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Abstract
Machine vision has been extensively researched in the field of unmanned aerial vehicles (UAV) recently. However,
the ability of Sense and Avoid (SAA) largely limited by environmental visibility, which brings hazards to flight
safety in low illumination or nighttime conditions. In order to solve this critical problem, an approach of image
enhancement is proposed in this paper to improve image qualities in low illumination conditions. Considering the
complementarity of visible and infrared images, a visible and infrared image fusion method based on convolutional
sparse representation (CSR) is a promising solution to improve the SAA ability of UAVs. Firstly, the source image
is decomposed into a texture layer and structure layer since infrared images are good at characterising structural
information, and visible images have richer texture information. Both the structure and the texture layers are trans-
formed into the sparse convolutional domain through the CSR mechanism, and then CSR coefficient mapping are
fused via activity level assessment. Finally, the image is synthesised through the reconstruction results of the fusion
texture and structure layers. In the experimental simulation section, a series of visible and infrared registered images
including aerial targets are adopted to evaluate the proposed algorithm. Experimental results demonstrates that the
proposed method increases image qualities in low illumination conditions effectively and can enhance the object
details, which has better performance than traditional methods.

Nomenclature
ADS-B Automatic dependent surveillance-broadcast
CNN Convolutional neural network
CSR Convolutional sparse representation
GAN Generative adversarial network
LiDAR Light Detection and Ranging
SAA Sense and Avoid
SR Sparse representation
SWAP Size, weight and power
TCAS Traffic Alert and Collision Avoidance System
UAV Unmanned aerial vehicle

Greek symbol
μ Control texture smooth degree
σ Control texture size
λ Control weight of l1 norm
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1.0 Introduction
The capability of Sense and Avoid (SAA) is considered to be the most important component for the
integration of unmanned aerial vehicles (UAV) into the National Aerospace System [1, 2]. SAA is com-
posed of two crucial parts in general: (1) the sensing part, aimed at detecting all aerial targets threatening
UAV flight safety with the help of on-board sensing devices; and (2) the avoiding part, aimed at elim-
inating the potential hazards based on the sensing result by trajectory re-planning and corresponding
flight control [3].

The sensing part is the foundation of SAA. According to the working pattern of onboard sensing
devices, SAA can be divided into two main categories: cooperative and non-cooperative. The sens-
ing devices for cooperative SAA contain Traffic Alert and Collision Avoidance System (TCAS) [4]
and Automatic Dependent Surveillance-Broadcast (ADS-B) [5], which have been widely installed on
manned aircraft. The non-cooperative SAA is operated with onboard sensing devices free from infor-
mation exchange. The sensing devices for non-cooperative SAA contain machine vision [6], acoustic
system [7], and Light Detection and Ranging (LiDAR) [8]. Different from non-cooperative devices,
the onboard sensing devices for cooperative SAA largely depend on information exchange with aerial
targets.

Compared to all airborne sensing devices, machine vision shows great potential to enhance the
capabilities of SAA for the following reasons [9]:

• Machine vision can detect all the dangerous flying targets without information exchange, which
makes the perception of non-cooperative aerial targets possible.

• The information gathered by machine vision is abundant compared with other non-cooperative
sensors. For example, the category of aerial targets can be acquired by image recognition
algorithm, and proper collision avoidance maneuvers can be selected according to the target
category.

• Machine vision outperforms other airborne sensor devices in terms of size, weight, and power
(SWAP) [10], which makes the installation of machine vision on small UAVs possible.

The application of machine vision for SAA has been extensively researched, and a series of algo-
rithms and systems based on vision have been developed. However, there are still some challenges in the
perception part of SAA, and one of the most serious is the high demand for image quality. The factors
that may affect the airborne image quality can be summarised as follows: (1) inadequate illumination in
dark environments [11]; (2) blurred image caused by aircraft position and posture variation [12]; and
(3) target occlusion caused by cloud and mist [13]. It is worth mentioning that previous SAA research
work based on vision, including aerial target detection, tracking and pose estimation, are all proposed
with the precondition that image quality is good enough. However, low image quality will influence the
performance of these algorithms greatly in real application because it will directly lead to the loss of
target texture information, which will bring great difficulties to feature extraction and target detection.
Therefore, the low image quality will reduce the perception ability of the target, and the visual perception
range will be reduced, which is extremely unfavourable for SAA [14]. Among these factors, low illumi-
nation is the most typical one, which will directly influence UAV’s threat target perception ability in low
illumination conditions. Therefore, the research motivation of this paper includes two points: restraining
the attenuation of UAV’s visual perception range in low illumination and enhancing the structure and
texture information of the detected target for SAA application.

As shown in Fig. 1, the helicopter is not clear in visible image in low illumination conditions. But
the infrared image can effectively capture the structure of helicopter, compared with the lack of texture
information for visible images. Considering the complementarity of visible and infrared sensors, it is
feasible to combine these two visual information to improve the image quality. As shown in Fig. 1(c),
The fused image combines the advantages of both visible and infrared images effectively.

Therefore, a CSR-based visible and infrared image fusion method is proposed to enhance the SAA
ability of UAVs in low illumination conditions in this paper. Firstly, the source image is decomposed into

https://doi.org/10.1017/aer.2023.51 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.51


The Aeronautical Journal 491

(a) (b) (c)

Figure 1. Visible, infrared and fused image containing aerial targets.

texture and structure layers since infrared images are good at characterising structural information and
visible images have richer texture information. Then both the structure and texture layers are transformed
into the sparse convolutional domain through the CSR mechanism, and the CSR coefficient mapping are
fused by activity level assessment. Finally, the image is synthesised through the reconstruction results
of the fusion structure and texture layers.

The main contribution of this paper can be summarised below:

• Aiming at shortcomings of semantic information loss and low tolerance of detail information
caused by traditional methods, a visible and infrared image fusion method based on multi-layer
CSR is proposed to enhance the visual perception of UAVs in low illumination.

• Different from the local transformation in traditional methods, the global modelling ability of
the proposed method has obvious advantages under the condition of mismatch.

• Compared with the deep learning methods, the proposed method adopts an unsupervised learning
mode, which does not require many labelled samples for training and is easier to implement.

The rest of this paper is organised as follows. Firstly, the application background of this method is
introduced, and the significance and motivation of the research are explained in Section 1. Section 2
conducts an analysis of relevant literature reviews. Section 3 introduces the framework and mechanism
of the proposed visible and infrared image fusion algorithm in this paper. In Section 4, the effectiveness
of the proposed algorithm is verified by a series of experiments in three scenarios and compared and
analysed with other algorithms. The whole paper is summarised in Section 5.

2.0 Literature review
Due to the advantages, including non-cooperative target perception, abundant information acquisition
capability and good size, weight and power (SWAP) features, vision-based SAA has shown great poten-
tial for increasing UAV safety levels in recent years. The general framework of vision-based SAA consists
of four key components: aerial target detection, tracking, relative pose and position estimation and
avoidance [2]. The related research for each component can be concluded as follows:

• Aerial target detection [10, 15, 16, 17]. Aerial target detection is the first step of vision-based
SAA, which aims at picking out targets with potential risk from images/videos. Research on
aerial target detection can be classified into foreground modelling-based methods and back-
ground modelling-based methods, which utilises information from single image and consecutive
frames respectively.

• Aerial target tracking [18]. After the detection of aerial targets, the detected bounding box should
be tracked continuously by target tracking algorithms. Vision-based target tracking algorithms
can be classified into generative and discriminative tracking, and both categories have been
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applied to vision-based SAA. The main challenge of vision-based aerial target tracking is the
adaptive scale transformation of the tracking bounding box.

• Relative state estimation [19, 20]. This component aims to obtain the relative position and attitude
between host UAV and aerial targets with potential risk. Since the risk level is determined based
on the estimated angle and range, this step is crucial for collision avoidance.

• Collision avoidance [3, 21]. Finally, the potential risk of aerial targets should be eliminated
by trajectory re-planning and tracking control based on the estimated pose and position. The
biggest challenge for vision based collision avoidance is that the range information can be hard
to acquired in some cases, especially for monocular vision.

Generally the four key components concluded above are important, but the foundation of vision-
based SAA is the high quality image. Therefore, the enhancement of image quality in some undesirable
conditions is imperative. It is worth noting that the previous research related to vision-based SAA is
carried out assuming that image quality is good enough. Several factors may deteriorate airborne image
quality in real applications, and insufficient illumination in dark environments is the most crucial one.
Since visible and infrared images containing aerial targets are complementary in dark environments,
increasing image quality by visible and infrared image fusion is desirable.

In general, the algorithm designed for visible and image fusion can be concluded as three steps:
image transformation, image fusion and image reconstruction. Among the three steps, the method for
image transformation is the foundation of the whole algorithm. For this reason, the research of image
fusion algorithms during the past decade mainly focuses on developing a more concise and effective
transformation method. The most widely used transformation methods for image fusion are sparse rep-
resentation (SR), convolutional sparse representation (CSR) and deep learning-based methods such as
convolutional neural networks (CNN).

The application of SR-based image fusion has achieved great success in the past few years. However,
due to the local representation nature of SR, the drawbacks of SR-based fusion algorithm can be
concluded as follows [22, 23]: (1) The context information loss. Since SR-based fusion must firstly
decompose source image into local patches, the context information within the source image is
neglected. It is worth noting that context information is essential for vision understanding and analy-
sis. (2) The high sensitivity to registration errors. As SR fuses all the image patches respectively, all
the image patches need to be accurately registered. However, image registration itself is also a difficult
task, and registration error may always exist. To overcome this problem, the fusion framework designed
based on global representation algorithms has been proposed in recent years, and the most representative
algorithms are CNN and CSR [24].

Deep learning has revealed the powerful potential for computer vision tasks recently. The advan-
tage of deep learning-based image fusion methods is that the fusion strategy can be obtained through
learning, and the fused result can be obtained without the artificial design of fusion rules [25]. As a super-
vised learning approach, the framework of CNN can be classified into two main categories, namely the
regression CNN and classification CNN [26]. Both the regression CNN and classification CNN have
been successfully applied to image fusion [27, 28]. Generative adversarial network (GAN), a novel
deep learning model, can extract typical characteristics by using different network branches according
to the modality of different image sources [29]. Because of its advantages in processing multi-modality
information, GAN is the future development direction of image fusion methods, which is suitable for
task-driven image fusion, such as target perception [30]. However, the restriction of CNN-based image
fusion may come from the high demand for labelled training samples. CSR originated from the de-
convolutional networks designed for unsupervised image feature analysis [31]. With applications to
image fusion, CSR can be treated as a global image transformation approach. The advantages of CSR-
based image fusion over SR and deep learning can be concluded as follows [23]: (1) the global modelling
capability of CSR makes it free from image decomposition when applied to image fusion. For this reason,
the above-mentioned deficiencies of SR based fusion, including context information loss and high sen-
sitivity to misregistration caused by local transformation, is easy to solve; (2) the unsupervised learning
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Figure 2. Framework of visible and infrared aerial targets image fusion.

nature of CSR makes it free from a large amount of labelled ground truth images. Therefore, CSR has
revealed great potential for image fusion.

For this reason, the elastic-net regularisation based multi-layer CSR is adopted for image fusion in
this paper. Instead of directly fusing source images, both visible and infrared images are decomposed
into structure and texture layers. The image layers, after decomposition, are then transformed into the
sparse convolutional domain for image fusion. Finally, the transformed sparse convolutional coefficient
mapping corresponding to visible and infrared images are fused by activity level assessment, and the
fused image is obtained by image reconstruction.

3.0 Visible and infrared image fusion method for SAA
The general framework of the image fusion method for SAA contains three parts, as shown in Fig. 2.
Firstly, both the visible image IVI and infrared image IIN are decomposed into two layers, namely structure
layers IIN

S , IVI
S and texture layers IIN

T , IVI
T . Secondly, the decomposed structure layers IIN

S , IVI
S and texture

layers IIN
T , IVI

T are transformed into the sparse convolutional domain via CSR by pre-learned dictionary
D, and the transformed sparse convolutional coefficient mapping corresponding to IIN

S , IVI
S , IIN

T , and IVI
T

are XIN
S , XVI

S , IIN
S , and IVI

S respectively. Thirdly, by transforming the activity map of XIN
S and XVI

S into AIN
S ,

AVI
S , the decision map for structure layer DPS is generated. Similarly, the decision map for texture layer

DPT is generated. Based on the decision map, the fused convolutional sparse coefficient map XF
S and XF

T

for structure and texture layers are obtained. The fused result IF
S and IF

T for structure and texture layers
are reconstructed by utilising sparse convolutional dictionary D. Finally, the fused image IF is obtained
by synthesising XF

S and IF
T . In this section, the method for image decomposition, image transformation

and image reconstruction will be introduced in detail.
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3.1 Image decomposition
Typically, image I is composed of two layers: the structure layer IS and the texture layer IT , as expressed
in Equation (1). The structure layer usually represents the semantic information and captures salient
objects inside the image, while the texture layer emphasises the preservation of the details of the image.
And the semantically meaningful structure layers are usually covered by texture layers as shown in Fig. 2.
As mentioned above, since infrared image and visible image are good at retaining structure and texture
information respectively, so it is desirable to decompose these two layers for image fusion.

I = IS + IT (1)

This paper adopts the relative total variation based image decomposition algorithm for image decom-
position [32]. The objective function for image decomposition is expressed as Equation (2), where IS(i)
and I(i) are pixel values of the structure layer and original image at location i respectively, p is the total
pixel of the input image, μ is the parameter controlling smooth degree, and ε is a small positive number
to avoid denominator being zero. Vx(i) and Vy(i) from in Equations (3) and (4) are total variations in
x and y direction for pixel i, where R(i) is the rectangle region centred at i, gi,j is weighting function
designed to avoid spatial affinity, ∂x and ∂y are partial derivatives in x and y direction respectively. The
formulation of gi,j is expressed as Equation (5), where σ is the parameter controlling window size. The
influence of the image decomposition parameters on image fusion will be analysed in Section 5.

argmin
Is

p∑
i=1

(IS(i) − I(i))2 + μ ·
(

Vx(i)

Vx(i) + ε
+ Vy(i)

Vy(i) + ε

)
(2)

Vx(i) =
∣∣∣∣∣
∑
j∈R(i)

gi,j · (∂xIS)j

∣∣∣∣∣ (3)

Vy(i) =
∣∣∣∣∣
∑
j∈R(i)

gi,j ·
(
∂yIS

)
j

∣∣∣∣∣ (4)

gi,j ∝ exp

(
− (xi − xj)

2 + (yi − yj)
2

2σ 2

)
(5)

3.2 Image transformation
In this part, the structure layers IVI

S , IIN
S and texture layers IVI

T , IIN
T of visible and infrared images are

transformed into the sparse convolutional domain by elastic net based CSR. In Equation (6), the basic
idea of CSR is that an input image I can be represented by the sum of the convolutional product of equal-
sized convolutional dictionary filters D ={d1, d2, . . . , dm} and sparse convolutional coefficient mapping
X ={x1, x2, . . . , xm}, where m is the number of convolutional dictionary filters.

I =
m∑

i=1

di ∗ xi. (6)

For each input image, the convolutional dictionary is pre-learned. Therefore, the computation of
sparse convolutional coefficient mapping X is essential for image transformation. Conventionally, the
computation of X can be operated by l1 norm regularisation, and the objective function can be expressed
as Equation (7), where λ is the regularisation parameter.

arg min
xi

1

2

∥∥∥∥∥
m∑

i=1

di ∗ xi − I

∥∥∥∥∥
2

2

+ λ

m∑
i=1

‖xi‖1. (7)

Since l1 norm regularisation could not guarantee group selection when applied to image transforma-
tion, the elastic-net based regularisation is proposed in this paper to combine the advantages of l1 norm
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and l2 norm regularisation. The objective function for elastic-net based regularisation can be expressed
as Equation (8). The solution of Equation (8) can be acquired by the alternating direction method of
multipliers (ADMM) [33].

arg min
xi

1

2

∥∥∥∥∥
m∑

i=1

di ∗ xi − I

∥∥∥∥∥
2

2

+ λ

m∑
i=1

‖xi‖1 + (1 − λ)

m∑
i=1

‖xi‖2
2 (8)

Moreover, the solution of the convolutional dictionary filters can be regarded as an optimisation prob-
lem, as shown in Equation (9). The solution of Equation (9) can be further divided into the optimisation
of variables xi and di. The solution of the former is the same as Equation (7). The solution of the latter
can be regarded as the convolution form of the method of optimal directions (MOD) [34].

arg min
dixi

1

2

∥∥∥∥∥
m∑

i=1

di ∗ xi − I

∥∥∥∥∥
2

2

+ λ

m∑
i=1

‖xi‖1, s.t.‖di‖2 = 1 (9)

Therefore, as presented in Equation (10), given the structure layers of IVI
S , IIN

S and texture layers IVI
S ,

IIN
T of visible and infrared images, the sparse convolutional coefficient mapping XIN

S , XVI
S , XIN

T and XVI
S

can be estimated via elastic net regularisation-based CSR.

arg min
xIN,VI

S,T i

1

2

∥∥∥∥∥
m∑

i=1

di ∗ xIN,VI
S,T i

− IIN,VI
S,T

∥∥∥∥∥
2

2

+ λ

m∑
i=1

∥∥xIN,VI
S,T i

∥∥
1
+ (1 − λ)

m∑
i=1

∥∥xIN,VI
S,T i

∥∥2

2
(10)

3.3 Image reconstruction
The l1 norm max strategy is adopted to fuse the sparse convolutional coefficient mapping of structure
and texture layers after the computation of XIN

S , XVI
S , XIN

T and XVI
S in Equation (11), where XS(i, j) and

XT(i, j) denotes the content of XS and XT at location(i, j) respectively.

XF
S,T(i, j) =

{
XIN

S,T(i, j)
∥∥XIN

S,T(i, j)
∥∥

1
>

∥∥XVI
S,T(i, j)

∥∥
1

XVI
S,T(i, j)

∥∥XIN
S,T(i, j)

∥∥
1
<

∥∥XVI
S,T(i, j)

∥∥
1

(11)

Since the fusion of the structure layer is operated in the transformation domain, the fused results of
structure and texture layers XF

S,T ={
xF

S,T 1
, xF

S,T 2
, . . . , xF

S,T m

}
need to be transformed back to image domain.

As presented in Equation (12), the reconstruction of the fused result of structure layer XF
S,T can be

acquired by utilising the convolutional dictionary filter.

IF
S,T =

m1∑
i=1

di ∗ xF
S,Ti

. (12)

Finally, the fusd image IF can be obtained by superimposing the fused result of structure and texture
layers, as presented in Equation (13).

IF = IF
S + IF

T . (13)

4.0 Experimental simulation and analysis
In this section, three scenes of visible and infrared images containing aerial targets are selected for the
image fusion experiment as presented in Fig. 3, where the selected images obtained by different sensors
are all complimentary.

To effectively evaluate the algorithm performance, objective and subjective metrics are adopted to
function the quality of image fuseds. Subjective metrics are operated by human eyes observation, which
is intuitive and easy to operate. However, subjective metrics may fail to capture the slight differences
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Figure 3. Different sences of visible and infrared images containing aerial targets.

between fused results. Therefore, the objective metrics are adopted to evaluate the image fused results.
The definition and function for each objective metric is presented as follows [35]:

• QMI . Objective Metric QMI is defined based on information theory, and a higher value of QMI

indicates a better fused result.
• QM. Objective metric QM is defined based on a multi-scale scheme, and a higher value of QM

indicates a better fused result.
• QS. Objective metric QS is defined based on image structural similarity, and a higher value of QS

represents a better fused result.
• QCB. Objective metric QCB is defined based on the human perception system, and a higher value

of QCB represents a better fused result.

Three important parameters have been recognised to bring some influence on fused results. The
parameter’s name, influences and value range are concluded as Table 1. The parameter μ affects the
smoothness of the image decomposition texture. Some noises can be filtered by proper image smoothing.
However, the effect of image fusion decreases significantly with the increase of parameter μ, because
higher texture smoothness will lead to the loss of image details. We have found that when μ exceeds
0.5, the image quality can not achieve satisfactory results for any other parameters. Considering the
above factors comprehensively, the range of value of μ should not be too large, so we choose(0, 0.05]
as the range of value of μ,which can explain the changing trend. The parameter σ affects the texture
size of image decomposition. In the experiment, the change of σ value has no obvious influence on the
fusion effect, so we choose a larger range. Parameter λ indicates regularisation of convolution sparse
representation, which must be in the range of (0, 1]. With the increase of λ, the effect of image fusion will
decline because larger λ will bring greater reconstruction errors, eventually affecting the fusion effect.
When λ is close to 1, the model is under fitted, while when λ tends to 0, the model is easily over-fitted.
Therefore, in order to facilitate the adjustment of λ in order of magnitude, the range of value of λ should
not be too large, we choose [0.0099, 0.99] as the range of value of λ.

4.1 Quantitative evaluation for μ

The value range of μ is presented in Table 1, and the values of σ and λ when evaluating μ are 3 and
0.001 respectively. The fused results with the variation of μ are presented in Fig. 4. The QMI , QM, QS,
QCB for different scenes are presented in Fig. 5. It can be seen intuitively from Fig. 4 that with the
increase of μ, the contours of the background and the target will be weakened in most cases, which
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Table 1. Definition of three important parameters for evaluation

Function Value range
μ Control texture smooth degree (0, 0.05]
σ Control texture size (0, 6]
λ Control weight of l1 norm [0.0099, 0.99]

Figure 4. Image fused results with the variation of μ for different scenes.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. QMI , QM, QS, QCB with the variation of μ.

is not conducive to subsequent detection tasks. According to Fig. 5, it can be known that the effect of
image fusion is negatively correlated with μ in most cases, but smoothing out background noise can
bring some improvement in some specific scenes. The fusion effect decreases with the increase of μ,
because the higher smooth degree may cause detail loss of the fused image.
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Figure 6. Image fused results with the variation of σ for different scenes.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. QMI , QM, QS, QCB with the variation of σ .

4.2 Quantitative evaluation for σ

The value range of σ is presented in Table 1, and the values of μ and λ when evaluating σ are 0.0015
and 0.001, respectively. The fused results with the variation of σ are presented in Fig. 6. The QMI , QM,
QS, QCB for different scenes are presented in Fig. 7. It can be seen from Fig. 6 that there is no significant
difference in the effect of image fusion with the change of σ value. As can be seen from Fig. 7, when
σ is in the range of (2, 4), the evaluation index of image fusion fluctuates stably in a fixed interval.
Experiment results reveal that the variation of σ dose not significantly influence fused results.

4.3 Quantitative evaluation for λ

The value range of λ is presented in Table 1, and the values of μ and σ when evaluating λ are 0.0015
and 3 respectively. The fused results with the variation of λ are presented in Fig. 8. The QMI , QM, QS,
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Figure 8. Image fused results with the variation of λ for different scenes.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9. QMI , QM, QS, QCB with the variation of λ.

QCB for different scenes are presented in Fig. 9. As seen from Fig. 8, with the increase of λ, the target
is blurred to produce ghosts, and the background noise is also increased. As seen from Fig. 9, the effect
of image fusion is negatively correlated with the increase of λ, and the increase of λ is not conducive to
subsequent target detection. Generally, the quality of the fused result decreases with the increase of λ. It
is worth noting that the increase of λ will cause the coefficient map to be more sparse, finally indicating
the decrease in the fused result.

4.4 Comparison experiments
To measure the effectiveness of the algorithm proposed in this paper more effectively, three image fusion
algorithms, including SR [36], lasso-based CSR [23] and CNN [27], are selected to compare with the
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Figure 10. Comparison of fused results.

algorithm proposed in this paper. The fused results are compared in Fig. 10. It can be seen from Fig. 10
that there is too much noise in the fused results obtained by SR-method, which will bring many disadvan-
tages. The fusion method based on CSR (lasso) is more robust than SR but loses structural information
such as edges. The fusion method based on CNN is a compromise compared with the above two meth-
ods, but the texture features are poorly maintained compared with the proposed method. From the aspect
of subjective measurement, the algorithm proposed in this paper is capable of preserving image details
while strengthening the object. The comparison of objective measurements containing QMI , QM, QS, QCB

are presented in Table 2. Obviously that the objective measurements of the algorithm proposed in this
paper outperforms other algorithms in most cases. Based on the fused results based on SR, CSR and
CNN in Table 2 (refer to the maximum value among the three), QMI is increased by nearly 19%, QM is
increased by nearly 4%, QS is increased by nearly 2% and QCB is increased by nearly 4% on average.
Although the proposed algorithm is slightly lower than the comparative method in several aspects, its
performance is superior on average and has better robustness.

All the algorithms are implemented in MATLAB 2016b with a 2.4 GHz CPU and 8 GB RAM. The
processing time of the four algorithms are counted by using the tic and toc command of MATLAB, and
the results are shown in Table 3. As can be seen from Table 3, the algorithm proposed in this paper has
obvious advantages in processing time compared with SR and CNN. However, compared with CSR, the
processing time slightly increases due to the need for two convolution sparse operations.
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Table 2. Comparison results of different methods by QMI , QM, QS, QCB

SR CSR(lasso) CNN Ours
QMI Scene 1 2.412 2.915 2.615 3.212

Scene 2 1.697 0.897 2.237 2.496
Scene 3 1.013 1.634 2.254 2.793

QM Scene 1 0.493 0.672 0.691 0.715
Scene 2 0.587 0.657 0.684 0.728
Scene 3 0.686 0.682 0.731 0.747

QS Scene 1 2.233 2.637 2.614 2.713
Scene 2 2.276 1.754 1.989 2.012
Scene 3 2.348 2.521 2.409 2.706

QCB Scene 1 0.349 0.417 0.429 0.413
Scene 2 0.367 0.208 0.473 0.502
Scene 3 0.384 0.408 0.415 0.428

Table 3. Processing time comparison of different image fusion
methods (seconds)

SR CSR (lasso) CNN Ours
Scene 1 859 33 132 65
Scene 2 633 29 96 42
Scene 3 757 31 117 58

5.0 Conclusion
In this paper, an elastic net regularisation based CSR is presented for visible and infrared image fusion.
Since visible images and infrared images are good at preserving texture and structure, the source images
are first decomposed into texture layer and structure layer before image fusion. Then, the structure lay-
ers of the source images are fused by CSR using the pre-learned convolutional sparse dictionary filter.
The texture layers are fused by utilising the decision map generated during the fusion process of struc-
ture layers. Finally, the fused results of the texture and structure layers are synthesised to acquire the
fused image. To verify the effectiveness of the proposed algorithm, both subjective and objective mea-
surements are selected to evaluate the effectiveness of the fusion algorithm proposed in this paper. The
simulation results reveal that the proposed algorithm can preserve image details while strengthening
objects, and it is superior to other image fusion methods in most cases.
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