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Abstract

Objective: To evaluate random effects of volume (patient days or device days) on healthcare-associated infections (HAIs) and the standardized
infection ratio (SIR) used to compare hospitals.

Design: A longitudinal comparison between publicly reported quarterly data (2014–2020) and volume-based random sampling using 4 HAI
types: central-line–associated bloodstream infections, catheter-associated urinary tract infections, Clostridioides difficile infections,
methicillin-resistant Staphylococcus aureus infections.

Methods: Using 4,268 hospitals with reported SIRs, we examined relationships of SIRs to volume and compared distributions of SIRs and
numbers of reportedHAIs to the outcomes of simulated random sampling.We included random expectations into SIR calculations to produce
a standardized infection score (SIS).

Results: Among hospitals with volumes less than themedian, 20%–33% had SIRs of 0, compared to 0.3%–5% for hospitals with volumes higher
than the median. Distributions of SIRs were 86%–92% similar to those based on random sampling. Random expectations explained 54%–84%
of variation in numbers of HAIs. The use of SIRs led hundreds of hospitals withmore infections than either expected at randomor predicted by
risk-adjusted models to rank better than other hospitals. The SIS mitigated this effect and allowed hospitals of disparate volumes to achieve
better scores while decreasing the number of hospitals tied for the best score.

Conclusions: SIRs and numbers of HAIs are strongly influenced by random effects of volume. Mitigating these effects drastically alters rank-
ings for HAI types and may further alter penalty assignments in programs that aim to reduce HAIs and improve quality of care.

(Received 9 May 2022; accepted 7 November 2022; electronically published 10 March 2023)

In 2014, the Centers for Medicare and Medicaid Services (CMS)
established the Hospital Acquired Conditions Reduction Program
(HACRP) to motivate hospitals to reduce healthcare-associated
infections (HAIs).1 Under the HACRP, hospitals in the worst-
performing quartile are penalized 1% of their total CMS payment
for inpatient care.2 HAI measurements also comprise 25% of total
performance scores in the CMS Hospital Value-Based Purchasing
program (HVBP).3 Under the HVBP, 2% of each acute care hos-
pital’s total inpatient payments are withheld and redistributed
based on performance.3 Despite the goals of these programs in
reducing HAIs or in improving quality of care, several aspects
of HAI-based comparisons have been questioned. These include
risk adjustment, surveillance bias, preventability, measure validity,
and biases against high-volume hospitals.4–10

HAI measurements are based on the standardized infection
ratio (SIR), that is, the ratio of reported infections to those pre-
dicted by risk-adjusted models of the National Healthcare Safety

Network (NHSN).11 To avoid imprecise calculations, SIRs are
not reported for hospitals with <1 predicted infection.11 Despite
this precaution and the inclusion of volume (eg, patient days,
device days) in the NHSN models, SIRs remain biased by vol-
ume.12,13 Although hundreds of low-volume hospitals can tie for
the best score (SIR= 0) or have extremely high SIRs, high-volume
hospitals rarely achieve a SIR of 0 (Table 1).12 Although methods
have been proposed to correct the volume-based bias in SIRs, the
cause remains unknown even as it continues to bias hospital
comparisons.12,13

We hypothesized that the volume-based bias of SIRs emerges
from 2 general statistical relationships. First, according to the
inverse relationship between sample size and sampling error, lower
volume should lead to greater random variation in infection
rates.14 Second, according to the relationship between sample size
and sensitivity (ie, true positive rate, detection probability, statis-
tical power), higher volumes should, by chance alone, lead to
higher detection probabilities.14 Consequently, the lower a hospi-
tal’s volume of patient days or device days, the more it risks a high
SIR and the more easily it achieves an SIR of zero by chance. In
contrast, high-volume hospitals should have less variable rates
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of infection and greater rates of detection, but little chance of
reporting zero HAIs.

The volume-based bias of SIRs may be compounded by pre-
ventability and surveillance bias. Estimates of the nonpreventable
portion of HAIs range from 30% to 65% depending on HAI
type.9,10 If these percentages were underestimated or if they
increased over time as quality improvements reduced preventable
causes, then the incidence of HAIs may be increasingly influenced
by volume as well as other factors outside the control of hospitals
(eg, the prevalence of MRSA in the broader community).15

Although surveillance is within the control of hospitals, studies
have suggested that high-volume hospitals may employ greater
surveillance as a consequence of greater resources.4,6 If so, then
differences in rates of detection based solely on volume could be
exacerbated by volume-based differences in surveillance.

In this study, we used 7 years (2014–2020) of publicly available,
quarterly reported CMS HAI data on 4,268 hospitals to test our
hypothesis that the volume-based bias in the SIR is driven by
the statistical consequences of sample size, that is, the random
effects of volume. We assess the ability of these random effects
to explain reported numbers of HAIs and distributions of SIRs
across time. We then built random expectations based on volume
into the calculations of SIRs to produce a new metric, the stand-
ardized infection score (SIS). We assessed the degree to which
the SIS mitigates the volume-based bias of the SIR and evaluated
changes to hospital rankings. We also discuss the implications for
the HACRP and HVBP.

Methods

Data source

We obtained 7 consecutive years of hospital-level HAI data
from publicly available CMS Hospital Compare archives.16

These archives contain HAI data for each hospital participating
in Medicare and span yearly quarters from July 2014 to April
2020. We excluded quarters after April 2020 due to the ongoing
effects of the coronavirus disease 2019 (COVID-19) pandemic
on HAI rates.17 We focused on 4 HAI types: central-line–associ-
ated bloodstream infection (CLABSI), catheter-associated urinary
tract infection (CAUTI), infection due to Clostridioides difficile
(CDI), and infection due methicillin-resistant Staphylococcus
aureus (MRSA) (Table 1).11 For each quarter and each HAI type,
we included all hospitals with publicly reported SIRs. Because we
analyzed each quarter independently, our analyses did not require
each hospital to contribute data over the entire 7-year period.

Statistical analysis

SIRs versus volume
We characterized relationships between SIRs and volume using
patient days (MRSA and CDI) and device days (CLABSI and
CAUTI). According to our hypothesis, we expected variation in
SIRs to increase as volume decreased, resulting in high SIRs and
high frequencies of SIRs equal to 0 at low volumes. As volume
increased, we expected SIRs to converge to values greater than
0, resulting in few hospitals with SIRs equal to 0.

Characterizing random effects of volume
If random effects of volume are responsible for the volume-based
bias in SIRs, then random outcomes driven by volume should
approximate distributions of real SIRs. Likewise, random expect-
ations based on volume may explain substantial fractions of varia-
tion in reported numbers of HAIs. To evaluate these expectations,
we used a combination of iterative random sampling, optimiza-
tion, goodness-of-fit testing, linear regression, and measures of
statistical distance.

We modeled probabilities of reporting an HAI per patient day
or device day (p) as the probability of an infection occurring per
patient day or device day (pi) multiplied by the probability of
detecting infections when they occur (pd): p= pi ⋅ pd. In accordance
with our hypothesis, we modeled pd as an increasing function of
volume: pd = days/(days þ z), where z determined the rate of
increase.We derived optimized values of pi and z for eachHAI type
in each quarter using iterative searches of their parameter space
(Appendix 1 online).

We used optimized values of pi and z to calculate the number of
HAIs expected at random (E = p ⋅ days). We then used a con-
strained linear regression (slope= 1, y-intercept= 0) to determine
the percent of variation in reported numbers of HAIs that was
explained by random expectations. We also used optimized values
of pi and z to simulate SIRs that could have resulted as chance out-
comes driven by volume, that is, by replacing numerators of real
SIRs with random outcomes. We used the percent histogram inter-
section (∩), an intuitive measure of similarity, to compare distri-
butions of real and simulated SIRs.

Standardized infection score (SIS)
We developed a standardized infection score (SIS) to account for
differences between numbers of observed infections (O), numbers
of predicted infections used in SIR calculations (P), and numbers
infections expected at random (E):

O � Eð Þ þ O � Pð Þ þ P � Eð Þ

¼ 2 � O� Eð Þ
As the coefficient of 2 cannot affect rankings, it is dropped
to yield one half the sum of differences or simply, O – E.
Standardizing by P yields the SIS:

SIS ¼ O � Eð Þ=P
Ultimately, the SISmakes only a small modification to the SIR. Like
the SIR, lower SIS values represent better scores. Unlike the SIR,
which has a lower bound of zero, the SIS can take negative values
and thus, has no lower bound. Hence, the SIS not only accounts for
infections expected at random but should avoid the aggregation of
scores that occurs whenmany low-volume hospitals have SIRs of 0.

Table 1. Four types of HAIs included in the CMS Hospital-Acquired Condition
(HAC) Reduction Program and Hospital Value-Based Purchasing (HVBP)
Programa

HAI Hospitals Hospitals with SIR of 0 SIR Max SIR Mean [SD]

CAUTI 2,248 314 6.8 0.80 [0.65]

CLABSI 1,967 331 8.1 0.72 [0.65]

MRSA 1,718 282 5.1 0.83 [0.67]

CDI 3,065 306 5.1 0.66 [0.48]

Note. HAI, hospital-associated infection; SIR, standardized infection ratio; max, maximum;
SD, standard deviation; CAUTI, catheter-associated urinary tract infection; CLABSI, central-
line–associated bloodstream infection; MRSA, methicillin-resistant Staphylococcus aureus;
CDI, Clostridioides difficile infection; CMS, Centers for Medicare and Medicaid Services.
aData on SIRs were obtained from publicly available CMS Hospital Compare archives files
dated January 29, 2020. These data exclude hospitals having <1 predicted infection.
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Winsorized z-scores and ranking
Unlike the use of SIRs in the HVBP, the HACRP transforms
SIRs via Winsorization and z-scores.18 Winsorization aims to
decrease the influence of outliers by adjusting any SIR less than
the fifth percentile or greater than the 95th percentile to those
respective percentiles. After Winsorization, SIRs are z-scored
for standardization across HACRP components. We conducted
Winsorization and z-transformations on the SIR and SIS to com-
pare the effects of these transformations on the 2 metrics. Finally,
we analyzed the impact of using the SIS versus SIR when ranking
hospitals.

Data and analytical code availability

We performed our analyses using common libraries in Python
version 3.8 software (Python, Fredericksburg, VA). Source code
and data are available at https://github.com/Rush-Quality-
Analytics/HAIs.

Results

Relationship between SIRs and volume

As hypothesized, variation in SIRs decreased as volume increased,
leading low-volume hospitals to receive the highest (worst) and
lowest (best) SIRs (Fig 1). Among hospitals with less than the
median volume, the mean percentage of hospitals across quarters
with SIRs of 0 was 32.8% [SD, 6.0] for CLABSI, 30.0% [SD, 5.6] for
CAUTI, 27.9% [SD, 1.7] for MRSA, and 20.0% [SD, 3.6] for CDI.
These percentages were considerably lower for hospitals with vol-
umes greater than or equal to the median: 5.0% [SD, 2.7] for
CLABSI, 3.2% [SD, 2.0] for CAUTI, 4.7% [SD, 0.8] for MRSA,
and 0.3% [SD, 0.01] for CDI.

Probabilities of infection and detection

Across HAI types, the estimated probabilities of an infection per
patient day or device day (pi) were within ranges reported by prior
studies (Supplementary Table 1 online).19–33 Across quarters, we
obtained the following mean values of pi: 0.0025 [SD, 0.0013]
for CAUTI, 0.0011 [SD, 0.0002] for CLABSI, 0.0001 [SD, 0.0001]
for MRSA, and 0.0008 [SD, 0.0001] for CDI. Probabilities of
detection (pd) varied greatly among hospitals because they were
modeled to increase with volume (Supplemental Table 2). For
example, the average median probability of detecting CDI
was 0.639 [SD, 0.077] across quarters, with an average mini-
mum of 0.1006 [SD, 0.0362] and an average maximum of
0.9752 [SD, 0.0084]. Valid comparisons of pd to prior studies
could not be made due to varying bases of detection and unre-
ported days.

Influence of the random effects of volume

Random expectations based on volume explained most of the
variation in reported HAIs, resulting in strong support for our
hypothesis. Across quarters, random expectations explained a
mean of 84% [SD, 0.02] of variation in CDI, a mean of 70%
[SD, 0.06] of variation in CAUTI, a mean of 67% [SD, 0.06] of
variation in CLABSI, and a mean of 54% [SD, 0.02] of variation
in MRSA (Supplementary Fig. 1 online). These small standard
deviations revealed consistent percentages of explained variation
in reported infections across time.

In additional support of our hypothesis, distributions of
actual SIRs were closely approximated by distributions of

simulated SIRs. That is, where SIR numerators were replaced with
random outcomes according to optimized probabilities of infec-
tion and detection (Fig. 2). In particular, simulated SIRs closely
reproduced the aggregation of actual SIRs at zero (Fig. 2). Across
quarters, we obtained the following mean percentage histogram
intersections between distributions of simulated and actual SIRs:
91.3% [SD, 1.3] for MRSA, 88.0% [SD, 3.1] for CAUTI, 87.1%
[SD, 2.3] for CLABSI, and 86.1% [SD, 2.2] for CDI.

Fig. 1. Relationships of SIRs to volume. Analysis based on the April 2020 CMS HAI file.
Heat maps show the density of data; darker shades correspond to higher density.
Horizontal black lines indicate SIR values of 1.

Fig. 2. Histograms of actual SIRs (black) and SIRs based on random sampling, that is,
where numbers of reported cases were replaced with random outcomes (gray); ∩ is
the percent of overlap between the histograms. Analyses based on the April 2020 CMS
HAI file.
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SIR versus SIS

Raw scores
Unlike distributions of the SIR, in which hundreds of hospitals tie
for the best score (SIR = 0), distributions of the SIS were largely
symmetrical and centered around zero, that is, the point where
reported numbers of HAIs equal random expectations (Fig. 3

and Supplementary Figs. 2–4 online). In addition to accounting
for random expectations and eliminating aggregation at extreme
values, the SIS resolved other issues with the SIR. Specifically,
the NHSN risk-adjusted predictions are nullified when the SIR
numerator is zero. This never occurred with the SIS because SIS
values never exactly equaled zero. Finally, hundreds of hospitals
that failed to outperform their random expectation or their risk-
adjusted prediction received better (lower) SIRs than higher-
performing hospitals (Table 2, Fig. 3, and Supplemental Figs. 2–
4 online). Such outcomes were relatively rare with the SIS.

Winsorized z-scores
Transforming the SIRs into Winsorized z-scores neither corrected
for the aggregation of low-volume hospitals achieving the lowest
(best) score nor allowed hospitals of higher volume to achieve com-
petitively low scores (Table 3, Supplementary Figs. 5–8 online). In
fact, SIRs of 0 were so common that Winsorization at the fifth per-
centile of SIRs had zero effect. In contrast, applying Winsorization
and z-scores to the SIS increased the median volume of hospitals
with the lowest (best) score and decreased the number of hospitals
tied for the best score by 69.6% for CAUTI, 73.2% for CLABSI,
69.0% for MRSA, and 51.4% for CDI (Table 3 and
Supplementary Figs. 5–8 online).

Changes in HAI rankings
Use of SIS for ranking the performance of hospitals resulted in a
drastic reordering of hospitals relative to the use of SIRs. Across
quarters, hospitals with SIRs of 0 for CDI dropped by an average
of 381 ranks [SD, 285] when using the SIS (Fig 4, Supplementary
Figs. 9–11 and Supplementary Table 3 online). Results were similar
for other HAI types (Supplementary Table 3 online). However,
hospitals with SIRs of 0 retained their high ranks if they had rel-
atively high volumes, suggesting that SIRs of 0 are unlikely the
result of random chance when volume is high.

Across quarters, the SIS caused hospitals below the tenth per-
centile in volume to worsen by the following averages: 563 ranks
[SD, 335] for CAUTI, 357 ranks [SD, 246] for CLABSI, 328 ranks
[SD, 211] for MRSA, and 666 ranks [SD, 416] for CDI. Many of
these hospitals had SIRs of 0 (Fig. 4 and Supplementary Figs. 9–
11 online). In contrast, the SIS caused hospitals above the 90th per-
centile in volume to improve by the following averages: 282 ranks
[SD, 308] for CAUTI, 127 ranks [SD, 150] for CLABSI, 131 ranks
[SD, 231] for MRSA, and 326 ranks [SD, 338] for CDI. In support
for the fairness of SIS, many high-volume hospitals dropped in

Fig. 3. Distributions of the SIS and SIR for Clostridioides difficile
infections (CDI). Each distribution is divided into (1) hospitals
with fewer infections than predicted from risk-adjusted models
and fewer infections than expected at random (white) and (2)
hospitals with more infections than predicted from risk-adjusted
models or than expected at random (gray). Analyses based on
the April 2020 CMS HAI file.

Table 2. Hospitals with More Infections Than Predicted or Expected at Random
That Achieved Lower (Better) Scores Than Hospitals That Outperformed Both
Their Prediction and Their Random Expectationa

HAI

No. of Hospitals with More HAIs Than Predicted or Expected at
Random Achieving Better Scores Than Higher Performing

Hospitals

With Respect to SIR mean [SD] With Respect to SIS mean [SD]

CAUTI 379 [153] 61 [56]

CLABSI 367 [105] 1 [3]

MRSA 233 [31] 40 [9]

CDI 753 [128] 26 [16]

Note. HAI, hospital-associated infection; SIR, standardized infection ratio, SIS, standardized
infection score; SD, standard deviation; CAUTI, catheter-associated urinary tract infection;
CLABSI, central-line–associated bloodstream infection; MRSA, methicillin-resistant
Staphylococcus aureus; CDI, Clostridioides difficile infection.
aValues are averaged across yearly quarters.

Table 3. Results for Winsorized z-Scores Based on the SIR and the SISa

HAI

No. of Hospitals
Tied for the Best

Winsorized z-Score,
Mean [SD]

Median Volume of hospitals Tied
for the Best Winsorized z-Score,

Mean [SD]

SIR SIS SIR SIS

CAUTI 382 [92] 116 [8] 1,885 [608] 5,644 [1,218]

CLABSI 377 [77] 101 [6] 1,893 [603] 4,736 [1,389]

MRSA 291 [30] 90 [5] 35,552 [1,890] 66,311 [5,803]

CDI 323 [63] 157 [4] 4,787 [597] 26,345 [9,798]

Note. SIR, standardized infection ratio, SIS, standardized infection score; HAI, hospital-
associated infection; SD, standard deviation; CAUTI, catheter-associated urinary tract
infection; CLABSI, central-line–associated bloodstream infection; MRSA, methicillin-resistant
Staphylococcus aureus; CDI, Clostridioides difficile infection.
aResults for each HAI are averaged across yearly quarters (mean ± standard deviation). For
both the SIR and SIS, the lowest Winsorized z-score corresponds to the best score. Volumes
are with respect to device days (CAUTI, CLABSI) and patient days (MRSA, CDI).
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rank after using the SIS, whereas many low-volume hospitals
improved (Fig. 4 and Supplementary Figs. 9–11).

Discussion

In our study, we hypothesized that statistical consequences of sam-
ple size (ie, random effects of volume) drive a critical bias in the
standardized infection ratios (SIRs) used in the comparison of
patient safety and quality of care among hospitals. We demon-
strated how random effects of volume can explain the extreme
variation in SIRs among low-volume hospitals, why hundreds of
low-volume hospitals often tie for the best and lowest score
(SIRs of 0), and why high-volume hospitals have little chance of
reporting zero HAIs. After building our hypothesized mechanisms
into models based on random sampling, we found that the random
effects of volume closely approximate distributions of SIRs and can
explain up to 84% of variation in numbers of reported HAIs.

In allowing hundreds of hospitals to tie for the lowest and
best score (SIR= 0), use of the SIR nullifies the effect of its own
denominator (risk-adjusted predictions), obscures potentially large
differences in performance, and negates the use of Winsorization to
control for low SIR outliers. SIRs also allowed hundreds of hospi-
tals that failed to outperform their risk-adjusted prediction or their
random expectation to achieve better rankings than higher-
performing hospitals. In making only a slight modification to
the SIR, the standardized infection score (SIS) mitigated these
effects and allowed hospitals with disparate volumes to achieve
competitive SIS scores while decreasing the number of hospitals
tied for the best score, whether based on raw scores or
Winsorized z-scores.

Others have proposed changes to the SIR that would affect hos-
pital rankings.12,32 In focusing on colon-surgery infection rates,

assignments to the worst-performing quartile drastically change
when risk adjustment includes variables that current methodolo-
gies omit.32 Substantial changes in rankings also occur when
assuming a nonlinear relationship between volume and numbers
of infections, an approach that also produces predictions of greater
accuracy.12 If included, these refinementsmay improve the reliabil-
ity of SIR denominators (predicted numbers of infections).
However, without accounting for the random effects of volume
and without eliminating the lower bound of zero, SIRs will retain
a predominant bias and continue to risk the aggregation of hospi-
tals at the lowest score; ultimately obscuring performance while
conflating it with volume.

Correcting the shortcomings of the SIR may have financial
implications for the HACRP and HVBP. Under the HACRP, hos-
pitals in the worst-performing quartile are penalized 1% of their
total CMS payment for inpatient care. If one hospital is removed
from the worst-performing quartile, another will likely take its
place. As a result, the total penalties levied by the CMSwhen penal-
izing high-volume hospitals may be far greater than when penal-
izing the same number of low-volume hospitals. Unlike the
HACRP, the HVBP withholds 2% of CMS inpatient payments
from participating acute care hospitals and redistributes the sum
according to total performance. This dynamic, of low performers
subsidizing rewards to high performers, may drastically change if
fewer high-volume hospitals rank as low performers.

Beyond comparisons of HAIs and the penalties incurred by
hospitals, our study highlights an ongoing issue facing the preven-
tion of HAIs. Uncertainty is inherent to most systems and has long
been recognized as a confounding force in healthcare.33 With
respect to HAIs, the so-called preventable portion has been esti-
mated at 55%–70%, leaving the nonpreventable portion as a major
source of uncertainty.10 The large percentages of variation in HAI

(A)

(C)

(B)

Fig. 4. Comparison of ranked scores for the SIR and SIS versus
volume for Clostridioides difficile infections (CDI). (A) Rank in the
SIR versus volume. (B) Rank in the SIS vs. volume. Ranks of 1
represent the top (best) rank. (C) Changes in rank that occur
when using the SIS instead of the SIR. In each subplot, hospitals
that had SIRs of 0 are plotted as black points. Analyses based on
the April 2020 CMS HAI file.
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cases that were explained by random expectations (54%–84%)may
indicate that the nonpreventable portion is largely driven by the
random effects of volume. Mitigating this uncertainty to decrease
HAIs will be an ongoing challenge, and measures of performance
used in hospital rankings and payment adjustments must account
for it.

Our study had several limitations. Improvements are needed in
public data and raise questions that future studies may answer.
First, creating SIS-based HAC scores was impossible due to
differences between CMS data sets. Specifically, the SIR denomina-
tors needed to calculate the SIS are not available in HACRP files
and cannot be imputed from HAI files. SIR denominators in
HAI files are based 1 measurement year, at most, whereas SIR
denominators used by the HACRP are based on 2 years. Also,
we did not examine characteristics of hospitals that consistently
had either less or more HAIs than expected at random. In addition,
we did not examine the potential for hospitals to decrease HAIs in
the presence of strong random effects and without subverting
surveillance.

The statistical consequences of sample size produce strong vol-
ume-based biases in SIRs. CMS and the NHSN can prevent these
biases and other shortcomings of the SIR by adopting the SIS.
However, even if the SIS replaced the SIR, the concerns of previous
studies would still need to be addressed. In particular, themodeling
and variables that underpin the risk-adjusted predictions of the
NHSN (ie, denominators of the SIR and SIS) deserve greater jus-
tification or modification. Likewise, differences in surveillance also
need to be addressed if HAI performance measures are to reflect
the relative quality of hospitals. Otherwise, objections to the SIR
will continue to mount as hospitals continue to risk unjustified
penalties, reputational damage, and misdirected quality improve-
ment efforts.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2022.288
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