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As a result of mutual inelastic collisions, frequent on a geologic time scale, the 
mass distribution of asteroids undergoes constant change. Using a simplified 
velocity distribution for asteroids, the redistribution of their masses caused by 
collisions can be mathematically modeled as a stochastic process and the 
distribution of asteroidal masses can then be obtained as the solution. This paper is 
a review of recent progress on this problem. 

The most detailed discussion of this problem considers the influence of the 
following coUisional processes on the asteroidal mass distribution: (1) loss of 
asteroids by catastrophic breakup, (2) creation of new objects from the fragments 
of a catastrophically disrupted one, (3) erosive reduction in the masses of individual 
asteroids, and (4) erosive creation of new objects (i.e., production of secondary 
ejecta during erosive cratering by projectiles not large enough to catastrophically 
disrupt the target object). The main result is that after a sufficiently long period of 
time the population of asteroids may reach a quasi-steady-state distribution, 
regardless of the initial distribution. This final distribution is a product of a slowly 
decreasing function of time by a power law of index 11/6 for masses smaller than 
the largest asteroids. For the largest asteroids, an additional factor is included that 
expresses the influence on the distribution of the absence of masses larger than 
those observed. The observed distribution of bright asteroids from the McDonald 
asteroidal survey and that of faint ones from the Palomar-Leiden asteroidal survey 
are each individually consistent with the theoretical distribution, although they 
differ from each other by a numerical factor. 

As a result of mutual inelastic collisions, frequent on a geologic time scale, 
the distribution of asteroids is constantly changing. We shall, in this paper, 
discuss the influence these collisions have on the mass distribution of belt 
asteroids and compare the results with observation. 

Ideally, one would consider the mass and orbital elements of each asteroid 
and establish their origin from precise calculations. This method has been 
employed by Anders (1965); making the usual assumption that the members of 
each Hirayama (1923, 1928) family are coUisional fragments of some parent 
object, Anders (1965) has reconstructed the original parent objects and, 
subtracting the fragments, has estimated the hypothetical initial distribution of 
asteroids. Hartmann and Hartmann (1968) further studied this problem; they 
suggested that the present distribution may indeed have evolved, under the 
influence of coUisional fragmentation, from Anders' (1965) estimated initial 
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distribution. Alfve'n (1964a,b, 1969), on the other hand, discussed the origin of 
asteroids making the alternate assumption that asteroids in Hirayama families 
constitute original jetstreams. (Also see Kuiper, 1953.) 

In view, however, of the fact that next to nothing is known about the 
distribution of asteroids too faint to be observed, and much still remains to be 
learned about those cataloged, it appears worthwhile to employ statistical 
methods to improve our understanding of some of the gross properties of the 
population of asteroids. Ideally, one would like to combine the distribution of 
orbital elements for asteroids with their mass distribution in a complete 
statistical analysis. This difficult problem can be simplified by two methods: 

(1) Studying the distribution of the masses of asteroids using an assumed 
spatial (and velocity) distribution 

(2) Studying the asteroidal population by using precise spatial and 
velocity distributions combined with an assumed mass distribution 
(Wetherill, 1967). 

This second method has its basis on Opik's (1951, 1963, 1966) statistical 
treatment of the dispersal of stray objects by planetary (gravitational) 
perturbations, and in its most highly developed form has been applied to 
asteroids by Wetherill (1967). 

In this paper we shall limit our attention to method (1). Method (2) is, 
however, complementary to method (1), because a complete analysis would 
employ a combination of both methods; i.e., a joint mass, velocity, and 
position distribution. 

Method (1) is the physical and mathematical modeling of a population of 
objects that undergo mutual inelastic collisions. Such collisions take place with 
an assumed mean encounter velocity, and the larger of the colliding masses 
may completely shatter (catastrophic collision) or it may lose a modest 
fraction of its mass (erosive collision) depending on the relative size of the 
other colliding object. 

The result is a process by which the masses of individual objects in the 
population decrease with time because of erosion and by which some objects 
are violently destroyed from time to time. Redistribution of the comminuted 
debris produced during erosive and catastrophic collisions constitute a particle 
creation mechanism. A correct modeling of these processes would enable one 
to describe the evolution of the distribution of these colliding masses. 

Piotrowski (1953) has derived a mathematical expression for the rate at 
which asteroids disappear because of catastrophic collisions and the rate at 
which the number of asteroids in any given mass range changes because of the 
erosive reduction of their masses caused by the cratering collisions with 
relatively small objects. He did not include the particle creation resulting from 
fragmentation during collisions and his analysis therefore is restricted to cases 
in which the replenishment (i.e., feedback) of the population by comminuted 
fragments is insignificant. 
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Jones (1968) has studied the evolution of the mass distribution of asteroids 
using a more detailed model; the contribution of fragmentation was considered 
but later discarded because the size of the fragments produced during collisions 
was taken to be insignificantly small. 

Dohnanyi (1969) (see also Dohnanyi, \967a,b,c; 1970a) has discussed a 
model that includes the influence on the distribution of asteroidal masses of 
the following collisional processes: 

(1) Disappearance of asteroids because of catastrophic breakup 
(2) Reappearance of new asteroids from the fragments of catastroph-

ically disrupted ones 
(3) Progressive change in the number of asteroids in any given mass 

range caused by the gradual reduction of asteroidal masses by erosive 
cratering of small projectile particles 

(4) Reappearance, as tiny asteroids, of secondary ejecta produced during 
erosive cratering 

Numerical values for all parameters were taken from experiment and 
observation, wherever possible; and a particular solution of a simple power-law 
type was obtained, under the provision that the distribution could be assumed 
stationary. 

The study was continued (Dohnanyi, 1970ft), and it was found that the 
mass distribution of asteroids may indeed approach a stationary form, 
regardless of initial conditions, after a sufficiently long time period has elapsed. 
The uniqueness of the solution obtained in Dohnanyi (1969) was considered, 
and it was found to be the only analytic solution that can be expanded into a 
power series in m, for masses m far from the limiting masses of the 
distribution. An approximate solution for large asteroids was also obtained. 

Hellyer (1970) has also examined this problem; he considered large asteroids 
and small ones separately. For small asteroids he studied the influence on the 
mass distribution of fragmentation and his treatment is comparable to that in 
Dohnanyi (1969, 1970ft) except that it is less detailed but mathematically 
much shorter. 

Because of their completeness compared with earlier work, we shall, in what 
follows, give a review of these studies (Dohnanyi, 1969, 1970ft). Most of the 
earlier work can readily be discussed by comparing it with special cases of these 
studies. 

OBSERVATIONAL EVIDENCE 

McDonald Asteroidal Survey1 

In their survey of asteroids at the McDonald Observatory (the McDonald 
survey (MDS)), Kuiper et al. (1958) obtained statistical data for the brighter 

Currently under revision; see van Houten in the "Discussion" following this paper. 
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asteroids up to a limiting apparent magnitude of 16. The observation covered 
the asteroid belt over all longitudes and a 40° width in latitude. The absolute 
photographic magnitudes of 1554 asteroids were obtained in half-magnitude 
intervals together with correction factors for estimating the true number of 
asteroids in each magnitude interval, based on the completeness of the survey. 

To estimate the masses of asteroids, we assume a geometric albedo of 
0.2 X3* 1 and material density of 3.5 X 103 kg/m3. The upper limit on the 
geometric albedo represents a completely white smooth surface and the lower 
limit corresponds to basalt. The nominal value of 0.2 is the mean of the 
estimated geometric albedos of the asteroids Ceres, Pallas, Juno, and Vesta. 
(See, e.g., Sharonov, 1964.) The result is 

log10m = 22.67 ±0.72 -Q.6g (1) 

where m is the mass, in kilograms, of a spherical asteroid with absolute 
photographic magnitude g (i.e., relative photographic magnitude at a distance 
of 1 AU from both Earth and the Sun). A measure of the uncertainty due to 
albedo is indicated. 

The observational material of MDS is presented in figure 1. Plotted in this 
figure are the cumulative number^of observed asteroids (solid histogram) as 
well as the probable true number of asteroids (dashed line histogram) versus 
absolute photographic magnitude g, as given by MDS. The curve is complete up 
to g = 9.5; i.e., the observed number of these objects is believed to equal the 
true number. Above g ^ 9.5 the difference between the true and the observed 
number of asteroids, based on the completeness of the survey, has been 
tabulated in MDS (also see Kiang, 1962); the dashed line histogram in figure 1 
is their mean value. 

The solid curve in figure 1 is the cumulative number N(m) of asteroids larger 
thanm 

f(M)dM (2) 

as a function of mass m (org) obtained in Dohnanyi (1969). In that study, we 
tookM„, = 1.86 X 1020 kg corresponding tog = 4 and 

Km) = 2.59 X 1016 m-1-8 3 7 (3) 

where the numerical (normalization) factor is empirical and the numerical 
value of the exponent was theoretically obtained for relatively small (faint) 
asteroids. It can be seen that there is close agreement between theory and the 
statistical results of MDS. 
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ABSOLUTE PHOTOGRAPHIC MAGNITUDE. | 

Figure 1.-Cumulative number of asteroids having an absolute photographic magnitude g 
or smaller (i.e., mass m or greater), obtained by the MDS. Observed value = solid line 
histogram; probable value = dashed line histogram; earlier theory (Dohnanyi, 
1969) = solid curve. 

Palomar-Leiden Survey 

A series of observations of faint asteroids with limiting apparent magnitudes 
of less than 20 was made by van Houten et al. (1970) at Hale Observatories 
(Mount Palomar) (the Palomar-Leiden survey (PLS)). The angular area covered 
was only 18° by 12° and a compilation of the estimated number of faint 
asteroids as a function of absolute magnitude, in the range 11 < g < 17, was 
prepared. Whereas in the MDS results, the number of asteroids found is 
believed to be complete up to an absolute magnitude of about g = 9.5, in the 
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case of the PLS results, the number of observed asteroids needs to be corrected 
for completeness for all values of g because of the smaller area covered (about 
1 percent of the MDS area). Thus, to estimate the total number of faint 
asteroids in the entire asteroid belt as a function of absolute magnitude g, the 
PLS data have to be extrapolated over the large regions not covered by the 
survey. 

The result is displayed in figure 2, a plot of the cumulative number of 
asteroids having an absolute magnitude g or greater (per half-magnitude 
intervals) obtained by MDS and PLS, as indicated. It can be seen that the two 
curves display the same trend, i.e., the shapes of the two distributions are 
identical, but that the MDS results are almost an order of magnitude higher 
than corresponding PLS results, and likewise for their respective extrapola­
tions. It was pointed out in the PLS report that this discrepancy may be due to 
the method of estimating completeness factors in MDS. Because the true cause 
for this discrepancy has not yet been given, we shall avoid combining the 
results of MDS with those of PLS and will consider them separately. 

In figure 3, we plot the cumulative number of asteroids from PLS as a 
function of absolute magnitude g and seek to represent the results by an 
empirical formula of the form 

N(m) = Anra+l (4) 
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Figure 2.-Cumulative number of asteroids obtained by the MDS and the PLS. Solid line is 
the observed number; dashed line is the corrected number for completeness. 
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Figure 3.-Cumulative number N of the PLS asteroids with a least-squares fit to N. 

where N(m) is the cumulative number of asteroids having masses of magnitude 
m or greater and A is a constant. A least-squares fit to the data of equation (4) 
gives 

a =1.839 (5) 

which, in view of uncertainties, can be regarded as identical to the theoretical 
result (eq. (3)) of a = 1.837 obtained in Dohnanyi (1969) and found to 
represent very well the MDS results. (If the five objects too bright for 
measurement in the iris photometer employed by PLS are included, one 
obtains a = 1.815; i.e., an insignificant difference of 0.024 for magnitudes 

g>n.) 
Kessler (1969) has studied the joint distribution of magnitudes, radial 

distance from the Sun, and heliocentric longitudes of the cataloged asteroids. It 
appears, from his results, that equations (4) and (5) are good representations of 
his overall results (NASA SP-8038, 1970). 

Recent work by Roosen (1970) indicates that the counterglow may be 
caused, almost entirely, by particles in the asteroid belt. We may therefore have 
direct evidence that the distribution of minor planets extends to the size range 
of micrometeoroids. (See Dohnanyi, 1971.) 

We shall, in the remainder of this paper, discuss the manner in which 
power-law distributions of the types in equations (3), (4), and (5) arise. 

IMPACT MECHANICS 

Mean Impact Velocity 

When two asteroidal objects collide, the damage done to the colliding bodies 
depends on, besides other factors, the magnitude of the relative velocity of the 
two colliding objects. A statistical treatment of asteroidal collisions should, 
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therefore, include the velocity distribution function as well as the mass 
distribution of the colliding masses. We shall, however, confine our attention to 
the influence of collisions on the mass distribution, using a mean encounter 
velocity. Such a simplified approach leads to a model that is mathematically 
tractable, as we shall see later. An alternate approach, in which the velocity 
distribution is modeled using Monte Carlo techniques but using an assumed 
mass distribution, has been given elsewhere. (See WetheriU, 1967, for a review 
and references.) 

Consider two asteroidal objects with masses My and Af2. Using a simple 
molecules-in-a-box approach, kinetic theory tells us that the expected number 
of times these two objects collide per unit time is 

*(*1 +R2)2 V— (6) 
"o 

where R± and i?2
 a r e t n e effective radii of the two objects, v is the mean 

encounter velocity, and VQ is the effective volume of the asteroid belt. 
Using the distribution of the inclinations and eccentricities for known 

asteroids, I have estimated (Dohnanyi, 1969) the rms encounter velocity with 
the estimated dispersion as 

V P * 5 ± 5 km/s (7) 

in agreement with Piotrowski's (1953) estimate of 5 km/s. The distribution of 
encounter velocities appears to be rather broad and individual encounter 
velocities may vary considerably as suggested by equation (7). 

Comminution Law 

Collisions at impact velocities of several kilometers per second are inelastic 
and result in fragmentation. Gault et al. (1963) have fired projectiles into 
effectively semi-infinite basalt targets at very high velocities over a range not 
exceeding 10 km/s and over a range of projectile kinetic energies from 10 to 
104 J. The result of the impact was the production of a crater and the ejection 
of crushed material. The total ejected mass Me was found to be proportional to 
the projectile kinetic energy and the size distribution of the ejecta could be 
approximated by a power-law distribution. 

We, therefore, choose (Dohnanyi, 1969) a comminution law of the form 

g{m;M1,M2)dm = C(Ml,M2)m-r'dm (8) 

where g(m; M^, M2) dm is the number of fragments in the mass range m to 
m + dm created when a projectile object Mt strikes a larger target object of 
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mass M2. The factor C(MX, M2) is a function of the colliding masses and T? is a 
constant, 

17*1.8 (9) 

for semi-infinite targets. (See Hartmann, 1969, for a survey.) 
Using the fact that mass is conserved during impact, it is readily shown that 

C(M1,M2) = (2-'q)MeMb
r'-2 (10) 

where Me is the total ejected mass and Mb is the upper limit to the mass of the 
largest fragment. 

Erosive and Catastrophic Collisions 

We shall presently distinguish between two different types of collisions 
depending on the mass Mx of the projectile compared with the mass M2 of the 
target. For 

Mx <M2 (11) 

the target mass is effectively infinite and Gault's (Gault et al., 1963) results 
apply. These collisions we shall denote as erosive; clearly, during erosive 
collisions the projectile craters out a relatively minor amount of mass, leaving 
the large target mass otherwise intact. 

For these collisions, Me is proportional to the projectile massMj (Gault et 
al., 1963) and we write (Dohnanyi, 1969), for basalt targets, 

Me =TMX T « 5 v 2 (12) 

with the impact speed v expressed in kilometers per second. (See Marcus, 1969, 
for a detailed discussion.) 

The upper limit to the mass of the largest fragment is given by 

Me 
Mb^— \ ^ 1 0 (13) 

A 

If the target mass M2 is not effectively infinite, then some projectile masses 
will be sufficiently large to catastrophically disrupt the target. Not much is 
known about the precise relationship between the target mass M2 and the 
smallest projectile mass Mx necessary for catastrophic disruption of M2 or 
about the precise nature of the catastrophic failure mode of colliding objects 
with arbitrary sizes, shapes, and physical composition. 
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Experiments (Moore and Gault, 1965) with basalt targets conducted at 
relatively low impact velocities in the range of 1.4 to 2 km/s imply that a target 
mass M2 about 50r times the projectile mass or smaller will be catastrophically 
disrupted. The failure mode of the spherical target consists in the separation of 
a spherical shell of debris leaving an approximately spherical core behind as the 
largest fragment. 

More recent experiments (Gault and Wedekind, 1969) on finite glass targets 
indicate a failure mode in which, in addition to a crater having a size 
determined by equation (12) for semi-infinite targets, a spall fragment on the 
surface of the spherical target opposite the point of impact will be produced. 
Both glass and basalt targets are seen to have comparable failure modes; the 
difference is that the basalt target fails by the production of a spall engulfing 
most of the spherical surface of a spherical target M2, whereas the glass sphere 
target fails by the formation of a spall opposite the impact. 

In both cases the distribution of fragments can be represented reasonably 
well by a formula of the form of equation (8). The total ejected mass is now 
given by 

Me=Ml+M2 (14) 

for catastrophic collisions, and the largest target mass M2 catastrophically 
disrupted by Mj will be taken as M2 = V'M^, Thus, 

M2<T'Ml (15) 

for catastrophic collisions, and 

M2>r'M1 (16) 

for erosive collisions. 
The quantity r ' is difficult to estimate precisely; combining results by Gault 

et al. (1963), Moore and Gault (1965), and Gault and Wedekind (1969), we 
may write 

r ' « 50r for basalt 
(17) 

r ' a* 103r for glass 

The large difference in these numbers is due mainly to the differences in the 
catastrophic failure modes between basalt and glass. Less energy is needed to 
detach a spall from a glass sphere than to detach a spherical shell of fragments 
from a basalt sphere. 

The limit of the mass of the largest fragment for catastrophic collisions can 
be taken as 

Mb = - 2 (18) 
A 
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This formula is an idealization because for catastrophic collisions the size of 
the largest fragment should be approximately inversely proportional to the 
collisional kinetic energy. This relation defines the expected size of the largest 
fragment during an average catastrophic collision. For a more detailed 
definition of Mb we can take 

Mb = 
M2

2 

where Mb is inversely proportional to Mj and XQ is a constant. The main effect 
of this refinement on the subsequent analysis (unpublished) is to add further 
detail without, however, altering the main conclusions. We therefore choose to 
retain the mathematically simpler but physically less correct definition of Mb 

(eq. (18)). Collecting formulas, we have 

g{m;MvM2)dm = (2-r\)rri-l\2-r*Ml
r>-lm-r>dm M2>Y,Ml (19) 

for erosive collisions, and 

g(m;Ml,M2)=(2- r\\Mx +M2)M2
r>-2(K')2-r>m-r' dm M2 < T,Ml (20) 

for catastrophic collisions. 

COLLISION EQUATION 

Collisions between asteroids must undoubtedly affect their mass distribu­
tion. To gain insight into this problem, we give a precise mathematical model 
of the evaluation of the asteroidal mass distribution under the influence of 
mutual inelastic collisions. 

Let f(m, t) dm be the number density per unit volume of asteroids in the 
mass range m to m + dm at time t. Clearly, fijn, t) dm will change in time 
because of (1) erosion, (2) removal by catastrophic collisions of objects in this 
mass range, and (3) creation of fragments into this mass range by the erosive or 
catastrophic collisions of larger objects. 

Assuming a uniform spatial distribution throughout the asteroid belt, one 
can write a continuity equation for the number density/(m, f): 

bf(m, t) bf 
dm = dm — 

bt bt 
+ dm 

bj_ 

bt catastrophic collisions 

bf 
+dm — 

bt catastrophic creation 

+ dm — 
bt 

(21) 
erosive creation 
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Here [df(m, r)/3r] dm is the time rate of change of the number density per 
unit volume of asteroids in the mass range m to m + dm because of all the 
collisional processes listed on the right-hand side of the equation. The 
individual terms on the right-hand side of equation (21) are discussed below. 

Erosion 

The first term on the right-hand side of equation (21) is the contribution of 
the erosive reduction in the particle masses; i.e., the reduction in the number of 
particles with given mass because much smaller erosive projectiles crater out 
minor amounts of mass from these particles. 

It has been shown in Dohnanyi (1969) that 

3 r dm 
— \f(m,t) — 
dm\_ dt 

3/1 3 f~_. dm 

"* I erosii 

where 
dm fm/f 
— =-TK 
dt J» 

(22) 

Mf(M, rXM1/3 + m1/3)2 dM (23) 

is the mass lost per unit time by an object having a mass m that is being 
"sandblasted" by erosive collisions, and where 

K.[—) -, (24) 

The parameter y. is the smallest mass permitted to be present by radiation 
pressure. Although objects may be present that are smaller than the limiting 
small mass blown away by radiation pressure as determined by geometric 
optics, we shall not concern ourselves with this problem. We shall assume that 
masses smaller than n are either absent or simply do not participate in the 
collisional processes considered here. 

The expression for dmjdt in equation (23) can be seen to be correct because 
the amount of mass per unit time lost by m because of erosive collisions with 
particles in the mass range M to M + dM is, using equations (6) and (12), 

- TM[R(M) + R(m)] lf{M, t)dM = -KTM(tfW + m^)2f{M, t) dM (25) 

and the right-hand side of equation (23) is just the contribution to m of all 
erosive projectiles; i.e., all projectiles with masses smaller than mjY' (cf. eq. 
(16)). 
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The contribution of this erosive reduction of the masses to the distribution 
d//9^erosion *s t n e n s e e n t o De c o r r e c t ly given by equation (22), because 
mf{m, t) is the one-dimensional flux of particles in "mass space" and the 
right-hand side of equation (22) is the negative divergence of the flux in mass 
space. The net contribution of 9//9fletosion m a y ^e positive or negative, 
depending on whether more masses are eroded into the range m to m + dm 
than are eroded out of this range per unit time, or vice versa. (See Dohnanyi, 
19676, for a detailed derivation.) 

Catastrophic Collisions 

The second term on the right-hand side of equation (21) is the contribution 
of catastrophic collisions to the evolution of the population. It is (Dohnanyi, 
1969), 

9/(m, f) 
dm 

bt catastrophic collisions 

= -Kf(m,t)dm I '" f(M, 0 ( ^ 1 / 3 + ™1/3)2 dM (26) 1 I 
Jmlv' 

where M<x is the largest mass present. 
This equation is readily derived because the number of collisions per unit 

volume of space and unit time b2n between spherical particles with masses in 
the range Ml to M^ + dM. and M. to M2 + dM2 is (cf. eqs. (6) and (25)) 

82n =K(Ml
1l3 +M2

1l3)2f(Ml, ty(M2, i)dMydM2 (27) 

The total number per unit volume and unit time of catastrophic collisions that 
objects with masses in the range mto ra + dm experience is then given by the 
integral 62« over the permissible limits, which is just equation (26). The range 
of values for the dummy integration variable M, m/T' <M<M„ is seen to 
include all mass values that would completely disrupt m during an inelastic 
collision (cf. eq. (15)). 

Creation by Catastrophic Collisions 

We shall presently derive an expression for the creation per unit volume and 
unit time of objects in the mass range m to m + dm by the catastrophic 
disruption of larger objects. 

We first note that the number of fragments in the mass range mtom + dm 
created by the catastrophic disruption of two objects having masses Afj andM2 
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is given by equation (20). The number of collisions 52M per unit volume of 
space and unit time between two spherical objects with masses in the range Mj 
to MJ + dMi and M2 to M2 + dM2 is given by equation (27). Hence, 
combining these, we obtain the number of fragments in a mass range m to 
m + dm created per unit time and volume by catastrophic collisions between 
masses in the range Afj to My +dM^ andM2 toAf2 + dM2 (withAf2 >Afj): 

gim;Mv M2)dm 52« = m"" dm(2 - r})(\')2-r>M2
r'-2(Ml + M2) 

X K(MX W + M2
1/3)2/(M1, t)f(M2, t) dMt dM2 (28) 

This expression is valid for 

M7 
i» < - 7 (29) 

A. 

because m cannot exceed the mass of the largest fragment produced by the 
catastrophic collision of Afj withM2 (cf. eq. (18)). 

Integrating expression (28) over all permissible masses M2 and My, we 
obtain the contribution of this creation process to equation (21): 

¥(m, t)\ [M„ 
1 =K(2-n)(\')2~1>m-ri I dM2 

" ' I catastrophic creation J * m 

fM2 

JM IT' dMl M2V~2(-M1 + M 2 X ^ l 1 / 3 + M2^)2f(Mh t)f{M2, t) (30) 

which is the desired expression. 

Creation by Erosive Collisions 

Using the same reasoning as the one employed in the derivation of equation 
(30), we can obtain the corresponding expression for the erosive creation of 
objects into the mass range m to m + dm. Combining the comminution law for 
erosive collisions, equation (19), with the differential frequency of these 
collisions 52« and integrating, over all permissible masses My and Af2, we 
obtain 

= K(2- vW-W-im-n I dMx 

" ' erosive creation •* *-"«/r 

X / dM2M1
r>-1(Ml

lli+M2
1li)2f(Ml, t)f(M2,t) (31) 
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This completes the derivation of the explicit form of df(m, f)/3r, equation 
(21). 

SOLUTION FOR SMALL MASSES 

Asymptotic Solution 

The general solution of the collision equation (eq. (21)) is difficult to 
obtain. We shall, however, seek an asymptotic solution valid after a long period 
of time of the creation of the asteroids. 

Specifically, we seek a solution of the form 

aAM) a2(m) 
f(m, t)*a0{m) + + —7- + • • • (32) 

t t2 

valid when t becomes very large. We substitute equation (32) into equation 
(21) and equate the coefficients of like powers of/ to zero. 

Using equations (21), (22), (26), (30), and (31) we get, for a0(m), 

a r fm/r' 
0 = KT — a0(m) j MaQiM^M1^ +M1/3)dM 

dm |_ Jn 

CM*, 
- Ka0(m) I a0(ffl(&W +M1!*)2 dM + K(2 - i?X*')2j-"ffr* 

Jm/r' 

fMx CM2 
XI dM2 I dMi M2

r'-2(M1 + M2)(M1
1li + M2

1li)2a0(Ml)a0(M2) 
Jk'm jM2lr' 

+ K(2 - 7j)pi"x X2-*™-* I dMx 

X / dM2Ml*-HMlW+M2W)2aQ{Ml)a(i(M2) (33) 
JVMX 

which is the equation for the steady-state solution (cf. Dohnanyi, 1969; 
1970ft). 

A time-independent solution of equation (21) is not valid because 

lim/(m,r) = 0 t ->» (34) 

in the absence of sources. We, therefore, take a0(m) to be a slowly varying 
function of time, satisfying equation (34), and approximately satisfying 
equation (33). This argument requires that the creation and destruction terms 
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on the right-hand side of equation (21) balance each other. It is, however, clear 
that for masses 

m> — (35) 
V 

no particle creation is possible because the upper limit of the largest fragment 
during a catastrophic collision involving M„ is smaller than m. Equation (32) 
can therefore be valid only if 

a0(m)-0 — <m<:Moo (36) 
A 

and we have, therefore, a different solution for the distribution of large masses. 

Solution in a Power Series of m for Small Masses 

The power series solution to the leading terms of the steady-state equation, 
equation (33), is (Dohnanyi, 1969; 1970ft) 

a0(m)=Am-a (37) 

where A is a constant and the population index a is 

11 
a= - (38) 

6 

The leading terms in equation (33) are those describing particle creation and 
destruction by catastrophic collisions caused by the impact of projectile 
particles whose masses and geometric cross sections are negligibly small 
compared with the target objects. 

The contribution of erosion to the steady-state process, equation (33), is a 
minor one. The contribution of 9//9^erosion (c^- e 1 s - (21) and (22)) is 
negative; i.e., the number of objects in the mass range m to m+dm will 
decrease because of the erosive reduction of particle masses when the 
distribution is given by a =11/6 (eq. (38)). This happens because for a 
power-law-type distribution, 9//d^erosion (ecl- (22)) is positive for a > 4/3. 

It is interesting to note that when a =11/6, the leading terms of 
9//9f 'erosion a n d 9 / / H r o s i v e creation c a n c e l e a c h o t h e r o u t -

If the comparatively small contribution of terms associated with the mass 
and size of the projectile during catastrophic collisions as well as the 
contribution of erosive processes are included in equation (33), the value of a 
is not appreciably different from 11/6. It was found (Dohnanyi, 1969) that at 
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mean impact velocities ranging from 1 to 20 km/s and values for the 
comminution index 17 (eq. (8)) ranging from 1.7 to 1.9, numerical solutions for 
a ranged from 1.841 at 1 km/s to 1.835 at 20 km/s mean impact velocity. 

It therefore follows that the steady-state solution is rather insensitive to 
changes in the physical parameters. This solution represents a population 
whose evolution is mainly controlled by the catastrophic destruction of objects 
in a given mass range, and by the creation of fragments in this same mass range 
by catastrophic disruption of larger masses. These two competing processes 
cancel each other in a steady-state population described by the solution of 
equation (33). 

SOLUTION FOR LARGE MASSES 

Very Large Masses 

For the largest masses, creation by fragmentation cannot be very effective 
and the number of these asteroids decreases with time. The collision equation 
(21) becomes correspondingly simplified. 

Specifically, for masses in the range 

X' 

i.e., for masses greater than the largest fragment when Mx is disrupted, no 
creation by fragmentation is possible. If the number density of asteroids in this 
mass range is denoted by F(m, t) and the number density for masses 
m <Af0O/X' is denoted by f{m, f), we have, using equations (21) and (26) 

?>F(m> 0 T CM°°lx' 
= - KF(m, t) J f(M, rX^1 / 3 + ™1/3)2 dM 

to \Jmlv' 

+ / F(M, 0(M1/3 +Af!/3)2 dM 
JMJ\' 

where 
X'<T' (41) 

The contribution of erosion has been dropped because the largest asteroids 
have a sufficiently strong gravitational field to retain most of the secondary 
ejecta produced during erosive cratering (Marcus, 1969; Hartmann, 1968). 

The most important feature of equation (40) is the strong coupling between 
the solutions F(M, t) and f{m, t) for X' < r ' . Because r ' is of the order of 103 

to 105, depending on whether we assume asteroids to be more similar to basalt 

(40) 
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spheres or to glass spheres and because X' is about 1, we conclude that, for 
asteroids, 

\'<T' (42) 

If, however, we make the opposite assumption and let 

, Moo 

X ' - — (43) 
M 

i.e., all collisional fragments somehow just go away as do masses smaller than/i, 
we obtain the equation 

bF(m, t) fM«, 
= -KF(m,t) j F(M, 0 ( ^ 1 / 3 + w1 / 3)2 dM (44) 

9' JMJT' 

This equation, first posed for asteroids by Piotrowski (1953), has received 
attention by a number of authors. Piotrowski found that equation (44) can be 
solved approximately if we separate variables and let 

F(m, t) = p(m)T(t) (45) 

The result is 

F(m,t)**T(t)m-5l3 (46) 

and has the property that the total cross-sectional area of asteroids having 
masses in the range Wj and m2 is proportional to In (m^/mj) and therefore 
independent of Wj or m2. 

The stability of the solution, equation (46), has been discussed by 
Piotrowski (1953) and in greater detail by Marcus (1965); they conclude that 
once the population reaches a distribution of the form of equation (46), it is 
stable. 

Jones (1968) examined the problem when r ' is small and X' is large; i.e., a 
case similar to the one defined by equation (43). He also obtained an 
approximate solution of the form of equation (46). 

More recently, Hellyer (1970), in an effort to obtain separate solutions for 
large and small asteroids, discussed Piotrowski's equation (44) and again 
verified the approximate solution, equation (46). 

Unfortunately, there are difficulties associated with the application of 
equation (44) and its particular solution, equation (46), for asteroids as has 
also been pointed out by Hartmann and Hartmann (1968). First, equation (44) 
is incorrect, unless it is assumed that in a collision the colliding objects are 
virtually atomized (eq. (43)) and hence their fragments do not contribute to 
the population of smaller objects (cf. eq. (40)). This assumption is in contrast 
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with results of experiments on laboratory-sized objects and there appears to be 
evidence (Anders, 1965) that large asteroids break up into a spectrum of debris 
that significantly contributes to the population of observed asteroids. It is 
indeed probable that most asteroids are collisional fragments (Anders, 1965; 
Dohnanyi, 1969). Thus it appears that equation (44) is not a good 
mathematical model for asteroidal collisions. 

Even if the physical applicability of equation (44) could somehow be 
maintained, it is difficult to interpret the significance of the approximate 
particular solution in equation (46). Because Piotrowski's equation (eq. (44)) is 
a partial differential equation, its solution must include an arbitrary function. 
Physically, this is an obvious consequence of the fact that one should be able 
to prepare a fairly arbitrary initial distribution that should satisfy equation 
(44) at some point of time. No evidence has yet been advanced for the 
existence of an initial distribution, other than the solution equation (46) itself, 
which would approach the m~5^ power-law distribution. In short, there 
appears to be no evidence that equation (46) is indeed an asymptotic solution 
valid after some long period of time has elapsed since creation. 

Asymptotic Solution for Long Times 

In this section, we shall derive an asymptotic form for the distribution of 
large asteroids valid after some long period of time has elapsed since their 
creation. 

We shall take 
X'=l (47) 

which means that the mass of the target object becomes the upper limit to the 
mass of the largest fragment; i.e., the "threshold" of the failure mode is 
included. (The expected size of the largest fragment is naturally smaller than 
the target object.) 

Using this relation (eq. (47)) in the continuity equation for the largest 
asteroids, equation (40), we see that the second integral on the right-hand side 
vanishes with X '=l . We also must include the contribution 
3F(m, O/aflcatastrophic creation (eq- ( 3 0 » t o 9 F 0 " ' 0/9 ' (eq- (40)), because 
the largest fragment of a catastrophic process involving a large asteroid may 
still be within the size range of the largest asteroids. We may therefore write 

bF(m, t) p f „ 
= - KF(m, t) I FJM, 0 ( ^ 1 / 3 + m1 / 3)2 dM + K(2- ^nr* 

9f Jm/r' 

X / dM2 I dMl M2
ri-2(Ml + M2)(M1 V3 + MX W)2 X / dM2 I 

J « JM2lT' 

XF(Mvt)Fp(M2,t) (48) 
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where the subscript p has been attached to F(m, f) to denote the number 
density of the smaller (i.e., projectile) asteroids. 

Each of the two asteroidal surveys, MDS and PLS, suggests a power-law-type 
population 

f{m)^Am-n^ (49) 

For such populations, the dominant contribution to catastrophic collisions 
(both the creation and removal term) is caused by the collision of projectile 
objects having masses of the order of MjV', with target objects having masses 
M. (See Dohnanyi, 1969.) 

Because r ' is a large number of several orders of magnitude, we shall take as 
a first approximation to equation (48): 

11 
F (m, f) « aQ(m, f) = A(f)mra a = — (50) 

where OQ is the solution for the steady-state distribution of small objects, 
equation (37). Furthermore, a0 is taken here as a function of t that varies 
slowly compared with tfj/f + aj/t^ . . . in equation (32), which are here 
treated as transients. 

Substitution of equation (50) for FJm, f) in equation (48) yields a linear 
equation for F(m, f). Retaining the leading terms in this linearized equation, 
one can solve it for F(m, f) and thereby obtain a first approximation for the 
distribution of large asteroids. This was done in Dohnanyi (1970f>) with the 
result 

where 

F(m, i)=A{f)m~nl(> 

A(t)=A0 i + M0O"~a+5/3tf(r')<*-1 

6(2-n)-l 

a- 1 

-1 

(51) 

(52) 

AQ is the value of A when the time parameter f equals t^. 
We now let r0 denote the present time and^40 the present value of .4(f); we 

have (cf. Dohnanyi, 1969), 

A(t)=A0 
i + ('-'o) 

(53) 
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where r^ is the mean time between catastrophic collisions of the largest 
objects M„{ci. Dohnanyi, 1969), if the latter could survive these collisions. It 
was estimated (Dohnanyi, 1969) that 

roo~109yr (54) 

Combining equations (53) and (54), we see that, according to the present 
model, it will take on the order of 3 X 109 yr for the number of asteroids to 
decrease to one-half its present value. A(t) cannot, of course, be extrapolated 
backward over long periods of time because it is a first approximation to the 
distribution of asteroids a long time after their creation. 

The first approximation of F(m, t) given by equation (51) has the property 
that it goes over into a0(w, r); i.e., into j4(f)m_11/6 for sufficiently small m. 
Thus 

F(m, t)~A(t)m-nl6 m<M„ (55) 

as can readily be seen from equation (51). 

DISCUSSION OF RESULTS 

Physical Significance of the Stationary Solution (a « 11/6) 

It is difficult to give a simple physical argument that would demonstrate, 
from first principles only, that a « 11/6 is the obvious solution to the collision 
equation (eq. (21)). It has, however, been shown in Dohnanyi (1969) that the 
total amount of mass Afj 2 crushed catastrophically per unit time by projectile 
masses in any finite range m^ to m2 is 

fm2 fr'M 
M12*> I ANTadM J M1KM^AM1~

adM1 

> i JM 

K ) (m2-i*+M - mi-
2°*lW) (56) 

(-a + 8/3)(-2a+ll/3) 

when a =£ 11/6 and m2 <.AOr' , and 

KA2(r'ra+8l3 m2 
M, 2 = In — (57) 

- a+8 /3 ml 

when a = 11/6 and m2 <M^jV'. 
In these equations only the leading terms have been retained, treating 

projectiles as point particles and disregarding grazing collisions. 
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We now consider equations (56) and (57) in more detail. It can readily be 
seen that if a > 11/6, then Af12 will mainly depend on Wj if the logarithmic 
interval m^m^ is sufficiently large; i.e., Af12 depends on the particular value 
of mi but is insensitive to m2. The converse is true for a < 11/6; for 
sufficiently large m^rrty, A/12 depends on the particular value of m2 and not 
onmj . Thus, for a sufficiently large logarithmic interval m2/m1, practically all 
mass is crushed by the smallest projectile objects in the interval for a > 11/6 
and practically all mass is crushed by the biggest projectile masses in the 
interval for a < 11/6. For a = 11/6, however, M12 does not depend on the 
particular value of either m^ or m2 but only on their ratio m2/wj. Therefore, 
the total mass crushed per unit time in the asteroidal belt depends, mainly, on 
the particular value of the limiting masses of the distribution, ju or M„, 
depending on whether a < 11/6 or a > 11/6, respectively; whereas for a = 11/6 
the mass production is constant for fixed logarithmic intervals of projectile 
masses OT2/WJ and is independent of the limiting masses n and Mm in a first 
order of approximation. 

Relative Importance of the Various Collisional Processes 

The result a = 11/6 is valid when only the leading terms of equation (21) are 
retained. A more detailed treatment has to consider the influence of higher 
order terms, as well. This was done in Dohnanyi (1969) for a distribution of 
this type 

f(m)=Am-a (58) 

and for masses m that are far from the limiting masses ̂  and Mm. 
Figures 4 and 5 are plots, in units of (KA2m~2a+5^)~l, of the number of 

particles per unit mass, volume, and time removed (or created) by the 
individual collisional processes and their sum for two different average 
collisional velocities, as indicated. The population index of the crushed 
fragments during each collision TJ is taken to be the experimental value 1.8. The 
value of a at which the curve representing the sum of all processes crosses the 
horizontal axis (i.e., the value of a at which the individual processes add up to 
zero) is the solution for a of equations (33) and (37). 

It can be seen, from figures 4 and 5, that the particle creation term is 
significant only for values of a lower than about 1.9 and that the influence of 
the erosive reduction of the masses dominates for higher values of a. The 
individual processes and their sums exhibit remarkably similar trends; the 
values of a at which steady state is reached is a = 1.841 in figure 4 and 1.835 in 
figure 5. It can be seen, from these figures, that the steady-state distribution is 
determined by the balance of the catastrophic creation and collision processes. 
Because, however, it is readily shown that the contribution of erosive creation 
is at most on the order of T / r ' « 1/50 times the similar contribution of 
catastrophic processes, we may conclude that erosion has only a minor effect 
on the steady-state distribution. 
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POPULATION INDEX, a 

\p = rate of change in the number of particles because of particle creation by 
fragmentation of larger objects 

0 = rate of change in the number of particles because of catastrophic collisions 
6 = rate of change in the number of particles because of erosion 
z = e + 0 + vp 

Figure 4.-Rate of change of the number of particles in units of (KA2m~2a+i'3)~l per 
unit time and unit mass range as a function of the population index a. TJ = 1.8; 
K= 1 km/s;andr = 5. 

Because the material parameter T is greater by a factor of 400 in figure 5 
than in figure 4, we conclude that the value of a at which steady state is 
reached and the relative trends of the individual collisional processes are 
insensitive to the material parameters. The same holds for 77, because a modest 
variation in 17 was found in Dohnanyi (1969) to produce no significant 
departures. 

Distribution of the Largest Asteroids 

The influence of some of the higher order terms on the solution of equation 
(21) was studied in Dohnanyi (1969). (Also see the previous section of this 
paper.) We now consider the influence of the limiting largest mass M«, on the 
solution of equation (21). This was discussed in Dohnanyi (1970fc) and the 
section entitled "Solution for Large Masses" in this present paper. 

https://doi.org/10.1017/S0252921100089120 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100089120


286 PHYSICAL STUDIES OF MINOR PLANETS 

100000 

90000 

»000 

70000 

(0000 

SO 000 

W000 

worn 

20 000 

10 000 

0 

-10000 

-20 000 

-30000 

-MOOO 

-50 000 

-BO 000 

-70 000 

-00 000 

-MOOO 

100 000 

• 

-
-

, 

\ \ * 

J 1 1 L 

^ \ I 

, 

^^^^^^ ^ \ 

^^^\ \9 

\ , \ 
POPULATION INDEX, a 

Figure 5.-Rate of change of the number of particles in units of (KA2m 2 o r + 5 / 3 ) 1 per 
unit time and unit mass range as a function of the population index a. n 
V = 20 km/s; and r = 2000. 

1.8; 

The main result is that in the neighborhood of the limiting largest massM„, 
the number density of asteroids is approximately 

f(m, t)*A(t)m- n / 6 

6(2-n)- l 

(59) 

where A(i) is given by equation (52). Equation (59) is valid only if a long 
period of time has elapsed since the creation of the asteroids and if any 
indication of the initial distribution has been lost. 

Figure 6 is a plot of the cumulative number of the MDS asteroids from 
figure 1 together with the theoretical value 

N(m, t) •• 
Jm 

f(M,t)dM (60) 

where / is given by equation (59). Plots of N for several different values for TJ 
are included; Af«, is taken to be 1.86 X 1020 kg(g = 4) and A has been so 
chosen that N(m, t) is made to coincide with observations at g = 9. 
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Figure 6.-Cumulative number of asteroids having an absolute photographic magnitude g 
or smaller (i.e., mass m or greater). Observed value = solid line histogram (MDS); 
probable value = dashed line histogram (MDS); theoretical value for different values of 
the fragmentation parameter, as indicated. 

It can be seen from figure 6 that the higher values of 17 (11/6 and 23/12) 
provide the best agreement between theory and observation. The curve for 
T? = 5/3 is still reasonably good, but for T? = 3/2 the agreement with observation 
begins to deteriorate. For values of TJ less than 5/3, the number of large 
asteroids is underestimated by theory. 

Erosion Rates 

The rate R at which the effective radius of an asteroid decreases with time 
because of erosive collisions has been estimated by Dohnanyi (1969). The 
result is plotted in figure 7 and a systematic error of about a half order of 
magnitude may be present because of the uncertainties in the albedo alone. 
Because gravitational attraction has not been considered, R is an overestimate 
for large asteroids that retain much of the secondary ejecta produced during 
erosive cratering (Marcus, 1969;Hartmann, 1968). 

The most conspicuous feature of the plot in figure 7 is that R is not a 
constant but a function of the mass of the asteroid undergoing erosion, because 
erosion is not due alone to collisions with minute particles but also to collisions 
with all masses up to m/r', where m is the mass of the target object being 
eroded. Because the population index a is here less than 2, the total mass 
eroded away from a given object by collisions with microparticles is much less 
than the mass eroded away by larger objects. Hence we expect that asteroidal 
surfaces are not smooth but are pock marked by relatively large craters. 
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Figure 7.—Statistical rate of change because of erosion of the particle radius in meters per 
million years (or micrometers per year) as a function of particle mass (or particle 
radius). The horizontal line corresponds to a linear erosion rate of 10 nm/yr. 

Values for R in figure 7 for small masses are not realistic because the 
influence of collisions with cometary meteoroids and spallation by cosmic rays 
has not been included. These processes have been estimated by Whipple (1967) 
to give rise to an erosion rate not exceeding about 10 nm/yr for stones. This 
upper limit is indicated in figure 7 as a horizontal line. Although Whipple's 
estimate applied to objects with orbits intersecting Earth's orbit, his upper 
limit is still meaningful for particles in the asteroidal belt if the erosive effect of 
cometary meteoroids in the asteroidal belt is taken to be comparable to, or 
lower than, the effect near Earth. 

Lifetimes 

Lifetimes of asteroids as a function of their masses and effective radii have 
been estimated in Dohnanyi (1969) and are plotted here in figure 8. 

The lifetime with respect to catastrophic collisions is taken as the mean time 
between collisions of an object with mass m and other objects with masses 
greater thanm/r': 

K\ AM-a{rn^ + Af1/3)2 dM (61) 
. Jm/r' J 
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An uncertainty due to albedo of about half an order of magnitude is present, in 
addition to other uncertainties. 

The value of rcc for the largest asteroids is on the order of 109 yr (fig. 8). It 
can be seen, from figure 8, that the lifetime of the six largest asteroids with 
masses m > 1019 kg is about 4 X 109 yr or longer and therefore these may 
have survived since the time of their creation. The other asteroids have shorter 
lifetimes TCC and may therefore be collisional fragments. 

LOG ) 0 MASS (kg) 

L O G ] 0 R ( m ) 

Figure 8.-Double logarithmic plot of particle lifetimes in years as a function of particle 
masses in kilograms (or particle radii in meters). 

Using a more detailed spatial and velocity distribution, Wetherill (1967) has 
calculated collisional probabilities and obtained values comparable to but 
smaller than the values that a randomly distributed asteroid population 
(particle-in-a-box) would imply. He also estimated rc c for a 1 m diameter 
object for a number of assumed mass distributions. He considered (Wetherill, 
1967, table 7) population indexes in the range a = 5/3 to a =1.8; cor­
responding values of TCC were then computed for r ' = 102, 103, and 104. 
Because these population indexes are lower than the steady-state value of 
a * 11/6, the values in Dohnanyi (1969) for rc c are correspondingly shorter. 
The difference is about an order of magnitude in TCC. 
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The lifetime with respect to erosion (i.e., erosive reduction of the particle 
mass) can be obtained when the expression for m (eq. (23)) is integrated. The 
result is, from Dohnanyi (1969), 

( r ' ) l / 6 

TKA 
(V2- l ) w l /* + (W/*ln ^ ! l l £ j ^ 

m i / 6 - ( r ' M ) i / 6 
(62) 

where the erosive lifetime re of an object was taken to be the time required to 
erode it to one-half its initial radius and where a = 11/6 was used. The 
logarithmic term is significant for masses approaching the value r'ju. as can be 
seen from figure 8, re becoming infinitely long for masses m < r'fi. This 
happens because erosion stops for these small particles and all collisions they 
experience are catastrophic. 

We also plot, in figure 8, the particle lifetimes with respect to the 
Poynting-Robertson effect (Robertson, 1936) rP R and the lower limit of the 
lifetime of small objects Tj due to the influence of cometary meteoroids and 
cosmic rays estimated by Whipple (1967). Here the definition of Tj is similar to 
that of re; i.e., it is the time for erosion of an object to one-half its radius. T P R 

is the time required for an object to traverse radially one-half of the asteroidal 
belt, because of the Poynting-Robertson effect. It can be seen, from the figure, 
that catastrophic collisions dominate the lifetime of the particles greater than 
about 10-5 kg (or 1 mm in radius). Smaller particles may be subject to erosion 
by cometary particles to an extent that this mechanism dominates. 

CONCLUSIONS 

Using a stochastic model of asteroidal collisions, their mass distribution has 
been estimated. The results individually agree with the observed distribution of 
bright asteroids (MDS) and faint asteroids (PLS). After correction for 
completeness, the MDS and PLS distributions are similar in form but differ 
from each other by a numerical factor. Until this difficulty is resolved, some 
uncertainty remains in the precise form of the distribution of bright asteroids. 
Subject to this reservation, we may conclude that the mass distribution of most 
asteroids has reached (i.e., relaxed into) a stationary form that is independent 
of the original distribution and is a power-law function with index ~ 11/6 for 
faint asteroids. 

The influence of catastrophic collisions dominates the evolution of the 
population; erosion plays a minor part. The influence of the Poynting-
Robertson effect becomes dominant, however, for particles with masses of 
10"10 g or smaller. 

Whereas the particle lifetimes, erosion rates, collision probabilities, and 
other derived quantities of physical interest are expected to be self-consistent, 
uncertainties in the albedo of asteroids and in other parameters introduce an 
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appreciable systematic error; the numerical values of these quantities should 
therefore be regarded as order of magnitude approximations. 
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DISCUSSION 

VAN HOUTEN: I wish to comment on figure 2 of Dohnanyi's paper. In this figure, 
the cumulative number of asteroids, as a function of absolute magnitude, is shown for 
MDS and PLS. In the overlapping part, the MDS values are approximately 10 times as large 
as the PLS values. This discrepancy could be traced to the following causes: 

(1) The correction factors for incompleteness in table 15 of MDS in group III 
(3.0 < a < 3.5) are incorrect; the correct values are given in table D-I. 

(2) Dohnanyi apparently used table 5 of PLS for the computation of his 
cumulative numbers of PLS asteroids. But to this table should be added the 
objects that were too bright for measurement in the iris photometer; these are 
five in total. 

TABLE D-l.-MDS Correction Factors 

g 

9.75 
10.25 
10.75 
11.25 
11.75 
12.25 
12.75 

3.0 < a <3.5 

^obs 

39 
64 
93 
78 
77 
45 
17 

N • J,min 

39 
65 
121 
137 
220 
250 
255 

N "max 

40 
69 
143 
169 
320 
450 
472 

2.0 <fl <3.5 

^obs 

114 
150 
180 
184 
168 
150 
138 

N • •"min 

114 
151 
208 
246 
334 
418 
568 

"max 

115 
155 
231 
288 
453 
661 
913 
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After these corrections, and using the average of A r
m a x and Nmin for the MDS value as 

Dohnanyi did, the comparison between MDS and PLS becomes as given in table D-Il. 
The MDS values are still about twice as large as the PLS values, after these corrections. 

But the comparison is based on only 12 objects in the PLS. The statistical uncertainty of 
this number is such that maybe not too much importance should be attached to this 
difference. 

TABLE D-II.-Comparison Between MDS and PLS 

g<-

11.25 
11.75 
12.25 
12.75 

Number of asteroids 
MDS 

961 
1355 
1895 
2635 

PLS 

505 
600 
912 

1704 

DOHNANYI: If the five objects, too bright for photometry in PLS, are included, the 
resulting change in figure 2 is not significant for the purposes of my present study. A 
least-squares fit for asteroids with g > 11 gives a new population index a - 1.815, which 
does not significantly differ from the previous value of a = 1.839 that I have obtained 
earlier. 

The maximum and minimum probable number of asteroids was estimated in MDS. No 
such quantitative estimate is given in PLS even though large correction factors affecting 
every asteroid observed in PLS were employed in extrapolating the relatively small sample 
of PLS to the rest of the asteroid belt. Large nonlinear corrections that have been applied 
are particularly visible when comparing figures 9 and 11 in PLS. The maximum in 
distribution of inclinations (fig. 9, PLS) is near 3° whereas the average inclination for 
cataloged asteroids is about 10° (Watson, 1956). The simple method based on several 
assumptions for estimating the completeness factors due to the inclination cutoff in PLS 
may be especially vulnerable to systematic error. The large correction factors employed 
for the small number of high-inclination orbits may be subject to noise because the 
number of these asteroids probably fluctuates in time. (See Nairn, 1966.) 

Assuming that the PLS results are free from the type of difficulties that led van Houten 
to revise the MDS data, uncertainties in PLS data do still exist. Without a quantitative 
estimate of these uncertainties it might be arbitrary and misleading to connect the PLS 
results with those of the MDS without further comment at this time. 

VAN HOUTEN: Nmax and Afmin in table 15 of MDS should not be regarded as the 
maximum and minimum probable number of asteroids. They are simply numbers derived 
from two different extrapolations of the log N(m0) relation. They should be compared 
with the PLS to see whether any of them approximates the real numbers. This comparison 
yields the results given in table D-II1 (cf. table 14 of MDS). It is seen that at p 0 > 18 even 
the use of equation (7) results in values that are too small. Fortunately the incompleteness 
corrections of the MDS were not extended to such faint magnitudes. Their lower limit is 
p0 = 17, and here the PLS value is indeed between equations (6) and (7) (from which 
Nmin and Nmax were derived, respectively). 

A check is possible on the correctness of the correction factors for the declination 
cutoff, used in the PLS. The corrected values should reproduce the same distribution of 
asteroids with respect to the ecliptic as was found in the MDS. (See fig. D-l.) It was shown 
in the PLS that one strip of the MDS yielded 1.90 times as many asteroids as a PLS strip 
for the same limiting magnitude; moreover it was found in the MDS that 10 percent of the 
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TABLE D-III.-Comparison of MDS Extrapolations 
and PLS values 

17 
18 
19 

PO Equation (6) 

1990 
3240 
4940 

Equation (7) 

3700 
8300 
18600 

PLS 

3240 
11500 
28200 

NOTE.-Tbe mean photographic opposition magnitude is 
defined in the MDS. 

1 1 1 r 

Figure D-l.-MDS frequency distribution of absolute magnitudes g for three distance 
zones and their sum. This was originally figure 5 of the MDS; revised by I. van 
Houten-Groeneveld. 
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asteroids at a given opposition fall outside the MDS region. Therefore the comparison 
between MDS and PLS indicates that the correction factor for the inclination cutoff, 
integrated over the three distance groups, should be 1.10 times 1.90, or 2.09. 

Using the approximation of circular orbits, the correction factors for the inclination 
cutoff for the three distance intervals separately were found to be 1.94, 2.42, and 2.45, 
respectively. The numbers of objects in the three distance groups are 52, 29, and 19 
percent of the total (first-class orbits used only). This results in an integrated correction 
factor for the inclination cutoff of 2.18. The two numbers differ by only 4 percent. This 
shows that the correction factors for the inclination cutoff, as used in the PLS, are 
completely satisfactory. 

The correction factor used to extend the PLS field to the whole sky depends on the 
size of the PLS field, which is accurately known. This correction factor cannot give rise to 
any inaccuracy. 

In short, I do not see any reason to suppose that systematic errors are present in the 
PLS results. The accuracy of the PLS material is probably better than the MDS because 
the photometric material was larger, every asteroid being measured about six times, and 
because accurate reductions to absolute magnitude were available. Therefore 1 do not 
share Dohnanyi's reluctance to combine the two surveys. According to me, such a 
combination is completely justified. 
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2For additional information on the PLS, the reader is referred to van Houten's paper, 
p. 183. 
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