through the character vni ′ (
σi x) = vni (x). This yields the induction

step. The lemma is proved.

3.3

For i ∈ I and m ∈ Z we shall regard Om
i as a C∗-equivariant line bundle on Vi . (Recall that

Πi = Vi .) If i = i0, we have

j∗(C) = O0
i − O−1

i ∈ KC∗(Vi)

where j : {pu
0,1} → Vi is the inclusion. Moreover, O1

i + O−1
i = 2 in KC∗(Vi).

If i 
= i0 (so that i = iu
t , 0 < t ≤ au), we note that the C∗-equivariant structure of Om

i is
such that the action of C∗ on the fibre of Om

i at µi is tm; we have

j∗(C) = O0
i − v−t O−1

i ∈ KC∗(Vi), j ′∗(C) = O0
i − vt O−1

i ∈ KC∗(Vi)

where j is the inclusion of µi into Vi and j ′ is the inclusion of the other C∗-fixed point into
Vi . (See [L4, 13.5].) Moreover, O1

i + O−1
i = vt + v−t in KC∗(Vi).

3.4

Let om
i be the C∗-equivariant coherent sheaf on Be given by the direct image of Om

i under
the inclusion Vi ⊂ Be. From Lemma 1.26 we see that KC∗(Be) is the A-module with
generators om

i (i ∈ I,m ∈ Z) and relations:

o0
iu
t
− v−t o−1

iu
t
= o0

iu
t+1
− vt+1o−1

iu
t+1

for u ∈ {1, 2, 3}, 0 ≤ t < au, om+1
i + om−1

i = (vt + v−t )om
i for i = iu

t , u ∈ {1, 2, 3},
0 ≤ t ≤ au, m ∈ Z.

It follows that

(a) an A-basis of KC∗(Be) is given by o−1
i (i ∈ I) and p = o0

i0
− o−1

i0
.

Note that

(b) p = j∗(C)

where j is the imbedding of pu
0,1 into Be. (This holds for any u ∈ {1, 2, 3}.)
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3.5

For x ∈ X, the restriction of Lx to Vi is vsOα̌i (x)
i where s = ni(x) − tα̌i(x) (with i = iu

t ).
Indeed, the fibre of Lx at a point of µi is vni (x) = vsvtα̌i (x).

Lemma 3.6 (a) θx p = vn0(x) p.
(b) If i = iu

t and α̌i(x) = 1, then θxom
i = vni (x)−t om+1

i and θx−αi o
m
i = vni (x)−t om−1

i .

(a) follows from 3.4(b) and 3.2. In the case (b), we have by 3.5:

θxom
i = vni (x)−tα̌i (x)om+α̌i (x)

i = vni (x)−t om+1
i ,

θx−αi o
m
i = vni (x−αi )−tα̌i (x−αi )om+α̌i (x−αi )

i = vni (x)−t om−1
i .

The lemma is proved.

Lemma 3.7 For any i ∈ I − {i0} we have T̃σi p = −v−1 p.

One can argue as in the proof of [L4, 13.11]. A slightly simpler proof goes as follows.
We can find i ′ = iu

1 ∈ I, i ′ 
= i. We have p = j∗(C) where j is the imbedding of {pu
0,1}

into Be. Clearly, {pu
0,1} is an i-saturated subvariety of Be, in the sense of [L4, 10.22]. Since

p = j∗(C) ( j as in 3.4(b)), it follows (see [L4, 10.22(a)]) that the A-submodule of KC∗(Be)
generated by p is stable under T̃σi . Hence T̃σi p = cp where c ∈ A. Let x ∈ X be such that
α̌i(x) = 1. We have

θx−αi T̃σi p = (T̃σi + v−1 − v)θx p.

Hence

cθx−αi p = (T̃σi + v−1 − v)vn0(x) p,

cvn0(x−αi ) p = vn0(x)(c + v−1 − v)p,

cv2 = c + v−1 − v,

c = −v−1.

The lemma is proved.

Lemma 3.8 For any i ∈ I we have T̃σi (o−1
i ) = vo−1

i .

In the following proof we shall consider the C∗-action on Λ given by the same formula
as for Λe.

For each z ∈ C we consider the C∗-stable subvariety Vi,z = {(ze, b) ∈ Λ | b ∈ Vi} of
Λ. Then pr2 : Vi,z → Vi is a C∗-equivariant isomorphism. The line bundle O−1

i on Vi can
be regarded via this isomorphism as a line bundle on Vi,z. Since Vi,z is an i-saturated sub-
variety of Λ, one can define as in [L4, 8.1] an RC∗-linear map T̃si : KC∗(Vi,z) → KC∗(Vi,z)
which has the following properties:

(a) if we regard C[v, v−1] ⊗A KC∗(Vi,z) as the fibres of a vector bundle over C × C∗ (z
varies in C) then T̃si is a (semisimple) vector bundle map;

(b) for z = 1, T̃si : KC∗(Vi,1) → KC∗(Vi,1), T̃σi : KC∗(Be) → KC∗(Be) are compatible
under direct image map KC∗(Vi,1)→ KC∗(Be) induced by Vi,1 = Vi ⊂ Be;
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(c) for z = 0, T̃si : KC∗(Vi,0) → KC∗(Vi,0), T̃σi : KC∗(B0) → KC∗(B0) are compatible
under the direct image map KC∗(Vi,0)→ KC∗(B0) induced by Vi,0 ⊂ B0.

Now to prove the lemma, it is enough (by (b)) to show that T̃σi (O−1
i ) = vO−1

i in
KC∗(Vi,1). Using (a), we see that it is enough to show that T̃σi (O−1

i ) = vO−1
i in KC∗(Vi,0).

Let F be the direct image of O−1
i under the imbedding Vi,0 ⊂ B0 (a C∗-equivariant co-

herent sheaf on B0). Since KC∗(Vi,0) → KC∗(B0) (direct image) is injective, we see from
(c) that it is enough to show that T̃σi (F) = vF in KC∗(B0). It is easy to see that F is an
RC∗-linear combination of elements of KC∗(B0) represented by line bundles Lx on B such
that α̌i(x) = −1. Hence it is enough to show that for any such Lx we have T̃σi (Lx) = vLx in
KC∗(B0). It is also enough to show that the analogous equality holds in KG×C∗(B0) (equiv-
ariant structure as in [L4, 7.5]). But this follows from [L4, 7.23]. The lemma is proved.

Lemma 3.9 Assume that i = iu
t , i
′ = iu

t−1 with u ∈ {1, 2, 3} and 0 < t ≤ au. Let p̃ = j∗(C)
where j : {pu

t−1,t} → Be is the inclusion. We have

(a) T̃σi p̃ = −v−1 p̃ + (vt−1 − v−t+1)o−1
i ,

(b) T̃σi ′
p̃ = −v−1 p̃ + (vt − v−t )o−1

i ′ .

We prove (a). Since Vi is an i-saturated subvariety of Be and the image of KC∗(Vi) →
KC∗(Be) has A-basis {p̃, o−1

i }, we have T̃σi p̃ = ap̃+bo−1
i for some a, b ∈ A. By 3.8 we have

T̃σi o
−1
i = vo−1

i . The eigenvalues of the 2 × 2 matrix describing T̃σi in the basis {p̃, o−1
i }

belong to {v,−v−1}. Hence either a = −v−1 or a = v. Moreover, if a = v and b 
= 0, then
the 2×2 matrix above is not semisimple, a contradiction. Hence there are two possibilities:
either a = v, b = 0 or a = −v−1.

Let x ∈ X be such that α̌i(x) = 1. We have

θx−αi T̃σi p̃ = (T̃σi + v−1 − v)θx p̃,

θx−αi (ap̃ + bo−1
i ) = (T̃σi + v−1 − v)vni ′ (x) p̃,

avni ′ (x−αi ) p̃ + bvni (x)−t o−2
i = vni ′ (x)(ap̃ + bo−1

i ) + (v−1 − v)vni ′ (x) p̃.

Note that ni ′(x − αi) = ni(x) and ni ′(x) = ni(x)− 2t . Hence

ap̃ + bv−t o−2
i = v−2t (ap̃ + bo−1

i ) + (v−1 − v)v−2t p̃.

Recall that p̃ = o0
i − vt o−1

i . Hence

o−2
i = −o0

i + (vt + v−t )o−1
i = −p̃ + v−t o−1

i .

We deduce that

ap̃ + bv−t (−p̃ + v−t o−1
i ) = v−2t (ap̃ + bo−1

i ) + (v−1 − v)v−2t p̃.

Taking the coefficient of p̃ we deduce
(c) a− bv−t = v−2t a + (v−1 − v)v−2t .
Assume that a = v, b = 0. Then from (c) we see that v2t+2 = 1. This is impossible since

t ≥ 1. Hence we must have a = −v−1 and then (c) yields b = vt−1− v−t+1. This completes
the proof of (a).
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We prove (b). Since Vi ′ is an i ′-saturated subvariety of Be and the image of KC∗(Vi ′)→
KC∗(Be) has A-basis {p̃, o−1

i ′ }, we have T̃σi ′
p̃ = a ′ p̃ + b ′o−1

i ′ for some a ′, b ′ ∈ A. By 3.8,
we have T̃σi ′

o−1
i ′ = vo−1

i ′ . Just as in the proof of (a), we see that there are two possibilities:
either a ′ = v, b ′ = 0 or a ′ = −v−1.

Let x ∈ X be such that α̌i ′(x) = 1. We have

θx−αi ′
T̃σi ′

p̃ = (T̃σi ′
+ v−1 − v)θx p̃,

θx−αi ′
(a ′ p̃ + b ′o−1

i ′ ) = (T̃σi ′
+ v−1 − v)vni ′ (x) p̃,

a ′vni ′ (x−αi ′ ) p̃ + b ′vni ′ (x)−t+1o−2
i ′ = vni ′ (x)(a ′ p̃ + b ′o−1

i ′ ) + (v−1 − v)vni ′ (x) p̃.

Note that ni ′(αi ′) = 2(t − 1). Hence

a ′v−2t+2 p̃ + b ′v−t+1o−2
i ′ = a ′ p̃ + b ′o−1

i ′ + (v−1 − v)p̃.

Recall that p̃ = o0
i ′ − v−t+1o−1

i ′ hence

o−2
i ′ = −o0

i ′ + (vt−1 + v−t+1)o−1
i ′ = −p̃ + vt−1o−1

i ′ .

We deduce that

a ′v−2t+2 p̃ + b ′v−t+1(−p̃ + vt−1o−1
i ′ ) = a ′ p̃ + b ′o−1

i ′ + (v−1 − v)p̃.

Taking the coefficient of p̃ we deduce
(d) a ′v−2t+2 + b ′v−t+1(−1) = a ′ + (v−1 − v).
Assume that a ′ = v, b = 0. Then from (c) we see that v−2t+4 = 1. Hence t = 2. From

(a) applied to iu
1, i

u
0 (instead of iu

2, i
u
1), we see that T̃σi ′

: KC∗(Vi ′) → KC∗(Vi ′) is not equal
to multiplication by v. We have a contradiction. Thus we must have a ′ = −v−1 and then
(d) yields b ′ = vt − v−t . The lemma is proved.

The following lemma is a special case of the previous lemma (take t = 1).

Lemma 3.10 We have T̃σi0
p = −v−1 p + (v − v−1)o−1

i0
.

Lemma 3.11 Assume that i = iu
t , i
′ = iu

t−1 with u ∈ {1, 2, 3} and 0 < t ≤ au. Let p̃ be as
in 3.9. Then

(a) T̃σi ′
o−1

i = −v−1o−1
i − o−1

i ′ ,
(b) T̃σi o

−1
i ′ = −v−1o−1

i ′ − o−1
i .

Clearly, Vi ∪ Vi ′ is an i-saturated and i ′-saturated subvariety of Be. Hence the A-
submodule V of KC∗(Be) with basis {o−1

i , p̃, o
−1
i ′ } is stable under the operators T̃σi ′

, T̃σi .
We prove (a). This proof is a generalization of that of [L4, 13.13]. We have T̃σi ′

o−1
i =

ao−1
i + bp̃ + co−1

i ′ for some a, b, c ∈ A.
Let x ∈ X be such that α̌i(x) = α̌i ′(x) = 1. We have θx−αi ′

T̃σi ′
o−1

i =

(T̃σi ′
+ v−1 − v)θxo−1

i ,

θx−αi ′
(ao−1

i + bp̃ + co−1
i ′ ) = vni (x)−t (T̃σi ′

+ v−1 − v)o0
i

= vni (x)−t (T̃σi ′
+ v−1 − v)(p̃ + vt o−1

i )

= vni (x)−t
(
−v−1 p̃ + (vt − v−t )o−1

i ′ + vt (ao−1
i + bp̃ + co−1

i ′ )

+ (v−1 − v)p̃ + (v−1 − v)vt o−1
i

)
.
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Now

θx−αi ′
o−1

i = θxθ−αi ′
o−1

i = vni (−αi ′ )−tθxo0
i = vni (−αi ′ )−t vni (x)−t o1

i

= v2−t vni (x)−t o1
i ,

θx−αi ′
p̃ = vni ′ (x−αi ′ ) p̃ = vni (x)−2t−2(t−1) p̃,

θx−αi ′
o−1

i ′ = vni ′ (x)−t+1o−2
i ′ = vni (x)−2t−t+1o−2

i ′ ,

hence

av2−t o1
i + bv−3t+2 p̃ + cv−2t+1o−2

i ′

= −v−1 p̃ + (vt − v−t )o−1
i ′ + vt (ao−1

i + bp̃ + co−1
i ′ ) + (v−1 − v)p̃ + (v−1 − v)vt o−1

i .

We have

o−2
i ′ = −p̃ + vt−1o−1

i ′ ,

o1
i = −o−1

i + (vt + v−t )o0
i = (vt + v−t )p̃ + v2t o−1

i ,

hence

av2−t
(
(vt + v−t )p̃ + v2t o−1

i

)
+ bv−3t+2 p̃ + cv−2t+1(−p̃ + vt−1o−1

i ′ )

= −v−1 p̃ + (vt − v−t )o−1
i ′ + vt (ao−1

i + bp̃ + co−1
i ′ ) + (v−1 − v)p̃ + (v−1 − v)vt o−1

i ,

which yields a = −v−1, c = −1, b = 0. This proves (a).
We prove (b). From

T̃σi ′
o−1

i ′ = vo−1
i ′ ,

T̃σi ′
o−1

i = −v−1o−1
i − o−1

i ′ ,

T̃σi ′
p̃ = −v−1 p̃ + (vt − v−t )o−1

i ′ ,

we see that {ξ ∈ V | T̃σi ′
ξ = vξ} = Ao−1

i ′ . Since
(c) T̃σi = T̃−1

σi ′
T̃−1
σi

T̃σi ′
T̃σi T̃σi ′

,
it follows that

(d) {ξ ∈ V | T̃σiξ = vξ}
is the A-submodule generated by a single element of V. Since this submodule contains o−1

i
it must be equal to Ao−1

i . Now T̃σi o
−1
i ′ + v−1o−1

i ′ clearly belongs to (d), hence
(e) T̃σi o

−1
i ′ = −v−1o−1

i ′ + yo−1
i

for some y ∈ A. Using (e) and (a) we compute

T̃σi T̃σi ′
T̃σi o

−1
i ′ = (−1− y)(−v−1o−1

i ′ + yo−1
i )− yo−1

i ,

T̃σi ′
T̃σi T̃σi ′

o−1
i ′ = −vo−1

i ′ + yv(−v−1o−1
i − o−1

i ′ ).
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Since T̃σi T̃σi ′
T̃σi o

−1
i ′ = T̃σi ′

T̃σi T̃σi ′
o−1

i ′ , we have

(−1− y)(−v−1o−1
i ′ + yo−1

i )− yo−1
i = −vo−1

i ′ + yv(−v−1o−1
i − o−1

i ′ ).

We pick the coefficient of o−1
i ′ in both sides. We get y = −1. Hence (e) reduces to (b). The

lemma is proved.

Lemma 3.12 Assume that i, i ′ ∈ I satisfy i · i ′ = 0. Then T̃σi (o−1
i ′ ) = −v−1o−1

i ′ .

Note that Vi ′ is an i-saturated and i ′-saturated subvariety of Be. Hence the image of
KC∗(Vi ′) → KC∗(Be) is stable under T̃σi and under T̃σi ′

. The set of vectors in this image
that are annihilated by T̃σi ′

− v consists of all A-multiples of o−1
i ′ . (This follows from 3.8,

3.9.) This set is stable under the action of T̃σi since T̃σi , T̃σi ′
commute. It follows that

(a) T̃σi o
−1
i ′ = ai,i ′o

−1
i ′ for some ai,i ′ ∈ A.

We show that,

(b) if i ′ = iu
t where t > 0, then T̃σi : KC∗(Vi ′)→ KC∗(Vi ′) is scalar multiplication by ai,i ′ .

Let p ′, p ′′ be the two C∗-fixed points on Vi ′ . Note that {p ′} and {p ′′} are i-saturated
subvarieties of Be. It follows that T̃σi p ′ = a ′p ′, T̃σi p ′ ′ = a ′′p ′′ in KC∗(Be) where a ′, a ′′ ∈
A. (We denote the direct image of C under the direct image map KC∗(p ′) → KC∗(Be)
again by p ′; we use a similar notation for p ′ ′.) We may arrange notation so that p ′ =
o0

i ′ − v−t o−1
i ′ , p ′ ′ = o0

i ′ − vt o−1
i ′ . Hence p ′ − p ′′ = (vt − v−t )o−1

i ′ . Applying T̃σi yields
a ′p ′ − a ′′p ′ ′ = ai,i ′(vt − v−t )o−1

i ′ . Hence ai,i ′(p ′ − p ′ ′) = a ′p ′ − a ′′p ′′. Now p, p ′ are
linearly independent in KC∗(Be) over the field of quotients of RH (since t 
= 0). It follows
that a ′ = a ′ ′ = ai,i ′ . This proves (b). In particular, in the setup of (b) we have

(c) T̃σi p ′ = ai,i ′ p ′, T̃σi p ′ ′ = ai,i ′ p ′′.

Let π be the C∗-fixed point on V j where j = iu
1 with π /∈ Vi0 . (We denote the direct image

of C under the direct image map KC∗(π)→ KC∗(Be) again by π. We have

p = o0
j − vo−1

j , π = o0
j − v−1o−1

j = p + (v − v−1)o−1
j .

Recall that

T̃σi0
p = −v−1 p + (v − v−1)o−1

i0
, T̃σi0

o−1
j = −v−1o−1

j − o−1
i0

(see Lemmas 3.9, 3.11) so that

T̃σi0
π = T̃σi0

(p + (v − v−1)o−1
j ) = −v−1 p + (v − v−1)o−1

i0
+ (v − v−1)(−v−1o−1

j − o−1
i0

)

= −v−1(p + (v − v−1)o−1
j ) = −v−1π.

Thus,

(d) T̃σi0
π = −v−1π.

We now show that
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(e) ai0,iu
t
= −v−1 for any t ≥ 2.

We argue by induction on t . Assume first that t = 2. Then the intersection Viu
t
∩Viu

t−1
is on

the one hand the point π above and on the other hand it is one of the points p ′, p ′′ in (c)
(with i = i0, i ′ = iu

2). Hence from (c), (d) we deduce that ai0,iu
2
= −v−1. Assume now that

t ≥ 3. Consider the point p̃ = Viu
t
∩Viu

t−1
. Then p̃ is one of the points p ′, p ′′ in (c) (with

i = i0, i ′ = iu
t ) and also one of the points p ′, p ′′ in (c) (with i = i0, i ′ = iu

t−1). Hence from
(c) we deduce that ai0,iu

t
= ai0,iu

t−1
. By the induction hypothesis we have ai0,iu

t−1
= −v−1. It

follows that ai0,iu
t
= −v−1. This proves (e).

From the identities

T̃σi0
o−1

i ′ = −v−1o−1
i ′ for i ′ = iu

t , t ≥ 2,

T̃σi0
o−1

i ′ = −v−1o−1
i ′ − o−1

i0
for i ′ = iu

1 ,

T̃σi0
p = −v−1 p + (v − v−1)o−1

i0
,

T̃σi0
o−1

i0
= vo−1

i0
,

we see that the trace of T̃σi0
: KC∗(Be) → KC∗(Be) is v − |I|v−1. If i ∈ I, then the auto-

morphisms T̃σi , T̃σi0
of KC∗(Be) are conjugate under an automorphism of KC∗(Be). (This

follows by using several times 3.11(c) and the fact that the Coxeter graph is connected.) It
follows that

(f) for i ∈ I, the trace of T̃σi : KC∗(Be)→ KC∗(Be) is v − |I|v−1.

Assume now that i 
= i0. From the identities

T̃σi o
−1
j = ai, jo

−1
j if i · j = 0,

T̃σi o
−1
j = −v−1o−1

j − o−1
i if i · j = −1,

T̃σi o
−1
i = vo−1

i ,

T̃σi p = −v−1 p,

we see that the trace of T̃σi : KC∗(Be)→ KC∗(Be) is equal to

∑
j;i· j=0

ai, j − v−1n ′ − v−1 + v

where n ′ is the number of elements j ∈ I such that i · j = −1. Comparing with (f) we see
that
∑

j;i· j=0(ai, j + v−1) = 0. Since ai, j ∈ {v,−v−1}, we deduce that ai, j = −v−1 for all j
such that i · j = 0. The lemma is proved.
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4 Action of T̃±1
w0

on KC∗(Be)

4.1

For i ∈ I we set Ai =
B̄i−Bi

vh ′+v−h ′ ∈ Q(v).

Lemma 4.2 We have

(v + v−1)Ai =
∑

j∈I;i· j=−1

A j , if i ∈ I − {i0},

(v + v−1)Ai =
∑

j∈I;i· j=−1

A j − (v − v−1), if i = i0.

This follows immediately from the identities defining Bi , using B̄♥ = B♥.

4.3

Let ν = l(w0). Let w1 be a Coxeter element in W (see [C]) and let∆ ∈ A be the determinant
of v − v−1w1 in the reflection representation of W . For any integer m ≥ 0 we set [m] =
vm−v−m

v−v−1 ∈ A.

Lemma 4.4 For any i ∈ I we have

Ai = −(v − v−1)∆−1 [au + 1− t]

[au + 1]

∏
u ′∈{1,2,3}

[au ′ + 1] ∈ Q(v)

where i = iu
t .

One can check that the elements above form a solution of the equations in 4.2. We then
use the uniqueness of such a solution.

Lemma 4.5 Let i �→ i∗ be the involution of I defined by w0σiw
−1
0 = σi∗ . The action of T̃−1

w0

on KC∗(Be) is as follows.
(a) T̃−1

w0
(o−1

i ) = −(−v)ν−2h ′o−1
i∗ for all i ∈ I,

(b) T̃−1
w0

(p) = (−v)ν p + (−v)ν(1 + v−2h ′)
∑

j∈I A jo
−1
j .

Let M be the A-submodule of KC∗(Be) with basis {o−1
i | i ∈ I}. Note that M is an H0-

submodule of KC∗(Be). Since the set of vectors m ∈ M satisfying T̃σi m = vm is equal to
Ao−1

i and T̃w0 T̃σi T̃
−1
w0
= T̃σi∗

, it follows that T̃w0 (Ao−1
i ) = Ao−1

i∗ . Hence T̃w0 o−1
i = bio

−1
i∗

where bi ∈ A. Note that bi is invertible in A since T̃w0 : M→M is an isomorphism.
We show that bi is independent of i. Assume that j ∈ I, i · j = −1. We have T̃σi o

−1
j =

−v−1o−1
j − o−1

i , hence

T̃w0 T̃σi o
−1
j = −v−1T̃w0 o−1

j − T̃w0 o−1
i ,

T̃σi∗
T̃w0 o−1

j = T̃σi∗
b jo
−1
j∗ = −v−1b jo

−1
j∗ − bio

−1
i∗ ,

T̃σi∗
o−1

j∗ = −v−1o−1
j∗ − bib

−1
j o−1

i∗ .
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Since bib
−1
j 
= 0, it follows that bib

−1
j = 1. Since the Coxeter graph is connected, it fol-

lows that bi is indeed independent of i. Thus there exists an invertible element εvc ∈ A

(with ε ∈ {1,−1}, c ∈ Z) such that T̃w0 o−1
i = εvco−1

i∗ for all i ∈ I. The determinant of
T̃w0 : M→M is on the one hand equal to±(vc)|I| (the determinant of a monomial matrix),
and on the other hand is equal to the ν-th power of the determinant of T̃σi : M→M where
i ∈ I, that is, to ((−1)|I|−1v−|I|+2)ν . Thus,±vc|I| = ((−1)|I|−1v−|I|+2)ν . It follows that c =
(−|I| + 2)ν/|I| = −ν + 2h ′. To determine the sign ε, we specialize v = 1. Under this spe-
cialization, M becomes the reflection representation of W tensor the sign representation.
The trace of w0 on this representation is well known to be−(−1)ν�{i ∈ I | i = i∗}. On the
other hand, we have w0o−1

i = εo
−1
i∗ for all i ∈ I. Hence the trace of w0 is ε�{i ∈ I | i = i∗}.

Since �{i ∈ I | i = i∗} 
= 0, it follows that ε = −(−1)ν . This proves (a).
We prove (b). Let

ξ = p +
∑
j∈I

A jo
−1
j ∈ Q(v)⊗A KC∗(Be).

The equations in 4.2 show that

T̃σiξ = −v−1ξ for all i ∈ I.

It follows that T̃−1
w0

(ξ) = (−v)νξ or equivalently

T̃−1
w0

(
p +
∑
j∈I

A jo
−1
j

)
= (−v)ν

(
p +
∑
j∈I

A jo
−1
j

)
.

Note that A j∗ = A j . Using (a), we deduce that

T̃−1
w0

p − (−v)ν−2h ′
∑
j∈I

A jo
−1
j = (−v)ν

(
p +
∑
j∈I

A jo
−1
j

)
,

and (b) follows. The lemma is proved.

Lemma 4.6 The action of T̃w0 on KC∗(Be) is as follows.
(a) T̃w0 (o−1

i ) = −(−v)−ν+2h ′o−1
i∗ for all i ∈ I,

(b) T̃w0 (p) = (−v)−ν p + (−v)−ν(1 + v2h ′)
∑

j∈I A jo
−1
j .

(a) follows immediately from 4.5(a). We prove (b). If ξ is as in 4.5, we have T̃w0 (ξ) =
(−v)−νξ, or equivalently

T̃w0 p − (−v)−ν+2h ′
∑
j∈I

A jo
−1
j = (−v)−ν

(
p +
∑
j∈I

A jo
−1
j

)
.

(b) follows. The lemma is proved.

Lemma 4.7 Let p = p −
∑

j∈I B jv−h ′o−1
j . We have

T̃w0 p = (−v)−ν
(

p +
∑
j∈I

vh ′ B̄ jo
−1
j

)
.
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Using Lemma 4.6, we have

T̃w0 p = T̃w0

(
p −
∑

j

B jv
−h ′o−1

j

)

= (−v)−ν p +
∑

j

(−v)−νvh ′(B̄ j − B j)o−1
j +
∑

j

B jv
−h ′(−v)−ν+2h ′o−1

j ,

as desired.

5 Inner Product on KC∗(Be)

Lemma 5.1 Consider an RC∗-bilinear inner product (, ) on KC∗(Be) with values in RC∗ = A

such that (χξ, ξ ′) = (ξ, χ�ξ ′) and (ξ, ξ ′) = (ξ ′, ξ) for ξ, ξ ′ ∈ KC∗(Be), χ ∈ H. There
exists c ∈ A such that

(a) (o−1
i , o

−1
j ) = c for i, j ∈ I such that i · j = −1,

(b) (o−1
i , o

−1
i ) = −[2]c for all i ∈ I,

(c) (o−1
i , o

−1
j ) = 0 for i, j ∈ I such that i · j = 0,

(d) (p, o−1
i ) = 0 for i ∈ I − {i0},

(e) (p, o−1
i0

) = −c(v − v−1),

(f) (p, p) = cv−2h ′(1 + v2h ′)Ai0 (v − v−1).

Assume that i · j = −1. We have (T̃σi o
−1
j , o

−1
i ) = (o−1

j , T̃σi o
−1
i ), hence

(−v−1o−1
j − o−1

i , o
−1
i ) = (o−1

j , vo−1
i ), (o−1

i , o
−1
i ) = −(v + v−1)(o−1

j , o
−1
i ).

Similarly, (o−1
j , o

−1
j ) = −(v + v−1)(o−1

j , o
−1
i ); hence there exists c ∈ A so that (a),(b) hold.

Assume that i · j = 0. We have

(T̃σi o
−1
j , o

−1
i ) = (o−1

j , T̃σi o
−1
i ), (−v−1o−1

j , o
−1
i ) = (o−1

j , vo−1
i ).

Hence (v + v−1)(o−1
j , o

−1
i ) = 0 and (c) follows. For i 
= i0, we have

(T̃σi p, o−1
i ) = (p, T̃σi o

−1
i ), (−v−1 p, o−1

i ) = (p, vo−1
i )

and (d) follows. We have

(T̃σi0
p, o−1

i0
) = (p, T̃σi0

o−1
i0

), (−v−1 p + (v − v−1)o−1
i0
, o−1

i0
) = (p, vo−1

i0
).

Hence

(v + v−1)(p, o−1
i0

) = (v − v−1)(o−1
i0
, o−1

i0
) = −c(v − v−1)(v + v−1)

and (e) follows.
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Let x ∈ X be such that α̌0(x) = 1. We have

θxo−1
i0
= vn0(x)o0

i0
= vn0(x)(o−1

i0
+ p).

Using Lemma 4.6 we have

(θx p, o−1
i0

) = (p, T̃−1
w0
θ−w0 xT̃w0 o−1

i0
) = (T̃−1

w0
p,−(−v)−ν+2h ′θ−w0 xo−1

i0
),

hence

vn0(x)(p, o−1
i0

)

=
(

(−v)ν p + (−v)ν(1 + v−2h ′)
∑
j∈I

A jo
−1
j ,−(−v)−ν+2h ′vn0(x)(o−1

i0
+ p)
)
,

(p, o−1
i0

) = (v2h ′ p + (1 + v2h ′)
∑

j∈I A jo
−1
j ,−o−1

i0
− p). Using now (a)–(e), we deduce

− c(v − v−1)

= v2h ′c(v − v−1)− v2h ′(p, p)

− (1 + v2h ′)
∑

j; j·i0=−1

A jc + (1 + v2h ′)Ai0 c(v + v−1) + (1 + v2h ′)Ai0 c(v − v−1).

Here we substitute
∑

j; j·i0=−1 A j = (v + v−1)Ai0 + (v− v−1) and we obtain (f). The lemma
is proved.

5.2

Let (|)Be : KC∗(Be) × KC∗(Be) → RC∗ = A be the RC∗-bilinear inner product defined in
[L4, 12.16]. According to [L4, 12.17], we have

(ξ | ξ ′)Be = (ξ ′ | ξ)Be ,

(χξ | ξ ′)Be = (ξ | χ�ξ ′)Be ,

for all ξ, ξ ′ ∈ KC∗(Be), χ ∈ H. Hence Lemma 5.1 is applicable to (, ) = (|)Be . We show
that in this case, c from Lemma 5.1 is given by

(a) c = −v2h ′−1.

It is enough to show that (o−1
i | o−1

i0
)Be = −v2h ′−1 for i = iu

1. By definition, we have

(ξ | ξ ′)Be =
(
ξ ‖ k∗(ξ

′)
)

where k : Be → Λe is the inclusion and (‖) : KC∗(Be)× KC∗(Λe)→ RC∗ is given by

(ξ ‖ ξ̃) = (−v)ν−2
(
ξT̃w0�

∗(ξ̃)
)
= (−v)ν−2

(
T̃w0�

∗(ξ) : ξ̃
)
;
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� : Be → Be and� : Λe → Λe are the involutions defined in [L4, 12.6] and (:) : KC∗(Be)×
KC∗(Λe)→ RC∗ is the “intersection product” in Λe (see [L4, 12.11]).

Since Vi0 ,Vi intersect transversally in Λe (at pu
0,1), we have

(
o−1

i : k∗(o−1
i0

)
)
= vN where

N is the weight of the C∗-action on the tensor product of the fibres of O−1
i ,O

−1
i0

at pu
0,1,

that is, N = 0 + 1 = 1. We have�∗(o−1
i0

) = o−1
i0

and T̃w0 o−1
i0
= −(−v)−ν+2h ′o−1

i0
, hence

(o−1
i | o−1

i0
)Be = (−v)ν−2(o−1

i : −(−v)−ν+2h ′o−1
i0

) = −(−v)2h ′−2vN = −v2h ′−1.

Thus, (a) is proved.

5.3

Using 3.4(a), we see that
(a) an A-basis of KC∗(Be) is given by v−h ′o−1

i (i ∈ I) and p (see 4.7).

Lemma 5.4 We have

(a) (v−h ′o−1
i | v−h ′o−1

j )Be = −v−1 for i, j ∈ I such that i · j = −1,

(b) (v−h ′o−1
i | v−h ′o−1

i )Be = 1 + v−2 for all i ∈ I,

(c) (v−h ′o−1
i | v−h ′o−1

j )Be = 0 for i, j ∈ I such that i · j = 0,

(d) (p | v−h ′o−1
i )Be = −v−1 for i ∈ I such that i · ♥ = −1,

(e) (p | v−h ′o−1
i )Be = 0 for i ∈ I such that i · ♥ = 0,

(f) (p | p)Be = 1 + v−2.

The proof is based on Lemma 5.1 and 5.2(a). Thus, (a), (b), (c) follow from 5.1(a), (b),
(c). Now (d), (e) follow from 5.1(a)–(e), using the equations defining Bi . Finally, (f) is
proved using 5.1(a)–(f) by a brute force computation using the explicit values of Bi given
in the tables in 1.10.

6 The Canonical Signed Basis of KC∗(Be)

6.1

Let ¯: KC∗(Be) → KC∗(Be) be the involution defined in [L4, 12.9]. This is antilinear with
respect to the involution of A given by restricting ¯: Q(v)→ Q(v). (See 1.11.) Recall that

ξ̄ = (−v)−ν T̃−1
w0
�∗DBe (ξ)

where DBe : KC∗(Be)→ KC∗(Be) is the Serre-Grothendieck duality (see [L4, 6.10]).

Lemma 6.2 We have

(a) v−h ′o−1
i = v−h ′o−1

i for all i ∈ I,
(b) p̄ = p.

Using [L4, 6.11, 6.12], we see that DBe (o−1
i ) = −o−1

i . Note also that �∗o−1
i = o−1

i∗ .
Hence

v−h ′o−1
i = −vh ′(−v)−ν T̃−1

w0
o−1

i∗ = vh ′(−v)−ν(−v)ν−2h ′o−1
i
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and (a) follows.
We have DBe (p) = p and�∗(p) = p hence

p̄ = (−v)−ν T̃−1
w0

(p) = p + (1 + v−2h ′)
∑
j∈I

A jo
−1
j = p +

∑
j∈I

(B̄ j − B j)v−h ′o−1
j

= p −
∑
j∈I

B jv
−h ′o−1

j +
∑
j∈I

B jv−h ′o−1
j .

Thus,

p −
∑
j∈I

B jv−h ′o−1
j = p −

∑
j∈I

B jv
−h ′o−1

j .

The lemma is proved.

6.3

As in [L4, 12.18] we set

B±Be
= {ξ ∈ KC∗(Be) | ξ̄ = ξ, (ξ | ξ)Be ∈ 1 + v−1Z[v−1]}.

Theorem 6.4 B±Be
is the signed basis of the A-module KC∗(Be) consisting of ± the elements

v−h ′o−1
i (i ∈ I) and p.

The fact that the elements above are contained in B±Be
follows from Lemmas 5.4, 6.2.

The fact that ± these elements (which form a signed basis) exhaust B±Be
follows from [L4,

12.21], using Lemma 5.4. The theorem is proved.

7 The Canonical Signed Basis of KC∗(Λe)

7.1

For i ∈ I, let V ′i be the set of all (y, b) ∈ Λe with the following property: under the C∗-
action on Λe,

lim
λ �→∞

λ · (y, b)

is defined and belongs to µi . The limit above is denoted by π ′µi
(y, b). By [KL, 4.6], the V ′i

form a partition of Λe into locally closed subsets and for each i, π ′µi
: V ′i → µi is naturally

a vector bundle of dimension, say, δi . Since the analogue of Λe over the finite field with q
elements is well known to have q2 + |I|q rational points, it follows that

(q + 1)qδi0 +
∑
i �=i0

qδi = q2 + |I|q.

Since this holds for all prime powers q, it follows that
(a) δi = 1 for all i.

Lemma 7.2 (a) V ′i0
is an open set in Λe.

(b) V ′iu
t
= Viu

t+1
− µiu

t+1
if 0 < t < au.

(c) V ′iu
au

is a line in Λe such that V ′iu
au
∩Be = {qu}.
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(a) follows from 7.1(a) since µi0 is a P1. Using 7.1(a), we see that for i 
= i0, V ′i is a line.
Using the definitions we see that (c) holds and that, for 0 < t < au,

V ′iu
t
∩Be = Viu

t+1
− µiu

t+1
.

Since V ′iu
t

is a line containing Viu
t+1
− µiu

t+1
, we must have V ′iu

t
= Viu

t+1
− µiu

t+1
. The lemma is

proved.

Lemma 7.3 The RC∗-module KC∗(Λe) is projective of rank |I| + 1.

We consider the partition into the locally closed C∗-stable pieces V ′i (i ∈ I) which are
either an affine line or a line bundle over P1. Each of these pieces has a KC∗ which is free
and a K1

C∗ = 0. It follows that KC∗(Λe) is projective of rank equal to the sum of ranks of
the KC∗ of the pieces, that is, |I| + 1.

Lemma 7.4 Let i ∈ I. Let (‖) be as in 5.2. We have

(a) (v−h ′o−1
i ‖ E ′i) = v−2,

(b) (v−h ′o−1
j ‖ E ′i) = 0 for j ∈ I − {i},

(c) (p ‖ E ′i) = 0.

Using 4.6, we have for j ∈ I:

(v−h ′o−1
j ‖ E ′i) = (−v)ν−2v−h ′(�∗T̃w0 o−1

j : E ′i)

= −(−v)ν−2v−h ′(−v)−ν+2h ′(o−1
j : E ′i) = −vh ′−2(o−1

j : E ′i).

Now (o−1
j : E ′i) is the alternating sum of cohomologies of V j with coefficients in O−1

j ⊗

E ′i|V j . If i 
= j then, by 1.23, the last vector bundle on V j is isomorphic to a direct sum of

copies of O−1
j (except for the C∗-action) hence the corresponding cohomologies of V j are

0. We see that

(d) (o−1
j : E ′i) = 0 for i 
= j

and (b) follows. If i = j then, by 1.23, the vector bundle O−1
i ⊗ E ′i |Vi is isomorphic to

v−h ′O−2
i ⊕U ′ ′, where U ′′ is a C∗-equivariant vector bundle on Vi , isomorphic to a direct

sum of copies of O−1
i (except for the C∗-action). Note that U ′ ′ has 0 contribution to the

cohomology of Vi . On the other hand, the alternating sum of cohomologies of Vi with
coefficients in O−2

i is −1 ∈ RC∗ . We see that

(e) (o−1
i : E ′i) = −v−h ′

and (a) follows.
Using 4.7 and (d),(e), we have

(p ‖ E ′i) = (−v)ν−2(�∗T̃w0 p : E ′i) = v−2(p +
∑
j∈I

vh ′ B̄ jo
−1
j : E ′i)

= v−2(p : Ei)− v−2B̄i = 0.
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We have used that (p : E ′i) is equal to E ′i|pu
0,1
= B̄i ∈ RC∗ (see 1.23(c)). The lemma is

proved.

Lemma 7.5 Let C be the trivial one dimensional vector bundle on Λe with the trivial C∗-
equivariant structure. We have

(a) (v−h ′o−1
j ‖ C) = 0 for any j ∈ I,

(b) (p ‖ C) = v−2.

As in the proof of 7.4, we have

(v−h ′o−1
j ‖ C) = −(−v)ν−2v−h ′(−v)−ν+2h ′(o−1

j : C)

and this is zero since the cohomologies of V j with coefficients in o−1
j are 0. Similarly, using

(a), we have

(p ‖ C) = v−2
(

p +
∑
j∈I

vh ′ B̄ jo
−1
j : C

)
= v−2(p : C) = v−2.

The lemma is proved.

7.6

Consider the commutative diagram

KC∗(Be)
k∗−−−−→ KC∗(Λe)� �

Q(v)⊗A KC∗(Be)
1⊗k∗−−−−→ Q(v)⊗A KC∗(Λe)

where k : Be → Λe is the inclusion and the vertical maps are the obvious ones. Note that
the vertical maps are injective since KC∗(Be),KC∗(Λe) are projective of finite rank over
A = RC∗ . (See 3.4(a), 7.3.) The lower horizontal map is an isomorphism (see [L4, 11.8]).
It follows that k∗ is also injective. Hence we may identify KC∗(Λe) with an A-submodule
of E = Q(v) ⊗A KC∗(Λe) and KC∗(Be) with a A-submodule of KC∗(Λe) (via k∗). There is
a well defined symmetric Q(v)-linear form (, ) on E with values in Q(v) whose restriction
to KC∗(Be) is (|)Be , whose restriction to KC∗(Λe) is (|)Λe (see [L4, 12.16]) and such that
(b, a) = (b ‖ a) for b ∈ KC∗(Be), a ∈ KC∗(Λe).

Proposition 7.7 The elements

(a) v2E ′i(i ∈ I), v2C

form an A-basis of KC∗(Λe) dual to the basis

(b) v−h ′o−1
i (i ∈ I), p

of KC∗(Be) with respect to the pairing (‖) : KC∗(Be)× KC∗(Λe)→ RC∗ .
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The fact that the matrix of inner products under (‖) (or (,), see 7.6) of an element in
(b) with an element in (a) is the unit matrix is contained in Lemmas 7.4, 7.5. This shows
in particular that the form (, ) on E (see 7.6) is non-singular. Now let ξ be an element of
KC∗(Λe). Then ci = (v−h ′o−1

i , ξ) ∈ A, c ′ = (p, ξ) ∈ A. Let ξ ′ =
∑

i∈I civ2E ′i + c ′v2C.
Then (b, ξ ′) = (b, ξ) for any b in the set (b). Since this set is a Q(v)-basis of E and (, ) is
non-singular on E, it follows that ξ = ξ ′. Thus, the elements (a) generate the A-module
KC∗(Λe). They are linearly independent over Q(v), hence they form an A-basis of KC∗(Λe).
The proposition is proved.

7.8

Let ¯: KC∗(Λe) → KC∗(Λe) be the involution defined in [L4, 12.9] or, alternatively by the
requirement

(b̄, a) = (b, ā) ∈ A

for all b ∈ KC∗(Be), a ∈ KC∗(Λe) (see [L4, 12.15]). Following [L4, 12.18] we define

B±Λe
= {ξ ∈ KC∗(Λe)|ξ̄ = ξ, (ξ|ξ)Λe ∈ Q(v) ∩ (1 + v−1Z[[v−1]])}.

Theorem 7.9 B±Λe
is the signed basis of the A-module KC∗(Λe) consisting of ± the elements

v2E ′i(i ∈ I), v2C.

Note that if a is in the set 7.7(a), then ā = a. Indeed, ā and a have the same inner
products (, ) with any element b of the set 7.7(b) (using 7.7, 7.8 and the fact that any such
b satisfies b̄ = b). Also, by 7.7, the matrix A with entries (a, a ′) where a, a ′ run through the
set 7.7(a) is the inverse of the matrix B with entries (b, b ′) where a, a ′ run through the set
7.7(b). Since B is congruent to the identity matrix modulo v−1Z[v−1] (by Lemma 5.4), it
follows that A is congruent to the identity matrix modulo v−1Z[[v−1]]. It follows that ±
the elements in 7.7(a) are contained in B±Λe

. Since the elements 7.7(a) form an A-basis of
KC∗(Λe) (see 7.7), it follows by an argument similar to that in [L4, 12.21] that any element
in B±Λe

is, up to sign, as in 7.7(a). The theorem is proved.
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