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A VARIATIONAL TECHNIQUE FOR BOUNDED 
STARLIKE FUNCTIONS 

R. W. BARNARD 

1. Introduction. Let KM = {z : \z\ < M], 1 ^ M < oo and K = K\. 
Let S denote the collection of functions f(z) = z + a2z

2 + a3s3 + . . . that 
are regular and univalent in K. We write, for 1 < M < oo, 

S(M) = {f:f£S,f(K)CKM}, 

S*(M) = {/ : / € S(M),f(K) is starlike with respect to the origin}. 

In this paper we develop a variational technique for slit domains and give 
some applications with respect to finding the 

max |a3|, max \f(z)\ (\z\ = r fixed), 
fÇS*(M) f£S*(M) 

and the 

max Re [$[logf(z)/z]} 
f£S*(M) 

for any nonconstant entire function $(w) and a given z G K. 

2. Variations within S*(M). Let SS*(M) denote the set of functions in 
S*(M) whose Taylor coefficients are real. In this section we use the Lôwner 
Theory on slit mappings to produce variations within SR* (M). 

Suppose that the boundary of the domain f(K) is a piecewise analytic curve. 
Let f{K) have a radial slit T0 in CL(UHP) (the closure of the upper half 
plane). We denote by T0 the reflection of T0 in the real axis (possibly T0 = 7^0). 
Let f(eid0) and f(e~ido) be the interior endpoints (tips) of T0 and TQ respec
tively. We shall construct f rom/ a new function in SR*(M) by introducing 
radial slits 7\ and T1 into f(K) dit f(eidl) and f(e~idl), respectively, while 
shortening TQ and To to preserve the mapping radius (and hence the normali
zation of the corresponding function). We shall use the well-known [2, 
Chapter 4] continuity and monotonicity properties of the mapping radius. 

Let 7 and y be the arcs in K, with interior endpoints coi and a>2, respectively, 
such that / (7) = 7\ and f(y) = 7\. Uniqueness of y and y follows from the 
univalence of/. Parametrize y and y by œ = œ(t) (0 ^ t ^ t\), œ(0) = ei6l

} 

and w = w(/), co(0) = e~idl, respectively. Denote by g(z, t) the function that 
maps K onto K minus the parametrized arcs co([0, t]), co([0, i]) with g(0, t) = 0 
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338 R. W. BARNARD 

and g'(0, t) > 0. It follows from [8] and [1, § 6.2] that the function g(z, t) = 
e~lz + . . . with g(z, 0) = z, satisfies Lowner's differential equation in the 
form 

(1) dg(M) = dg 1 - s2  

K } dt dz 1 - 2zcos0i(/) + 2 2 ' 

The function 0i(/) is a continuous function of / and g(eiBl{t\ t) = <a(t) and 
g(e~i6l{t\ t) = w(t) represent the endpoints of the lengthened arcs respec
tively. 

Consider the composition / [g(z, t)] = e~lz + . . . . This function does not 
belong to SR*(M), because its first coefficient is different from 1. We perform 
an additional variation. Parametrize T0 and T0 by w = w(s), (0 ^ s ^ s0), 
w(0) = f(eido) and ?l> = w(s), w(0) = f(e-ie°)y respectively. Denote by 
f(z, s) the function that has / (0 , 5) = 0 and / ' ( ( ) , s) > 0 and maps K onto 
f [g(K, / ) ] except that the slits whose interior endpoints were at w(0) and 
w(0) are now shortened so that these endpoints are at w(s) and w(s), respec
tively. It follows from [4] and [8] that under these conditions the function 

w(z) = f(z, s) = ffeiz, /), s] = e'e-'z + . . . 

satisfies the condition 

/ON d = z i-̂ 2 i. 
K } ds 1 - 2zcos0o(s) +z2 dz' 

with /(z, 0) =/i[g(z, 0>0] = / [ g ( z , / ) ] . The function 0o(s) is a continuous 
function of 5 and e±ie° represent the preimages of the endpoints of the short
ened slits. Given /, put 5 equal to /. Then the function 

F(z, 0 = fi[g(z, t), s(t)] = z + Ê àn(t)z
n 

n=2 

is in SR*(M) for each / sufficiently small. 
The main result for this section is the following lemma. 

LEMMA 1. If /(z) = z + a2z
2 + . . . + anz

n + . . . , T0, 7\, 0O, du and 
F(z, t) = z + â2(t)z

2 + . . . + ân(t)z
n + . . . are defined as above and 

(3) hn(e
te) = £ (n - v)an_te

iv\ 

/feew /fee inequality 

(4) Re{fen(^o)j > Re{fen(^i)j 

implies the existence of a /0 swcfe /fea/ 

(5) an(^o) > an(0) = an. 
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(6) 

Proof. Because the coefficients ân(t) are continuous, it suffices to show that 

da»(t) 
dt 

> 0 . 

It follows from the definition of F(z, t) that 

dF(z91) 
dt E dân(t) _n 

n=2 Ot 

where the term by term differentiation with respect to t can be justified by 
expressing the coefficients as contour integrals in terms of /i[g(z, 0» $(*)]• We 
obtain from (1), (2) and the previous paragraphs the following: 

dF(z, t) 
dt ,=o L dg dt dt J I ,„o 

\_dz \dz) dt ds dt\\t, 

àf{z) I L — z 1 = „ _ , | , - z df 
dz 1 — 2z cos 0i + s2 1 — 2z cos 0o + 22 dz 

I °° °° I 
= */'(*)2 Z (cos «to)*" - E (cos^O/ 

L n = l w=l J 

( CO \ CD 

2 va^V 1 23 (c o s w^o ~~ c o s nôi)zn 
p=l / n = l 

= 2 £ Cs2
n, 

n=2 

n-1 

Cn = 2 3 (» — » ) a „ - c ( c O S ^ o — C O S ^ i ) . 

Thus, by comparing coefficients, we obtain 

(9) 0/ 
= Re 

J n-1 
) 23 (» - *>K_ 

ii>0o 
n - 1 

i > = l 

23 (W ~ *>K-^ 
it>0i 

}• 
The right hand of (9) is positive when (4) holds. This proves Lemma 1. 

Remark. Because of its geometric nature, the technique developed in this 
section can be used, with straightforward adjustments, to define similar 
variations within many of the standard subclasses of 5, e.g. close to convex 
functions, functions convex in one direction, S(M), S, and the corresponding 
subclasses with real coefficients. 

3. Applications. We shall use the technique developed in the last section 
to solve some extremal problems in S* (M). Let $(w) be an entire function. 
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340 R. W. BARNARD 

We show that the extremal functions which occur when finding the maximum 
value for all f(z) = z + a2z

2 + azz
z + . . . in S*(M) of the functionals |a2|, 

la3|, \f'(z)\ (N =r f ixed) , and |^{log[/(z)/2]}| (z fixed in K) are those 
functions that map K onto KM minus at most two radial slits. A general 
form for an/* (z ) satisfying this mapping property can be obtained by using 
the boundary behavior of zf'* (z)/f * (z) as in [6]. Let 

0 g <*o ^ 0o ^ To â 7i ^ 0i ^ «i g 2TT. 

Consider 

/,m - / ^ _ §£M - f (* - em)\z - e"')' ? / 2 

(10) w - Hz) - r{z) - l(z _ eia0){z _ e < „ , ) ( 2 _ eiyt){g _ iyi)\ , 

F(0) = 1. 

Since, for Ô real, et$ - eiS = e^+^'^i sin[(0 - S)/2], then 

F (e ) = HO) sin [-—) sin ^ — - j / sin ^ - ^ - j sin [-—j 

X sin ^ - y - j sin \—j-) 

is a real valued function of 6 which is continuous for 6 G [0, 27r]\{a0, «i, To, 7i) • 
It follows that F2(z) maps K onto a domain whose boundary consists of 2 
rays: one containing the negative reals, the other contained in the positive 
reals. Hence dF(K) consists of the imaginary axis and a line segment and a 
ray that are contained in the positive reals with Re{/r(z)} > 0 for z G K. 
T h u s / * G S*. F(eie) has either its real or imaginary part equal to zero when 
6 9^ a0, «i, To, Ti- Since 

i6) = dzrgf(eie) _ dlog\f*(ei6)\ 
K } dd dd 

(any branch of arg/*(V*), 0 < 6 < 2T can be chosen), it follows that the 
boundary of the image domain of/* (2) defined by 

(11) log [/*(*)/*] = f!^-~dw 

consists of the arcs of two circles centered at the origin and four radial sides. 
If we assume that 

H2Ï i / * ^ 7 ° ) = / * ( ^ 7 1 ) = Mei*< <*» = 2TT - a i = 0 
l / * O t a o ) = / * ( ^ 7 ° ) = M ^ , otherwise 

for some real </>, then the two circles coincide and have radius M. Thus /*(2) 
defined by (11) and (12) is in S*(M) and maps K onto KM minus at most 
two radial slits with f*(eif3°) and f*(ei^1) the interior endpoints of the slits 
(possibly coincident). 
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For notational purposes we begin by using the technique of section 2 to 
maximize |a3| in S*(M). 

THEOREM 1. If f(z) = z + a2z
2 + a3s3 + ... is in S*(M)} then |a3| g a3* 

where f * (z) = z + a2*z2 + a3*z3 + . . . will be of the form defined by (11) and 
(12) wi/Â a0 = 27T — ai, 70 = 27r — 71 awrf /30 = 2-K — fix in (10), i.e., f*(K) 
is KM minus at most two radial slits symmetric with respect to the real axis. 

Proof. We first show that we may assume real coefficients as was done in 
section 2. 

LEMMA 2. There exists a function f(z) = z + a2z
2 + a32

3 + . . . £ S* (M) 
with fl2 è 0, a3 > 0 and ak real (k = 4, 5, . . .) that maximizes |a3| for all 

m e s*(M). 
Proof. Since S*(M) is a closed subclass of the compact class 5 the extremal 

problem has a solution in S*(M). Let g(z) = 2 + a2s
2 + a3z

3 + . . . be an 
extremal function. Because of the invariance of S* (M) under rotation we may 
assume a3 is positive. Also it follows from the maximum principle that if / is 
in S*, then / i s in S* (M) if and only if \f(z)/z\ g M (z € K). Define 

m ï zf'jz) _lzg'{z) l(zg'{z)\ 
{iô) /(*) 2 «(«) " 1 " 2 \ g ( ê ) 7 -

Then 

= z + Re {a2}*2 + [ I (|a2|
2 - Re {a,2}) + a3J z3 + Ç cnz

n, 

£n real w = 4, 5, . . . 

The inequalities Re{z/ '(z)/f(z)\ > 0, (z Ç X) and | / (s) /z | = |g(z)/z|1/2 

|g(z)/z|1/2 g M(z G X) imply t h a t / is in S* (M). Since g (s) is extremal and 
a3 is positive it follows that |a2|

2 — Re{a2
2} = 0 and hence a2 is real. Thus, 

the resulting function / will solve the extremal problem and have real coeffi
cients. Further, we can assume a2 ^ 0. Indeed, if/(z) = z + a2z

2 + a3z
3 + . . . 

is in SR*(M) then — / (— z) = z — a2z
2 + a3z

3 — . . . is in SR*(M). This proves 
Lemma 2. 

Let B = {f(K) : / G SR*(M)} and Bn = {D £ B : dD = dKM and at 
most w radial slits}. Clearly SR*(M) and {f £ S : f(K) G £„} are compact 
classes. Hence for each n there exists a domain Dn* = fn*(K) £ J5 where 
fn*(z) = z + a2*z2 + a3*£3 + . . . satisfies a3 ^ a3* for all fn(K) £ £ n with 
/n(z) = z + a2z

2 + a3s3 + . . . . A straightforward argument shows that the 
union of the Bn's is dense in B. Thus it follows from the Caratheodory con
vergence theorem that any convergent subsequence {Dn]c*\™=i of extremal 
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domains in Bnk converges to an extremal domain D* in B (from the compact
ness of SB*(M)). Let f*(K) = D*. 

We first show t h a t if Dn* is an extremal domain maximizing |a3| within Bni 

then Dn* is KM minus a t most four radial slits. 
For suppose to the contrary, t h a t Dn* is KM minus a t least five radial slits. 

From symmet ry a t least three of these slits mus t lie in C L ( U H P ) . We will 
assume t h a t we are performing the var ia t ions in C L ( U H P ) while the corre
sponding variat ions are being made in C L ( L H P ) a t the same t ime. For 
0 ^ 0, 0' ^ 7T we consider the function 

(14) P (0 , 0') = Re{2a2e
ie + e2ie\ - Re{2a2e

ie' + e2ie'} 

= Re{h(d)} - Re{h(0')} 

with 0 rg a2 < 2, andf(eie) and/(e**') will be chosen a t the interior endpoints 
of the slits or a t points on dKM where a radial slit may be introduced. 

We observe t ha t h (6) in (14) can be realized as a m a p of the uni t circle 
onto a curve symmetr ic abou t the real axis with either one loop or a cusp a t 
h (IT) SO t h a t any vertical line intersects the image curve in a t most four points. 
This also follows since, for a fixed 0 or 0', P (0 , 0') is a quadra t ic in cos 0 or 
cos 0'. T h u s P (0 , 0') has a t most two zeros for 0 £ [0, TT]. Wi th three points 
to choose from it follows t h a t there exists a 0" and a 0' such t h a t P ( 0 " , 0') is 
positive, i.e., we can shorten the slit ending a.tf(eie") while extending the slit 
ending at /(e**') so t h a t (4) holds with n = 3. Since this would contradic t the 
extremal proper ty of Dn*, Dn* is KM minus a t most four radial slits. 

I t follows from this characterizat ion of Dn* and the properties of conver
gence of domains t h a t D* is KM minus a t most four radial slits. Indeed we 
prove t h a t D* is KM minus a t most two radial slits. 

Suppose to the contrary t h a t D* is KM minus a t least three radial slits, 
two of which must lie in C L ( U H P ) . From symmet ry we need only describe 
the var ia t ions being made in C L ( U H P ) as before. Then , we shorten one slit 
while either extending another slit or introducing a new radial slit into one of 
the arcs on dKM, i.e., we show t h a t we can choose a 0 and 0' such t h a t P (0 , 6') 
is positive. Let eie° and eiBl be the two points corresponding to the interior 
endpoints of the slits. When Re{h(6o)} ^ Re{h(6i)} we can assume Re{h(d0)} > 
Re{h(6i)}. Then P(0O , 0i) would be positive, which would imply a contra
diction. Now consider the case when Re{/z(0o)} = Re{h(di)}. Since 0 5* a2 < 2, 
Re{h(6)} has a t most one point where an absolute minimum occurs for 
0 G [0,7r]. Hence Re{/z(0o)} = Re{^(0i)} is not an absolute minimum. T h u s 
a 6' can be chosen such t ha t a slit can be introduced a t / ( e ^ ' ) and the slit 
ending at/(e**°), say, shortened so t h a t P(0o, 0') is positive. This would again 
imply a contradict ion. Therefore D* is KM minus a t most two radial slits. 

T h e proof of Theorem 1 thus reduces to showing tha t , in the set of domains 
KM minus one or two radial slits along the real axis, those domains having 
two radial slits of unequal length are not extremal. Assume to the cont rary 
t h a t the extremal domain has exactly two radial slits of unequal length. From 
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the symmetry of the domains these slits must have their endpoints correspond
ing to 6 = 0 and w. A straightforward calculation of the mapping function 
shows that a2 ^ 0 in this case. So for P(0, 0') as defined in (14) we have 
either P(0, w) or P(T, 0) is positive. This would imply a contradiction. Thus, 
Theorem 1 follows. 

In [7] O. Tammi found the extremal domain maximizing |a3| for / inS(M) 
to be KM minus two vertical slits of equal length when 1 ^ M ^ e. While 
for e ^ M < oo, the extremal domain is KM minus a forked slit symmetrical 
about the real axis. At M = e the formula for the two parameter family of 
extremal domains with two non-radial symmetrical slits was given by V. Singh 
[4]. Since the extremal domain maximizing |a3| for / in S(M) is starlike for 
1 < M < e the extremal domain maximizing |a3| fo r / in S*(M) is given for 
1 < M < e by letting pQ = 2w — fii = 7r/2, a0 = TT — y0 = ji — T = 
2TT - ai in (10). 

Note. Since the author has been unable to find a workable closed form for 
the function f*(z) defined by (11) and (12) the question as to the exact 
upper bounds for |a3| in S*(M), M > e, remains open. However, the author's 
work suggests the conjecture that the only functions f*(z) defined by (11) 
and (12) that are extremal for maximizing |a3| within S*(M) are those having 
as an image domain either KM minus two vertical slits for 1 < i f ^ 3, or KM 

minus one slit when 3 ^ M < oo. One fact that suggests the conjecture is 
that the one and two slit domains just defined have the same third coefficient, 
i.e., 3 - 8/M + 5/M2 = 1 - M~2 = 8/9 when M = 3. The author has 
verified the conjecture in the case when i f ^ 5 in a forthcoming joint paper 
with J. L. Lewis. 

THEOREM 2. Let r0 = 2 — \/S be the radius of convexity for S*. The extremal 
function maximizing \f'(z)\, \z\ = r fixed, for all f Ç S*(M) has as its image 
domain KM minus one radial slit for 0 < r < r0. For r0 ^ r < 1 the extremal 
function has the general form defined by (11) and (12), i.e., its image domain 
is KM minus at most two radial slits. 

Remark. The upper bound for the range of r's occurring in Theorem 2 that 
have the associated extremal domain with only one slit can not be made 
arbitrarily close to one for all M. This follows because for 3 < i f < oo the 
domain KM minus one slit is not extremal for maximizing \fr(z)\ over S*(M) 
for fixed r sufficiently close to one. To show this let w1(z) be the function 
mapping K onto KM minus one slit along the negative reals and let w2(z) 
be the function mapping K onto KM minus two slits of equal length along the 
real axis. Then Wi(z) and w2(z) are defined by Wi(z)[l — Wi(z)/M]~2 = 
2(1 - z)~2 and w2(z)[l + (w2(z)/M)2]~l = z(l + z2)-\ Let zx = e^ and 
z2 = ei<t>2 be defined by Wi(zi) = w2(z2) = —M where we choose <t>\ and <t>2 

in (0, TT) for l < i f < o o . Then Zl = [M - 2 + 2(1 - M)1/2]/M and 
z2 = [ — 1 + (1 — M2)1/2]/M. A straightforward calculation shows the follow-
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ing rather unexpected result: 

(15) 
•Wi'jZi) 

w2'(z2) 
= lim 

r->l 

wi'jre**1) 1 +w1(ret*l)/M 
w,'(«'**) 1 +w2(reT*2)/M 

( l + 2 i ) ( l 22 ) 

(1 + M) 1/2 • ( l - z 1 ) 3 ( l + s 2
2 ) 2 

It follows from (15), using a standard continuity argument, that 

max \wî{ret4>)\ < max \w2(rei<f>)\ 

for a fixed r sufficiently close to one and 3 < M < GO . 

Proof of Theorem 2. Although the proof closely follows the outline of the 
proof of Theorem 1, the transformation (13) can not be performed while 
preserving | / ' ( r ) | . Hence, since symmetry can not be assumed, we use the 
standard form of the Lôwner differential equation [1]. In this case we con
struct another function in S* (M) from a function f £ S* (M) by introducing 
or lengthening one radial slit T\ at the point f(eidl) while shortening a radial 
slit To whose interior endpoint is at/(e**°). We make the obvious changes in 
the first part of section 2 with g(z, t) and f(z, s) replaced by g2(z, i) and 
/2(2, s) = /2[g2(z, t),s\ = e*erlz + . . . , and 

(ID) - — = —zg (z, /) y-̂ —=?ë—(71 
a/ 

(17) 
l A _ 1 + e-i9o(s)z djj_ 
d s ~ z l - e-ie^z ' dz 

When we put s equal to t in f2 this produces the function 

Fi(z,t) =f2[g2(zj),t] = z + . . . 

that is in S*(M) for each t sufficiently small. 

LEMMA 3. Let f(z), T0, Tly 60i 6lt and F2(z, t) be defined as above and let 

(18) m = 1 ^ ^ + A(z)[\±^[ 
for 

(19) A(z) l+zf"(z)/f'(z). 

Then the inequality 

(20) Re{g(6o) -g(0i)} > 0 

implies the existence of a to > 0 such that |/V(z, t0)\ > | / ' ( z ) | for a fixed 
z £ K. 
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Proof. Because of the continuity of the partials it suffices to show that 

a log |/Y(*,/)! 
dt > o. 

To obtain an expression for the left hand side of (21) we use (16), (17), and 
the continuity of the partials at t = 0. If we let ' represent d/dz then 

a log 17V (g> 01 
dt 

= Re 
1=0 I , 1 _ i (dF2(z,t)\'\ 

'V(M) \ dt J f t=o 

p / 1 f fll+e-ihz 1 + e-"°zl'\ 
= Re YÔT) I'21 T^T^i +2/ T=7*rgj / 
_ P / i_r?( _ ^ ° _ 2e~th \ 

- Ke \7(z) L2/ \ a - «-* v - a - C-">8)V 

lr—=*„, - r ^ T ^ j (2/ +/ )J; 
+ 

= Re{g(0o) - g(fix)\. 

Thus when (20) holds (21) follows. This proves Lemma 3. 

Let z0, |z0| = r, be such that | / ' ( z ) | ^ | / ' ( z 0 ) | for all z, |z| = r. Then 

0 = ^ l o g | / ' ( z ) | = Im A (zo) 

implies .4 (z0) is real. Thus from Lemma 3 there exists a to > 0 such that 

(22) |f'(*o,<o)| > | / ' ( zo) | 

when (20) holds with z = z0 in (18). 
Now form 23 and Bn as in Theorem 1 with Dn* the extremal domains in Bn 

that have the corresponding mapping functions fn*(z) such that | /w ' (z)| ^ 
I /»*'(2o)| f° r all/„ such that/n(2£) G 2?n. As before this gives the corresponding 
extremal domain D* in 2$. 

Recall the definition of g{B) in (18). If we let x = e~iez and A = A (z0), we 
consider 

gi(*) = 2*(1 - x)~2 + A{1 + x)(l - x)-1 = A + 2(1 + A)x + 

Clearly, for a fixed 0 or 0' 

P i ( M ' ) = Re{gi(^)} - Re{gi(^')} 
= 2(1 + A) Re{0" - Ar2e2i6/(l + -4)1(1 ~ reie)~2 

~[eie' - Ar2e2W/{\ + A)](l - reie')-2) 
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is a quadratic in cos 0 (or 6') and so has at most four zeros in [0, 2ir). Thus, 
arguing as in Theorem 1, the extremal function has as its image domain KM 

minus at most two slits and has the general form given by (11) and (12) for 
any r, 0 < r < 1. However, for 0 < r < r0 — 2 — \/3 we can show that the 
extremal domain is KM minus exactly one slit. To do this we use the fact that 
since/ (E S*, [2, inequality 1.6, p. 5] implies that 

(23) A = A(z0) è (1 - 4M + M2)/(l - M2). 

We claim that as a function of x, \x\ < 1, 

gl(x) = A + 2(1 + A)[x - ,4*7(1 + ,4)] /( l - xY 

is univalent for A > 0. Indeed, if we let c(x) = (1 + x ) / ( l — x), then 
gsOO = [gi(x) — A]/2(l + A) has the property that gz{x)/cf(x) has the 
positive real part for A > 0. Since c(x) is convex, this implies from a définition 
of close to convexity that gz{x) is close to convex. Thus gi(x) is univalent for 
A > 0. It follows from (23) that A > 0 whenever 0 < r < r0. Also since 
gz(x) G 5 it follows from [2, § 6.11] that gz(\x\ ^ r) is convex for 0 < r < r0. 
Thus any vertical line would intersect gi(\x\ = r), 0 < r < r0 in at most two 
points. Hence for 0 < r < r0 and fixed 6 or 6' Pi(0, 0r) has at most two zeros 
in [0, 2ir). An argument similar to that used in the proof of Theorem 1 shows 
that the extremal domain is KM minus exactly one slit for this range of r. 
This proves Theorem 2. 

Similar methods can be used to prove the following theorem noting that the 
image curves in the crucial function corresponding to g(6) in (18) are just 
circles, hence convex. 

THEOREM 3. Let $(w) be a nonconstant entire junction and z a given point 
in K. The extremal function maximizing Re{ $(log[/(z)/z])} for all f G S* (M), 
1 < M < oo , has as its image domain KM minus one radial slit. 

We note that with the appropriate choice of $(w) in Theorem 3 the solu
tions to some of the classical extremal problems follow for the class S* (M), 
e.g., KM minus one slit is an extremal domain for the functionals | / (z ) | and 
|a2|, as is well-known. Also, we obtain that KM minus one slit is an extremal 
domain for the functional |arg[/(s)/s] | in S*(M). 
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