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NON-FACTIVE KOLMOGOROV CONDITIONALIZATION

MICHAEL RESCORLA

Department of Philosophy, University of California, Los Angeles

Abstract. Kolmogorov conditionalization is a strategy for updating credences based on
propositions that have initial probability 0. I explore the connection between Kolmogorov
conditionalization and Dutch books. Previous discussions of the connection rely crucially upon
a factivity assumption: they assume that the agent updates credences based on true propositions.
The factivity assumption discounts cases of misplaced certainty, i.e., cases where the agent
invests credence 1 in a falsehood. Yet misplaced certainty arises routinely in scientific and
philosophical applications of Bayesian decision theory. I prove a non-factive Dutch book
theorem and converse Dutch book theorem for Kolmogorov conditionalization. The theorems
do not rely upon the factivity assumption, so they establish that Kolmogorov conditionalization
has unique pragmatic virtues that persist even in cases of misplaced certainty.

§1. Conditioning on a probability zero proposition. Bayesian decision theory models
how the credences of an idealized rational agent evolve over time. Suppose that the
agent has initial credences P and subsequently transitions to new credences Pnew . The
agent has conditionalized on E when

(1) Pnew(.) = P(.|E),

where P(H |E) is the initial conditional probability of H given E. A conditioning
proposition is a proposition on which the agent has conditionalized.

Philosophers usually confine attention to scenarios where the conditioning proposi-
tion E has non-zero initial probability. Conditional probabilities then satisfy the ratio
formula

P(H |E) =
P(H&E)
P(E)

,

which yields the following recipe for conditionalizing on E:

(2) Pnew(H ) =
P(H&E)
P(E)

.

When an agent updates her credences through (2), I will say that she engages in ratio
conditionalization. Using ratio conditionalization, we can model a wide range of credal
reallocation scenarios.
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2 MICHAEL RESCORLA

The ratio formula is ill-defined when P(E) = 0. Yet cases where P(E) = 0 arise
frequently within scientific applications. To illustrate, let X be a random variable with
continuum many values. Orthodox probability theory demands that P(X = x) = 0
for all but countably many values x. Conditionalization on propositions of the form
X = x occurs routinely in statistics [14], physics [47], robotics [46], economics [23], and
virtually every other scientific discipline that uses Bayesian inference. For example, a
navigator might estimate her position based on her distance from a familiar landmark;
an astronomer might estimate when a comet will reach Earth given its current velocity;
and so on.

Say that an agent engages in null updating when she updates her credences based
on a proposition E such that P(E) = 0. Since null updating plays an important role
in scientific practice, any complete foundation for Bayesian decision theory should
address it. We must look beyond the ratio formula for a more general analysis of
conditional probability.

The good news is that Kolmogorov [24] already offered a satisfying analysis
in the same treatise where he laid measure-theoretic foundations for probability.
Kolmogorov’s analysis hinges upon the notion of a regular conditional distribution
(rcd). In the decades since Kolmogorov’s discussion, rcds have come to figure
indispensably in probability theory [2, 34] and Bayesian statistics [11, 14]. The bad
news is that philosophical inquiry into rcds has lagged behind mathematical and
scientific practice. For many decades, rcds received almost no philosophical attention
save for the occasional hostile dismissal (e.g., [16, 18, 19, 30, 41, 42]).

Lately, some philosophers have explored rcds in a more sympathetic vein (e.g.,
[8–10, 15, 20–22, 27, 28, 31, 35, 36, 40]). A running theme is that rcds support a kind
of conditionalization, sometimes called Kolmogorov conditionalization. Recent work
has explored how Kolmogorov conditionalization works and why one might find it
an attractive credal update strategy. The present paper contributes to this initiative by
probing the connection between Kolmogorov conditionalization and Dutch books.

A Dutch book is a set of acceptable bets with a guaranteed net loss. You are Dutch
bookable if it is possible to rig a Dutch book against you. Dutch bookability is a
very undesirable property. When you are Dutch bookable, a sufficiently clever bookie
can pump you for money by offering you a series of bets that you accept. Thus, it is
somehow bad to be Dutch bookable and somehow good to render yourself immune to
Dutch books.

Dutch books have long played a foundational role in Bayesian decision theory.
Ramsey [33] and de Finetti [6] independently proved that, under ancillary assumptions,
agents whose credences violate the probability calculus axioms are Dutch bookable.
Lewis proved a Dutch book theorem for conditionalization. He showed that one can
rig a diachronic Dutch book (a Dutch book with bets at different times) against an
agent who follows any update rule other than conditionalization. Although Lewis did
not initially publish his proof, it became well-known due to Teller’s [45] exposition,
and Lewis [26] eventually published his own treatment. Skyrms [43] proved a converse
theorem: conditionalizers who obey the probability calculus axioms are not Dutch
bookable.

Lewis and Skyrms confined attention to learning scenarios where the conditioning
proposition has non-zero initial probability. For that reason, their theorems have
fairly limited scope when compared with scientific applications of the Bayesian
framework. [36] extends the Lewis–Skyrms theorems to numerous learning scenarios
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NON-FACTIVE KOLMOGOROV CONDITIONALIZATION 3

that feature null updating. The extended theorems show that, in those learning
scenarios, Kolmogorov conditionalization is the unique update strategy that immunizes
the agent from Dutch books.

Unfortunately, the aforementioned diachronic Dutch book theorems rely heavily
upon a questionable factivity assumption: they assume that the agent updates her
credences based only on true propositions. The factivity assumption discounts cases
of misplaced certainty, i.e., cases where the agent invests credence 1 in a falsehood.
Misplaced certainty arises routinely in scientific and philosophical applications of the
Bayesian framework. A navigator who estimates her position based on her distance
from a landmark may mismeasure the distance; an astronomer estimating a comet’s
arrival time based upon its velocity may miscalculate the comet’s velocity; and so on.
Mistakes may arise through carelessness, deception, faulty measurement, or various
other factors. Given the omnipresent potential for misplaced certainty, a complete
treatment should not presuppose the factivity assumption [37]. A complete treatment
should be non-factive.

In this paper, I will generalize the results from [36] to a non-factive setting. I will
consider a class of learning scenarios where the conditioning proposition may be false
and may have non-zero initial probability. I will show that, in those learning scenarios,
Kolmogorov conditionalization is the unique update strategy that guards against Dutch
books. Thus, conditionalization’s pragmatic virtues persist when we allow non-factive
null updating.

Section 2 reviews the basics of rcds. Section 3 discusses how rcds support Kol-
mogorov conditionalization. Section 4 states and proves the non-factive Dutch book
theorem for Kolmogorov conditionalization. Section 5 concludes that Kolmogorov
conditionalization has desirable pragmatic features distinguishing it from rival credal
reallocation strategies.

§2. Regular conditional distributions. Probability theory as formalized by Kol-
mogorov studies a probability space (Ω,F , P), where Ω is a set, F is a �-field over
Ω, and P is a probability measure on F . Elements of Ω are outcomes. Elements of F
are events. For purposes of this paper, we use (Ω,F , P) to model an agent’s credences.
Events serve as the objects of credence. The real number assigned by P to event A ∈ F
measures the agent’s degree of belief in A. Since events serve as the objects of credence,
they play one role traditionally assigned by philosophers to propositions. However, we
need not assume that events have all the features traditionally ascribed to propositions.

In a measure-theoretic setting, the ratio formula mentions intersection of events
rather than conjunction of propositions:

P(A|B) =
P(A ∩ B)
P(B)

,

which is not well-defined when P(B) = 0. Kolmogorov offers a generalized treatment
designed to accommodate cases where P(B) = 0. The basic idea is to associate B
with a collection of suitably related events (some of which may also have probability 0).
Rather than conditionalize on B taken by itself, one conditionalizes upon the associated
collection.

Formally speaking, Kolmogorov’s theory centers on a subset G ⊆ F , where G is
itself a �-field. The idea is to define probabilities conditional on information (possibly
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4 MICHAEL RESCORLA

including misinformation) regarding whether the true outcome belongs to eachG ∈ G.
Kolmogorov’s theory can be glossed in different ways depending on how we interpret
the rather vague phrase “information.” In what follows, I will present my own preferred
interpretation and elucidate Kolmogorov’s approach accordingly.1

2.1. Kolmogorov certainty acquisition scenarios. Suppose the agent gains new
certainties regarding sub-�-field G. She assigns probability 0 or 1 to each event G ∈ G,
and on that basis she reallocates credence over the rest of F . For� ∈ Ω, let �� : G → R

be the function defined by

��(G) =
{

1 if � ∈ G,
0 if � /∈ G, for each G ∈ G.

Call �� a certainty profile over G, and call� an index of �� . Note that �� is a probability
measure. �� models a scenario where, for every G ∈ G, the agent becomes certain that
G does or does not obtain. A notable special case arises when the agent’s certainty
profile �� tracks the truth:

(3) For each G ∈ G, ��(G) = 1 iff the true outcome belongs to G.

Since I am studying non-factive conditionalization, I will not assume that (3) prevails.
I will consider learning scenarios where the agent acquires a new certainty profile
�� that may or may not track the truth. I call these Kolmogorov certainty acquisition
scenarios. In a Kolmogorov certainty acquisition scenario, the agent becomes certain
as to whether the true outcome belongs to each G ∈ G, but her new certainties may be
misplaced.2

A single certainty profile can have many different indices. If outcomes � and �
belong to precisely the same members of G, then they index the same certainty profile:

�� = �� .

In practice, it is often more convenient to deal with indices rather than certainty profiles.
But our main concern is certainty profiles, not indices.

Many scientifically important situations are naturally modeled as Kolmogorov
certainty acquisition scenarios. To illustrate, let X : Ω → R be a random variable.
Suppose the agent becomes certain that X has value r. Thus, she assigns credence 1 to
the event {� : X (�) = r}. If the expression “r” is suitably informative, she is positioned
to become certain of numerous additional events. Assuming that “r” belongs to any
standard notational scheme for the real numbers, she should be willing to affirm or
deny that X ’s value falls between a and b, for any a, b ∈ Q. So she should be willing to
assign probability 1 or 0 to each event

X –1(a, b) for any a, b ∈ Q.

Let �(X ) be the �-field generated by these events, i.e., �(X ) results from starting with
the events X –1(a, b) and closing under complementation and countable union. The
agent’s new certainties over events X –1(a, b) determine a unique certainty profile over
�(X ).

1 Kolmogorov himself favored a frequentist rather than subjectivist interpretation of
probability. So he would not have elucidated his mathematical framework in the subjectivist
way that I will elucidate it.

2 Lee [25] also discusses how sub-�-fields can model non-factive doxastic states.
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NON-FACTIVE KOLMOGOROV CONDITIONALIZATION 5

There are uncountably many events in �(X ). Most of those events a typical agent
will never consider. Even when an agent explicitly represents an event G ∈ �(X ), she
may not compute which probability she should assign to G given her new certainties
regarding the events X –1(a, b). So �� does not plausibly model the explicit certainties
of any agent who remotely resembles a normal human. We should instead regard ��
as modeling an agent’s implicit certainties. The agent does not extrapolate from her
certainty that X = r to new certainties over each event in �(X ), but she is positioned
in principle to do so. �� captures a large collection of certainties that the agent is
positioned to acquire, given her newfound certainty that X = r.

2.2. Update rules. In a Kolmogorov certainty acquisition scenario, circumstances
influence the agent’s credences by fixing new certainties overG ⊆ F . Her new certainties
over G provide her sole basis for reallocating credence over the rest of F . How should
we capture these intuitive ideas in mathematical terms? Initially, one might suggest a
function that takes certainty profiles as inputs and yields new credal reallocations as
outputs. This suggestion is not very mathematically tractable, so Kolmogorov employs
a more roundabout procedure. Rather than treat credal reallocation as a function of
the certainty profile, he treats it as a function of an index for the certainty profile.
He considers a function C : F × Ω → R, where C (A,�) is the new credence to be
assigned to A ∈ F in light of certainty profile �� . I notate C (A,�) as C (A| �). I will
sometimes notate C (.| �) as C� .

What constraints should we place upon C? Since we are using probability measures
to model credences, we demand that

(4) C� : F → R is a probability measure for each � ∈ Ω.

Kolmogorov imposes a crucial additional constraint. He demands that, for eachA ∈ F ,
the one-place function C (A|.) : Ω → R be G-measurable:

(5) C (A|.)–1(– ∞, a] ∈ G for each a ∈ R.

Call any function C that satisfies conditions (4) and (5) an update rule for (Ω,F)
and G. As I will now explain, condition (5) ensures that the agent’s newfound implicit
certainties over G dictate the new credences to be allocated over F .
C (A| �) is the credence to be assigned to A when the agent newly acquires certainty

profile �� . If an index � for the agent’s new certainty profile belongs to the event

C (A|.)–1(– ∞, a],

then the new credence to be assigned to A is ≤ a. If an index � for the agent’s new
certainty profile belongs to event

C (A|.)–1(a,∞),

then the new credence to be assigned to A is > a. Assuming C satisfies the
G-measurability condition (5), both events belong to G. The agent’s certainty profile
�� must therefore assign one of the events probability 1. We consider each case:

• If �� assigns probability 1 to C (A|.)–1(– ∞, a], then � ∈ C (A|.)–1(– ∞, a].
Thus, the new credence to be assigned to A is ≤ a.

• If �� assigns probability 1 to C (A|.)–1(a,∞), then � ∈ C (A|.)–1(a,∞). Thus,
the new credence to be assigned to A is > a.
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6 MICHAEL RESCORLA

So the agent’s new certainty profile dictates whether the new credence to be assigned to
A is ≤ or > a. By contrast, suppose C violates (5). Then the agent’s certainty profile
does not dictate whether the new credence to be assigned to A is ≤ or > a. Her implicit
certainties do not speak to whether the new credence should be ≤ or > a. Hence,
G-measurability formalizes the thought that the agent’s new credal assignment over F
is embedded in her implicit certainties over G.

As an added bonus, G-measurability entails that C induces a well-defined mapping
from certainty profiles to credences. When C is G-measurable, its output does not
depend on the particular index through which we identify a certainty profile:

�� = �� → C� = C�.

To see this, let us prove the contrapositive. Assume that

C� �= C�.
Pick A ∈ F such that C (A| �) �= C (A| �) and let

H =df {� ∈ Ω : C (A|�) = C (A|�)} .
C (A|.) : Ω → R is G-measurable, and H is the inverse image of {C (A|�)} under
C (A|.), so H ∈ G. Since � ∈ H and � /∈ H , it follows that

��(H ) = 1 & ��(H ) = 0

and hence that �� �= �� . Thus,C� andC� are identical whenever� and � index identical
certainty profiles. This observation vindicates Kolmogorov’s decision to study update
rules that take indices rather than certainty profiles as arguments. We want to model
credal reallocation in light of new certainty profiles, so the particular index through
which we identify a certainty profile should not matter.

2.3. The integral formula. Kolmogorov supplements (4) and (5) with an additional
constraint upon C. The constraint is now usually called the integral formula:

(6) P(A ∩G) =
∫
G

C (A|�)dP(�) for each A ∈ F and G ∈ G.

The integral formula generalizes the law of total probability.
When C (A|.) satisfies (5) and (6), it is a conditional probability for A given G.

A function C : F × Ω → R is a regular conditional distribution (rcd) for P given G iff it
satisfies (4)–(6). I will often use the notation PG : F × Ω → R to denote an rcd for P
given G.

As an important special case, suppose that G is generated by a countable partition
E1, ... , En of Ω, where P(Ei) > 0 for each i. Then it is not hard to show that there
exists a unique rcd for P given G, defined by

PG(A|�) = P(A|Ei) =
P(A ∩ Ei)
P(Ei)

if � ∈ Ei .

In this way, Kolmogorov’s theory subsumes the special case where the ratio formula
dictates conditional probabilities.

There always exists a conditional probability for A given G [2, p. 430]. This
conditional probability is unique up to measure 0: any two conditional probabilities
for A given G must agree everywhere except possibly on a set of P-measure 0. Existence
of rcds is less straightforward. If the probability space is pathological, then an rcd for
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P given G may not exist [2, p. 443]. When the probability space is nice enough, there
exists an rcd for P given G. For any Borel set A ⊆ [0, 1], let B(A) consist of the Borel
subsets of A. A measurable space (Ω,F) is Borel iff there exists a Borel set A ⊆ [0, 1]
and a bijection f from (Ω,F) to (A,B(A)) such that f and f–1 are measurable. The
following theorem is basic to the discipline [12, p. 418]:

Theorem: Let (Ω,F) be a Borel space, P a probability measure on (Ω,F), and G ⊆ F
a sub-�-field. Then there exists an rcd for P given G.

Virtually all probability spaces used in Bayesian decision theory are Borel. For example,
every Polish space is Borel. For further discussion of rcd existence, see [34].

§3. Kolmogorov conditionalization. Imagine an agent who begins with credences
given by (Ω,F , P). Suppose there exists PG , an rcd for P given G. Suppose the agent
adopts the following credal reallocation policy:

(7) Respond to new certainty profile �� over G by adopting new credences PG(.|�)
over F .

Suppose the agent subsequently acquires certainty profile �� and, on that basis, adopts
new credences PG(.|�) over F . Then I say that the agent uses PG to conditionalize on
�� . When an agent uses an rcd to conditionalize, I say that she engages in Kolmogorov
conditionalization.

Kolmogorov conditionalization plays a foundational role in Bayesian statistics
[11, 14]. It also figures prominently in many applications of the Bayesian framework,
such as within cognitive science [1] and economics [23, 29].

My main thesis in the paper is that Kolmogorov conditionalization is an appealing
update strategy with distinctive virtues. However, an honest appraisal must grant that
it also faces significant challenges.

The first challenge concerns existence. If there does not exist an rcd for P given G,
then an agent with initial credences given by P cannot Kolmogorov conditionalize.
Luckily, rcds exist in a wide range of cases, including virtually all cases likely to arise
in scientific practice.

The second challenge concerns uniqueness. Setting aside the special case given by
the ratio formula, unconditional probabilities do not determine unique conditional
probabilities: when an rcd exists, there exist infinitely many rcds. Then there are
infinitely many credal reallocation policies (7) to choose from. A Kolmogorov
conditionalizer must select one such policy. Whereas ratio conditionalization mandates
a unique credal update rule, Kolmogorov conditionalization allows infinitely many
distinct credal update rules. This is not a fatal problem, but it suggests that we may
want to supplement Kolmogorov conditionalization with additional constraints upon
credal updates.

The third challenge, which requires more extended discussion, centers upon a
phenomenon called impropriety. Section 3.1 explains the phenomenon. Sections 3.2–
3.4 explore the challenge that it poses to Kolmogorov conditionalizers.

3.1. Propriety. Intuitively speaking, the probability of an event conditional on itself
should be 1. And it is indeed an easy theorem that P(E|E) = 1 when P(E) > 0. What
about cases where P(E) = 0? Say that an update rule C for (Ω,F) and G is proper at
� iff

(8) If � ∈ G , then C (G |�) = 1 for all G ∈ G.

https://doi.org/10.1017/S1755020323000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000345


8 MICHAEL RESCORLA

Equivalently, C is proper at � iff

C� | G = ��.

Here f | d is the restriction of function f to domain d. C is proper iff it is proper at all
� ∈ Ω. Thus, an rcd PG is proper iff

PG(.|�) | G = �� for each � ∈ Ω.

Propriety is the natural extension of the formula P(E|E) = 1 to the rcd formalism.
Given Section 2’s interpretation of the formalism, it is a highly intuitive desideratum:
PG encodes a rule for updating credences based upon new certainties over G, so PG
should preserve those certainties.

Unfortunately, the desideratum is not always satisfiable. Blackwell and Dubins [3]
prove the following:

Theorem: If F is a countably generated �-field, and G ⊆ F is sub-�-field that is not
countably generated, and P is a probability measure on F , then no rcd for P given G is
proper.

As a simple illustration, let � be Lebesgue measure on Borel subsets B of [0, 1]. Let
C be the sub-�-field generated by the countable subsets of [0, 1]. Thus, S ∈ C iff S is
countable or S’s complement is countable. Note that B is countably generated but that
C is not. As Billingsley [2, p. 437] observes, the function �C : F × Ω → R defined by

(9) �C(A|�) = �(A)

is an rcd for � given C. This function massively violates propriety. In particular, (9)
entails

�C({�} |�) = 0.

Intuitively: the probability of an event conditional on itself should be 1, but in this
case it is 0! Worse, Seidenfeld, Schervish, and Kadane [42] show that any rcd for �
given C must satisfy (9) for �-almost all �. Each rcd for � given C is improper almost
everywhere. For further theorems and examples along these lines, see [42].

Propriety becomes more achievable when G is countably generated, due to the
following theorem [42, p. 1614]:

Theorem: If G is countably generated, and PG is an rcd for P given G, then PG is proper
at � for P-almost all �.

This theorem covers cases of conditioning on the value of random variable X, because
�(X ) is countably generated. Even in the countably generated case, though, one cannot
always eliminate the exceptional null event {� : PG is improper at �}. Only under
special assumptions does there exist an rcd that is proper at all outcomes �, as shown
by a theorem due to Blackwell and Ryll-Nardzewski [4]:

Theorem: Let (Ω,F) be a Borel space, P a probability measure on (Ω,F), and X a
random variable on (Ω,F). There exists a proper rcd for P given �(X ) only if X (Ω) is a
Borel set.

There are many random variables X for which X (Ω) is not a Borel set.
More generally, say that Φ : F → G is a selection homomorphism for G with respect

to F iff (a) Φ respects complementation and countable union, and (b) Φ(G) = G
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NON-FACTIVE KOLMOGOROV CONDITIONALIZATION 9

for every G ∈ G. As Sokal [44] notes, the proof techniques from [4] easily extend to
establish the following theorem:

Theorem: Let (Ω,F) be a Borel space, P a probability measure on (Ω,F), and G ⊆ F
a sub-�-field. Then there exists a proper rcd for P given G iff there exists a selection
homomorphism for G with respect to F .

Selection homomorphisms may not exist even when G is countably generated.
Some authors, disturbed by impropriety, deny that rcds furnish a good mathematical

elucidation of conditional probability [3, 18, 42]. These authors maintain that
conditional probabilities should always be proper. They argue on that basis that rcds
cannot serve as conditional probabilities.

In this paper, I am not addressing how well rcds elucidate our pre-theoretic notion
of conditional probability. I am addressing a slightly different question: do rcds help
us model null updating? So I will not explore the challenge that improper rcds pose to
the conceptual analysis of conditional probability. Instead, I will explore the challenge
that they pose to Kolmogorov conditionalizers.

3.2. Implications of impropriety. In a Kolmogorov certainty acquisition scenario,
the agent acquires new certainties over G and on that basis reallocates credences over
the rest of F . Improper updates rules do not provide a good basis for the reallocation.
For suppose that update rule C is improper at �:

(10) C� | G �= ��.

Then it is impossible to maintain certainty profile �� while also maintaining credences
C� . The agent cannot update her credences using C, because she cannot simultaneously
assign different credences to the same event. Since proper rcds do not always exist even
when rcds exist, there are situations where the agent cannot Kolmogorov conditionalize
even though an rcd PG exists. If PG is improper, then the agent cannot follow the credal
reallocation policy (7).

Ideally, we would have liked a credal reallocation strategy that works for all possible
Kolmogorov certainty acquisition scenarios. It is disappointing that Kolmogorov
conditionalization does not give us everything we want. But just how disappointing?

Begin with cases where G is not countably generated. A thinker who mentally
represents putative membership information for G must be able to entertain
uncountably many propositions simultaneously. This is a highly infinitary mental
capacity. On that basis, Easwaran [9, p. 143] argues that G is “irrelevant for probability
as degree of belief” because it “can only be grasped by minds that are far more
complicated than the ones that we normally attribute subjective probabilities to.”
I agree. Cases where G is not countably generated may have mathematical interest, but
they are not well-suited to model agents remotely like us. We should not fret that some
of them fall outside the scope of Kolmogorov conditionalization.

Relatedly, scientific and philosophical applications of Bayesian decision theory make
serious use only of conditioning sub-�-fields that are countably generated. Scientific
applications emphasize learning scenarios that can be modeled with countably
generated conditioning sub-�-fields. To the best of my knowledge, these are the only
conditioning sub-�-fields that play a significant role in Bayesian statistics, probabilistic
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10 MICHAEL RESCORLA

robotics, economics, Bayesian cognitive science, or any other field that studies credal
reallocation.3

Let us turn to cases where G is countably generated. In these cases, each rcd PG is
proper almost everywhere. More precisely, if we define

Prop =df {� : PG is proper at �},
then Propc has probability 0. At first blush, it might seem that the challenge posed
by impropriety is not so worrisome here. If you have credence 0 that impropriety will
occur, then you can rest assured that conflicts between your new certainties and your
update rule will almost never arise. You can adopt credal reallocation policy (7) and
be certain that it will not break down due to a conflict between certainty profile �� and
update rule PG .

On further examination, this reassuring line of reasoning is mistaken. Since
misplaced certainty is possible, you can acquire new certainties �� even though no
index for �� is the true outcome. You may therefore assign a second-order credence to
the proposition

(11) ∃�(I will acquire new certainty profile �� & PG is improper at �)

that differs from your first-order credence in Propc . Probability space (Ω,F , P) may
not formally model second-order credences of this kind, but you may nevertheless
assign them.4 In particular, you may assign positive credence to (11) while assigning
credence zero to Propc . Even if you are certain that Prop will occur, you may think
there is a serious chance that you will acquire future certainties as if Propc occurs. For
example, you may suspect that an evil demon will manipulate you into acquiring future
certainties �� , with � ∈ Propc . Thus, you may assign positive second-order credence
to the possibility that your update rule conflicts with your new certainty profile.

Overall, then, impropriety seems harmless enough whenG is not countably generated
but rather disappointing when G is countably generated. Still, we should keep this
setback in perspective. Although Kolmogorov conditionalization is not always usable,
it is a very general strategy that can be implemented in numerous Kolmogorov certainty
acquisition scenarios.

To see just how far its reach extends, consider the following setup ([11, pp. 26–28],
[14, pp. 5–7]), which is general enough to accommodate virtually every scientific
application of Bayesian inference. A “parameter space” (X,X ) models possible states
of the world. A “sample space” (E, E) models possible information the agent will

3 One of the main examples discussed by Seidenfeld, Schervish, and Kadane [42] is the tail
�-field A for infinitely many flips of a fair coin. A contains all events that do not depend
upon any finite initial sequence of coin tosses. For example, the event the 100th coin toss is
heads does not belong to A, while the event all but finitely many coin tosses are heads does
belong. A, which is not countably generated, generates extreme impropriety when used as a
conditioning sub-�-field. Since tail �-fields arise naturally in probability theory, one might
argue that A is a conditioning sub-�-field that occurs in scientific practice yet that is not
countably generated. However, while A figures in probability theory, it does not figure in
scientific applications that use probability theory to model credence. Thus, I stand by my
assertion in the main text: the only conditioning sub-�-fields that figure in the scientific study
of credal reallocation are countably generated sub-�-fields.

4 See [13, 39] for discussion of how to model higher-order credence.
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NON-FACTIVE KOLMOGOROV CONDITIONALIZATION 11

receive. X is a �-field over X. E is a �-field over E. The parameter space and sample
space combine into a joint space (X × E,X ⊗ E), where

X ⊗ E =df �(X × E)

is the �-field generated by all measurable rectangles of the form

A× B A ∈ X , B ∈ E .

The agent’s credences are given by a probability measure P over X ⊗ E . Let G be the
sub-�-field containing all events

X × B B ∈ E .

G is the canonical embedding of E within X ⊗ E . It is easy to show that there
exists a selection homomorphism for G with respect to X ⊗ E [44]. Thus, assuming
(X × E,X ⊗ E) is Borel, a proper rcdPG exists. The agent can usePG to conditionalize.
Upon gaining new certainties over G, she can use PG to reallocate credence over the
rest of X ⊗ E . This analysis indicates that, although impropriety may arise in principle,
it seldom if ever arises in scientific practice.

3.3. Non-credal interpretations. Given the challenge posed by impropriety, it
is worth briefly examining whether the challenge persists if we reinterpret the
“information” based on which the agent conditionalizes. I have adopted a credal
interpretation: I glossed “information” in terms of a change in the agent’s credences
over G. Specifically, I interpreted the agent as gaining new certainties regarding G,
codified through a certainty profile �� , and I asked how the agent should reallocate
credences over the rest of F in light of her newfound certainties over G. But we might
instead interpret “information” in non-credal terms. We might posit an epistemic state
that impacts the agent’s credences from outside the credal system.

In principle, there are many possible non-credal interpretations one might explore.
Here are two examples from the recent literature:

• In [36], I interpreted the agent as receiving membership knowledge regarding G.
On this interpretation, ��(A) = 1 means that the agent knows that the true
outcome belongs to A, while ��(A) = 0 means that the agent knows that the
true outcome does not belong to A. The question then becomes how the agent
should reallocate her credences over F in light of her new knowledge regarding
G.

• Meehan and Zhang [28] interpret the agent as receiving evidence regarding G,
where evidence is guaranteed to be veridical. The question then becomes how
the agent should reallocate her credences over F in light of her new evidence
regarding G.

Both interpretations are factive. In particular, knowledge is factive: if an agent knows
that the true outcome belongs to A, then the true outcome belongs to A.

Suppose we regard the agent as conditionalizing based on membership knowledge
regarding G. Knowledge is not certainty: an agent may know that E without being
certain that E. It is possible for an agent to know that the true outcome belongs toG ∈ G
without assigning credence 1 to G. Hence, impropriety no longer poses the challenge
raised in Section 3.2. Yet one might worry that impropriety now poses a slightly
different challenge. Maybe it is possible to know that E while setting P(E) < 1, but is
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it rational to do so? An improper update rule may look unsuited for conditionalizing
on knowledge, given that it leads the agent to assign credence < 1 to what she knows.
A similar dialectic arises on Meehan and Zhang’s [28, p. 729] evidentiary interpretation:
it is possible to receive evidence E and set P(E) < 1, but is it rational to do so? Meehan
and Zhang claim that it is not. They endorse a norm that they call Evidential Certainty:
“one should be certain of one’s total evidence.”

I am skeptical of Evidential Certainty and other similar norms. I also see no reason
to suspect that knowledge rationally mandates certainty. For present purposes, though,
I set these matters aside. The key point is that, however they play out, impropriety poses
a less serious challenge to non-credal factive interpretations than to Section 2’s credal
interpretation.

Here is why. On a factive interpretation, the agent receives veridical information ��
indexed by the true outcome�. I argued in Section 3.2 that we may restrict attention to
countably generatedG, so that C is proper at� for P-almost all�. Given this restriction,
the agent is certain that her update rule will be proper on whatever outcome � indexes
her new veridical information. On the knowledge interpretation, for example, she is
certain that she will receive new knowledge encapsulated by a �� such that C is proper
at �. Since the agent regards impropriety as vanishingly unlikely to occur, she need
not find it particularly worrisome. For that reason, non-credal factive interpretations
look much better positioned than Section 2’s credal interpretation with respect to
impropriety.

However, my goal in this paper is to explore null updating from a non-factive
perspective that allows misplaced certainty in conditioning propositions. No treatment
that interprets “information” in factive terms can capture all the credal updates we
would like to capture: factive treatments neglect numerous credal updates that occur
routinely in scientific practice. So interpretations centered around knowledge or non-
credal factive evidence are too limited in scope for my purposes.

One might pursue a non-credal, non-factive interpretation of the agent’s
“information” regardingG. For example, one might articulate a non-factive conception
of “evidence” and treat the agent as gaining evidence regarding G. I am not sure
what this conception would look like or how it would adjudicate the challenge
posed by impropriety. Pursuing such questions would inevitably embroil us in many
epistemological complexities.

In contrast, the credal interpretation is straightforward and requires only notions
that we already need when doing Bayesian epistemology. The credal interpretation
also lets us study credal updates on their own terms, ignoring whatever non-credal
states prompt the updates. So I think we do well to explore the credal interpretation,
which is the task I have undertaken in the present paper. Once we adopt the credal
interpretation, the challenge raised in Section 3.2 arises.

3.4. Alternative update rules. To gain a better perspective on the challenge, let us
compare Kolmogorov conditionalization with alternative credal reallocation strategies
one might pursue.

I confine attention to strategies based on update rules. Imagine an agent who adopts
the following credal reallocation policy:

(12) Respond to new certainty profile �� overG by adopting new credencesC� overF ,

where C is an update rule but not an rcd, i.e., C satisfies (4) and (5) but does not satisfy
(6). (12) faces a problem parallel to that faced by (7): C may be improper at �. The
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theorems proved by Blackwell and Ryll-Nardzewski [4] are more general than stated
in Section 3.2. The general theorems state:

Theorem: Let (Ω,F) be a Borel space and X a random variable on (Ω,F). There exists
a proper update rule for (Ω,F) and �(X ) only if X (Ω) is a Borel set.

Theorem: Let (Ω,F) be a Borel space and G ⊆ F a sub-�-field. There exists a proper
update rule for (Ω,F) and G iff there exists a selection homomorphism for G with respect
to F .

When C is improper at �, it is impossible to maintain certainty profile �� while
simultaneously maintaining credences C� . Thus, discarding the integral formula does
not eliminate the challenge posed by impropriety.

A theorem proved by Ramachandran [32] shows that, under very natural
assumptions, discarding the integral formula does not ameliorate impropriety at all:

Theorem: Let (Ω,F , P) be a probability space and G ⊆ F a sub-�-field. There exists a
proper rcd for P given G iff : (i) there exists an rcd for P given G that is proper at � for
P-almost all �; and (ii) there exists a proper update rule for (Ω,F) and G.

I argued in Section 3.2 that we may confine attention to cases where G is countably
generated, so that condition (i) of the theorem is satisfied. In such cases, a proper
rcd exists iff a proper update rule exists. Abandoning the integral formula yields no
progress whatsoever regarding impropriety.

As this dialectic reveals, the disappointment engendered by impropriety is not
specific to rcds. It arises for all update rules, whether or not one adopts the integral
formula as a constraint on conditional probabilities. Using an update rule other than
an rcd is no remedy.

Some readers may suspect that we should look beyond update rules. Perhaps we
should lift the requirement (4) that new credences be codified by a probability measure?
Or lift the measurability requirement (5)? Neither option seems promising to me:

• The only controversial element in (4) is the requirement that credences be
countably additive. Some authors contend that we should abandon countable
additivity, requiring only that credences be finitely additive (e.g., [7, 19, 42]).
However, countable additivity figures crucially in probability theory and in
many scientific applications of Bayesian decision theory. Abandoning it would
require massive revisions to scientific practice. I doubt that a finitely additive
approach can replicate the explanatory and pragmatic success achieved by the
standard countably additive framework.

• The measurability requirement (5) is highly plausible, as argued in Section 2.2.
Measurability formalizes the intuitive thought that new credal assignments are
embedded in the agent’s implicit certainties regarding G.

For these reasons, I restrict attention to update rules. Given the restriction to update
rules, impropriety poses no special problems for rcds.

§4. Dutch book theorems. I will now show that rcds have distinctive pragmatic
benefits that privilege them over other update rules. I will prove a Dutch book theorem
and converse Dutch book theorem tailored to Kolmogorov conditionalization.

As mentioned in Section 1, Lewis [26] proves a Dutch book theorem for ratio
conditionalization, and Skyrms [43] proves a converse theorem. Lewis and Skyrms
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assume that the conditioning proposition is true and that it has non-zero initial
probability. They do not address scenarios where misplaced certainty is possible or
where null updating occurs. Subsequent work generalizes the Lewis–Skyrms theorems
as follows:

• [38] extends the Lewis–Skyrms theorems to a non-factive setting. This paper
proves a Dutch book theorem and converse Dutch book theorem concerning a
class of learning scenarios where misplaced certainty is possible. The theorems
do not cover null updating scenarios.

• [36] extends the Lewis–Skyrms theorems to a setting where null updating can
occur. This paper proves a Dutch book theorem and converse Dutch book
theorem tailored to Kolmogorov knowledge acquisition scenarios (i.e., scenarios
where the agent gains membership knowledge for a sub-�-field G and updates
her credences on that basis).5 Since knowledge is factive, the theorems do not
cover scenarios where the conditioning proposition is false.

[38] lifts the restriction to true conditioning propositions. [36] lifts the restriction to
propositions with positive initial probability. In what follows, I lift both restrictions
simultaneously. I prove a Dutch book theorem and converse Dutch book theorem
tailored to Kolmogorov certainty acquisition scenarios.

In Section 4.1, I formalize key notions such as bet, bookie strategy, and Dutch book.
Section 4.2 reviews literature that applies these formalized notions within a factive
setting. Section 4.3 proves a non-factive Dutch book theorem and converse Dutch
book theorem.

4.1. Dutch books formalized. Consider an agent who at time t1 has credences
modeled by probability space (Ω,F , P) and at time t2 gains new certainties �� over
G ⊆ F . We want to compare possible strategies for reallocating credence based on the
new certainties. We assume that the agent uses a proper update rule C : F × Ω → R,
satisfying constraints (4), (5), and (8). She responds to new certainties �� by forming
new credences C� . Thus, her credal reallocation policy is given by (12). Assumption
(4) guarantees that C� is a probability measure. If C (A|.) satisfies the integral formula
for all A ∈ F , then C is an rcd for P given G. I do not assume that C (A|.) satisfies the
integral formula.

The agent faces a bookie who can offer bets at both t1 and t2. Following standard
practice in probability theory, I formalize a bet as a random variable. It is convenient to
allow random variables that take values in the extended real line R = [–∞,∞]. Thus, a
bet is an F-measurable functionX : Ω → R. HereX (�) is the net gain for outcome�.
Write

E�[X ] =df

∫
Ω

Xd�

for the expectation of random variable X with respect to probability measure �. A bet
X is acceptable relative to � iff its expected value with respect to � is non-negative:

5 In [36], I called these Kolmogorov learning scenarios. My terminology here is more informative
albeit more cumbersome.
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NON-FACTIVE KOLMOGOROV CONDITIONALIZATION 15

E�[X ] =df

∫
Ω

Xd� ≥ 0.

At t2, the agent acquires updated credences C� based on new certainties �� . Say that
X is acceptable given �� iff its expected value with respect to C� is non-negative:

EC� [X ] =
∫
XdC� ≥ 0.

This definition is well-formed, since G-measurability ensures that

�� = �� → C� = C�.

I assume that our agent adopts a policy of accepting all acceptable bets that are offered
and rejecting all unacceptable bets.

Lewis and Skyrms assume that the bookie learns at t2 which conditioning proposition
is true. In [36], I made a comparable assumption when extending the Dutch book
results to Kolmogorov knowledge acquisition scenarios: I assumed that the bookie at
t2 learns membership facts for G. These assumptions no longer seem appropriate once
we broaden the allowed learning scenarios to include misplaced certainty. After all,
if the bookie learns membership facts for G but the agent has no such luck, then the
bookie’s ability to exploit his superior knowledge for sure gain hardly indicates that
the agent’s credal reallocation policy is problematic. So a non-factive setting requires
us to rethink our assumptions regarding the bookie’s epistemic state at t2. What now
seems most appropriate is to assume that the agent and the bookie acquire the same
certainty profile �� . Whereas I assumed in [36] that agent and bookie acquire the
same membership knowledge regarding G, I now assume that they acquire the same
certainties regarding G. Thus, the bookie is no better and no worse off than the agent
when it comes to membership facts about G.

Based on his new certainty profile over G, the bookie decides what bet (if any)
to offer at t2. The bookie does this using a bookie strategy, which maps certainty
profiles �� into bets. We can formalize these ideas through the measurable space
(Ω × Ω,G ⊗ F). A bookie strategy is a G ⊗ F-measurable function Y : Ω × Ω → R.
For fixed �, Y (�, .) : Ω → R is the bet that the bookie offers upon acquiring new
certainties �� over G. Since Y is G ⊗ F-measurable, one can easily show that

Y (�, .) : Ω → R is F-measurable for every � ∈ Ω,

so that Y (�, .) is indeed a bet according to our official definition. One can also show
that

Y (., �) : Ω → R is G–measurable for every � ∈ Ω,

which ensures that

�� = �� → Y (�, .) = Y (�, .).

Thus, a bookie strategy carries each certainty profile �� to a well-defined bet,
independent of the index �. I will often abbreviate Y (�, .) as Y� . To model scenarios
where the bookie offers no bet in light of new certainty profile �� , I set Y�(�) = 0 for
all inputs �.
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The G ⊗ F-measurability requirement ensures that the event Y –1(– ∞, a] =
{(�, �) : Y�(�) ≤ a} belongs to G ⊗ F . This event is notable, for the following reason:

(13) The bet offered by the bookie has net gain ≤ a iff (�, �) ∈ Y –1(– ∞, a], where
� is any index for the bookie’s newly acquired certainty profile and � is the
true outcome.

We may employ Y –1(– ∞, a] as a formal proxy for the proposition The bet offered by
the bookie has net gain ≤ a. G ⊗ F-measurability ensures that the formal proxy belongs
to G ⊗ F .

We may use G ⊗ F to model the implicit knowledge of an observer who learns which
new certainty profile over G the agent and bookie acquire at time t2 and who learns
which events in F occurred. Such an observer learns whether

��(G) = 1, for each G ∈ G,

where � is any index for the agent’s new certainty profile. Equivalently, the observer
learns whether � ∈ G , for each G ∈ G. The observer also learns whether the true
outcome � belongs to F, for each F ∈ F . In principle, the observer can extrapolate
from his knowledge regarding G and F to knowledge regarding G ⊗ F . For each
D ∈ G ⊗ F , he gains implicit knowledge whether

(�, �) ∈ D,

where � is any index for the agent’s new certainty profile and � is the true
outcome. Assuming G ⊗ F-measurability, our observer gains implicit knowledge
whether (�, �) ∈ Y –1(– ∞, a], where� is any index for the agent’s new certainty profile
and � is the true outcome. In other words, he gains implicit knowledge whether the
bet offered by the bookie has net gain ≤ a. On the other hand, if Y –1(– ∞, a] does
not belong to G ⊗ F , then the observer does not gain implicit knowledge whether
the selected bet has net gain ≤ a. Hence, G ⊗ F-measurability codifies the following
intuitive thought: an observer who knows which new certainty profile the agent and
bookie acquire and which events in F occurred thereby gains implicit knowledge
whether the bet selected by the bookie has net gain ≤ a.

We may now formalize Dutch bookability. I consider two formalizations, cor-
responding respectively to the intuitive notions sure loss in Kolmogorov knowledge
acquisition scenarios and sure loss in Kolmogorov certainty acquisition scenarios. A
factive Dutch book for (Ω,F ,P), sub-�-field G⊆F , and update rule C is a pair (X,Y )
such that, for all � ∈ Ω:

(i) X is a bet that is acceptable relative to P.
(ii) Y is a bookie strategy.
(iii) Y� is acceptable given �� .
(iv) X (�) + Y�(�) < 0.

Condition (i) requires that X have nonnegative expectation at t1. This condition ensures
that the agent will accept bet X at t1. Conditions (iii) and (iv) jointly ensure that a
bookie who offers bet X and pursues bookie strategy Y will inflict a sure loss assuming
that the agent and the bookie learn true membership facts for G. A non-factive Dutch
book for (Ω,F ,P), sub-�-field G⊆F , and update rule C is a pair (X,Y ) such that for
all �, � ∈ Ω:
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Figure 1. A visualization of Ω × Ω. In general, there need not be any natural linear ordering
of Ω. Nevertheless, the visualization is a useful heuristic. The horizontal axis corresponds to
(Ω,G). Points on this axis index the agent’s new certainty profile, which determines the bet
selected by the bookie. When the agent acquires certainty profile �� , the bookie offers bet Y� .
The vertical axis corresponds to (Ω,F). Points on this axis reflect the true outcome. We specify
how a gambling scenario unfolds by specifying an ordered pair (�, �), where � is an index for
the agent’s new certainty profile and � is the true outcome. Each ordered pair (�, �) determines
a well-defined net gain Y�(�). A factive Dutch book inflicts a net loss along the diagonal. A
non-factive Dutch book inflicts a net loss on all points.

(i) X is a bet that is acceptable relative to P.
(ii) Y is a bookie strategy.
(iii) Y� is acceptable given �� .
(iv∗) X (�) + Y�(�) < 0.

Conditions (iii) and (iv∗) jointly ensure that a bookie who offers bet X and pursues
bookie strategy Y will inflict a sure loss whether or not the agent and bookie become
certain of true membership facts for G. A non-factive Dutch book ensures a net loss
even in situations where agent and bookie acquire misplaced certainties regarding G.
See Figure 1.

4.2. Factive Dutch books. The Dutch book theorem and converse Dutch book
theorem from [36] are tailored to Kolmogorov knowledge acquisition scenarios:

Factive Dutch Theorem for Kolmogorov Conditionalization: Let (Ω,F , P) be a
probability space, let G ⊆ F be a sub-�-field, and let C be an update rule for (Ω,F)
and G. If C is not an rcd for P given G, then there exists a factive Dutch book for
(Ω,F , P), G, and C.
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Factive Converse Dutch Book Theorem for Kolmogorov Conditionalization: Let
(Ω,F , P) be a probability space, let G ⊆ F be a sub-�-field, and let C be an rcd for
P given G. Then there does not exist a factive Dutch book for (Ω,F , P), G, and C.

The two theorems show that rcds offer unique pragmatic advantages in Kolmogorov
knowledge acquisition scenarios.

In [36], I motivated the G ⊗ F-measurability requirement on bookie strategies along
lines similar to Section 4.1. I spoke of “membership information” rather than “certainty
profiles,” but otherwise my reasoning was essentially the same. I offered the event
Y –1(– ∞, a] as a formal proxy for the proposition The bet offered by the bookie has
net gain ≤ a. G ⊗ F-measurability then codifies the following intuitive thought: an
observer who knows which new membership information the agent and bookie acquire
and which events in F occurred thereby gains implicit knowledge whether the bet
offered by the bookie has net gain ≤ a.

Meehan and Zhang [28] argue that, assuming a factive conception of credal updates,
the G ⊗ F-measurability requirement on bookie strategies is misguided. Specifically,
they deny that Y –1(– ∞, a] is the correct formal proxy for the proposition The bet
offered by the bookie has net gain ≤ a. In a factive setting, the bookie will offer bet Y�
where � is the true outcome. The bet’s net gain is Y�(�). Accordingly, Meehan and
Zhang urge that the correct formal proxy is

{� : Y�(�) ≤ a} .

They offer a revised notion of Dutch book, which requires

(14) {� : Y�(�) ≤ a} ∈ F

rather than

Y –1(– ∞, a] = {(�, �) : Y�(�) ≤ a} ∈ G ⊗ F

in order for Y to count as a bookie strategy. They prove a Dutch book theorem and
converse Dutch book theorem using the revised notion of Dutch book. The theorems
establish that a Dutch book (in the sense favored by Meehan and Zhang) does not exist
for update rule C iff C is an rcd that is proper almost everywhere. Meehan and Zhang
conclude that rcds per se do not offer unique pragmatic advantages over alternative
update rules; only rcds that are proper almost everywhere offer unique pragmatic
advantages.

In my opinion, {� : Y�(�) ≤ a} is not a good formal proxy for the proposition The
bet offered by the bookie has net gain ≤ a. Assuming a factive setting,

(15) The bookie will acquire membership information �� indexed by the true
outcome �.

It then follows that

(16) The bet offered by the bookie has net gain ≤ a iff the true outcome belongs
to {� : Y�(�) ≤ a}.

However, the bookie may not know (15) even if the agent knows it. If the bookie does
not know (15), then he is not positioned to know (16) either. But then the bookie, in
learning that the true outcome belongs to {� : Y�(�) ≤ a}, will not thereby learn that
his bet has net gain≤ a. Furthermore, even if the agent and the bookie both know (15),
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the agent may not know that the bookie knows (15). But then the agent does not know
that the bookie, by learning that the true outcome belongs to {� : Y�(�) ≤ a}, thereby
learns that his bet has net gain ≤ a. For that reason, the agent does not know that
the bookie can assess the outcome of his own bet. For all the agent knows, the bookie
cannot detect whether he won the bet!

Dutch books are supposed to inflict a sure loss. A sure loss means that, from the
agent’s viewpoint, the agent is guaranteed to lose [39]. If the bookie does not know that
the agent lost the bet, then the agent will not actually lose money because the bookie
will never collect his winnings. If the agent does not expect the bookie to know that
the agent lost money, then the agent does not regard a loss as guaranteed. A loss that
is undetectable by the bookie or that the agent thinks is undetectable by the bookie
does not constitute a “sure loss.”

(14) allows a “loss” that the bookie never detects. It also allows a “loss” that the
bookie detects but that the agent does not expect the bookie to detect. In neither case
does the book inflict a sure loss. So (14) does not secure genuine Dutch bookability. In
contrast, suppose we impose the G ⊗ F-measurability requirement. Then, as argued in
Section 4.1, the bookie can detect whether he won the bet provided that he learns which
new information was acquired and learns which events in F occurred. I conclude that
we should impose the G ⊗ F-measurability requirement on bookie strategies even for
the special case of factive Dutch books.6

However things stand with factive Dutch books, G ⊗ F-measurability is surely
needed for a suitable conception of non-factive Dutch books. Once we lift all factivity
assumptions, the bookie may acquire a certainty profile �� such that

�� �= �� ,

where � is the true outcome. In that context, Y –1(– ∞, a] is clearly a much better
formal proxy than {� : Y�(�) ≤ a} for the proposition The bet offered by the bookie
has net gain ≤ a. Even if we agree with Meehan and Zhang that G ⊗ F-measurability
is a misguided constraint on bookie strategies in the factive case, we should embrace it
in the non-factive case that I am addressing in the present paper.

4.3. Non-factive Dutch books. I now prove a Dutch book theorem and converse
Dutch book theorem tailored to Kolmogorov certainty acquisition scenarios.

Non-Factive Dutch Book Theorem for Kolmogorov Conditionalization: Let (Ω,F , P)
be a probability space, and let C be a proper update rule for (Ω,F) and G. If C is not an
rcd for P given G, then there exists a non-factive Dutch book for (Ω,F , P), G, and C.

Proof: Since C is not an rcd for P given G, C (A|.) must violate the integral formula
for some A ∈ F . It follows that

P {� : C (A|�) �= PG(A|�)} > 0,

6 (Ω × Ω,G ⊗ F) extends the measurable space (Ω,F) we are using to model the agent’s credal
states at t1 and t2. We may imagine the agent and the bookie, once all bets have been offered,
reflecting on the past gambling interaction and transitioning to knowledge modeled by the
larger space (Ω × Ω,G ⊗ F). After the transition, the agent and the bookie both gain at least
implicit knowledge regarding the outcome of the bet offered at t2.
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Table 1. The bet has payoff 1 if A occurs, but it is cancelled if G does
not occur. Furthermore, the price of the bet PG(A|�) depends on the true
outcome �. At time t1, the bookie offers to sell this conditional bet to
the agent. The final column gives the agent’s net gain if she accepts the
bookie’s offer

Outcome Price Payoff Net gain

� ∈ A ∩G PG(A|�) 1 1 – PG(A|�)
� ∈ Ac ∩G PG(A|�) 0 – PG(A|�)
� /∈ G 0 0 0

Table 2. At time t2, the bookie offers to buy this conditional bet from
the agent. The final column gives the agent’s net gain if she accepts the
bookie’s offer. Net gain is computed by subtracting the payoff from the
price, since the bookie is offering to buy rather than sell the bet

Outcome Price Payoff Net gain

� ∈ A ∩G C (A|�) 1 C (A|�) – 1
� ∈ Ac ∩G C (A|�) 0 C (A|�)
� /∈ G 0 0 0

Table 3. Net gain for the overall gambling
scenario

Outcome Net gain

� ∈ A ∩G C (A|�) – PG(A|�)
� ∈ Ac ∩G C (A|�) – PG(A|�)
� /∈ G 0

where PG(A|.) is some conditional probability for A given G. Note that

{
� : C (A|�) �= PG(A|�)

}
=

{
� : C (A|�) < PG(A|�)

}
∪

{
� : C (A|�) > PG(A|�)

}
.

Both sets on the right-hand side belong to G. At least one of these two sets must have
non-zero P-measure. Without loss of generality, suppose the first does. Call this set G:

G =df {� : C (A|�) < PG(A|�)} .

We will use G to rig the Dutch book. Informally, we proceed as follows. At t1, the bookie
offers a conditional bet given by Table 1. At t2, the bookie offers a new conditional
bet given by Table 2. Table 3 summarizes net gain for the two bets, given any outcome
� ∈ Ω. Net gain is 0 when � /∈ G and negative when � ∈ G . To ensure a net gain for
all outcomes �, we add a side bet on G at t1. We thereby achieve a non-factive Dutch
book. In the case where {� : C (A|�) > PG(A|�)} has non-zero P-measure, we merely
reverse payoffs from all the aforementioned bets.
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Let us now formalize these ideas. As always, we codify bets as random variables.
First, define random variable X by

X (�) =

⎧⎨
⎩

1 – PG(A|�) if � ∈ A ∩G,
– PG(A|�) if � ∈ Ac ∩G,

0 if � /∈ G.

Intuitively, this is the bet offered at t1. Define bookie strategy Y (�, �) by

Y (�, �) =

⎧⎨
⎩
C (A|�) – 1 if � ∈ A ∩G,
C (A|�) if � ∈ Ac ∩G,

0 if � /∈ G.

Note that Y (�, �) does not depend upon �. Intuitively: the bookie offers the bet
from Table 2 no matter which new certainties over G the agent gains at t2. Let
L =df

∫
G

[
C (A|�) – PG(A|�)

]
dP(�) if this integral is finite. If the integral is infinite,

then let L be any finite negative number. Either way, we have∫
G

[
C (A|�) – PG(A|�)

]
dP(�) ≤ L.

Define random variable Z:

Z(�) =
{

(P(G) – 1)
[
C (A|�) – PG(A|�)

]
if � ∈ G,

L if � /∈ G.

This is the side bet on G advertised above. We show that (X +Z,Y ) is a non-factive
Dutch book for (Ω,F , P), G, and C.

One can easily check that Y is a bookie strategy and that (X + Z,Y ) satisfies clause
(iv∗) in the definition of non-factive Dutch book. To prove that X is acceptable relative
to P, we write

X (�) = IG(�)
[
IA(�) – PG(A|�)

]
,

where, for any set S, IS is the indicator function for S:

Is(�) =
{

1 if � ∈ S,
0 if � /∈ S.

Routine computation using the integral formula confirms that

EP[X ] =
∫
Ω

IG(�)
[
IA(�) – PG(A|�)

]
dP(�) = 0.

Similarly, we write

Z(�) = IG(�)(P(G) – 1)
[
C (A|�) – PG(A|�)

]
+ IGc (�)L,

and routine computation confirms that

EP [Z] =
∫
Ω

[
IG(�)(P(G) – 1)

[
C (A|�) – PG(A|�)

]
+ IGc (�)L

]
dP(�) ≥ 0.
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See [36] for the details of these computations. Thus, X +Z is acceptable relative to P.
To show that Y satisfies clause (iii), pick any �. We have assumed that C is proper
at �:

(17) C�(B) = 1 if � ∈ B ,

(18) C�(B) = 0 if � /∈ B ,

for all B ∈ G. We will show that Y� ’s expectation is 0 relative to C� :

EC� [Y�] =
∫
Y�dC� = 0.

Define

J =df {	 : C (A|�) = C (A|	)} .

Since � ∈ J ∈ G, (17) and (18) entail that

C�(J ) = 1,

C�(J c) = 0.

We may write

Y�(�) = IG(�)
[
C (A|�) – IA(�)

]
,

and then compute

EC� [Y�] =
∫
Ω

IG
[
C (A|�) – IA

]
dC� =

∫
Ω

IGC (A|�)dC� –
∫
Ω

IGIAdC�

=
∫
G

C (A|�)dC� –
∫
G∩A

dC� =
∫
G∩J

C (A|�)dC� +
∫
G∩Jc

C (A|�)dC� –
∫
G∩A

dC�

=
∫
G∩J

C (A|�)dC� + 0 – C�(G ∩ A) =
∫
G∩J

C (A|�)dC� – C (A ∩G |�)

= C (A|�)
∫
G∩J

dC� – C (A ∩G |�) = C (A|�)C (G ∩ J |�) – C (A ∩G |�),

where � in these equations is held fixed and is not an integration variable. Now, either
� ∈ G or � /∈ G . In the first case, we have � ∈ G ∩ J ∈ G, so (17) ensures that

C (G ∩ J |�) = 1.

(17) also ensures that C (G |�) = 1, so that

C (A ∩G |�) = C (A|�).

Thus, our expression for Y� ’s expectation reduces to

EC� [Y�] = C (A|�)C (G ∩ J |�) – C (A ∩G |�) = C (A|�) – C (A|�) = 0.

If on the other hand � /∈ G , then (18) ensures that

C (G ∩ J |�) = 0
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and

C (A ∩G |�) = 0,

so our expression for Y� ’s expectation again reduces to 0. Either way, Y� ’s expectation
is 0. Hence, (X +Z,Y ) is a non-factive Dutch book for (Ω,F , P), G, and C.

We can strengthen the theorem so that all bets have positive expected net payoff. To
accomplish this, we add a small “sweetener” that is large enough to boost expected
net payoffs above zero but small enough not to cancel out the net loss inflicted by the
original book. See [36] for details regarding the factive case; those details require only
slight modification to fit the non-factive case.

Non-Factive Converse Dutch Book Theorem for Kolmogorov Conditionalization: Let
(Ω,F , P) be a probability space, and let C be an rcd for P given G. Then there does not
exist a non-factive Dutch book for (Ω,F , P), G, and C.

Proof: Clause (iv∗) in the definition of non-factive Dutch book entails clause (iv) in
the definition of factive Dutch book. So a non-factive Dutch book for (Ω,F , P), G, and
C is a factive Dutch book for (Ω,F , P), G, and C. The Factive Converse Dutch Book
Theorem entails that a factive Dutch book does not exist. It follows that a non-factive
Dutch book does not exist.

The non-factive Dutch book theorem confines attention to proper update rules.
It states that, if a proper update rule violates the integral formula, then a non-factive
Dutch book exists. Note the sharp contrast with the factive Dutch book theorem proved
in [36], which does not assume propriety. The contrast reflects a crucial difference
between Kolmogorov certainty acquisition scenarios and Kolmogorov knowledge
acquisition scenarios. In a Kolmogorov certainty acquisition scenario, the agent gains
new certainties regarding G and updates her credences on that basis. The only update
rules that can deliver such an update are proper update rules—hence the restriction
to proper updates rules in the non-factive Dutch book theorem. In a Kolmogorov
knowledge acquisition scenario, the agent gains knowledge regarding G and updates
her credences on that basis. As emphasized in Section 3.4, knowledge is not certainty.
An agent who comes to know E does not necessarily become certain that E. It is
possible in principle for the agent to use an improper update rule—hence the attention
to all update rules, and not just proper update rules, in the factive Dutch book theorem.

There is also a sharp contrast between the role that propriety plays in my discussion
and the role that it plays in Meehan and Zhang’s discussion. Meehan and Zhang
attempt to show that impropriety induces Dutch bookability. Section 4.3 raised
doubts about whether the attempt succeeds. Be that as it may, the non-factive
Dutch book theorem does not even purport to show that impropriety induces Dutch
bookability. Propriety figures in Meehan and Zhang’s discussion as a putative rational
norm that an update policy may or may not violate. It figures in my discussion as
a usability condition: only proper update rules can be used to update credences
in light of new certainties, because impropriety induces a conflict (10) between
the update rule and the new certainties. My setup treats propriety as a necessary
condition on usable update rules rather than a putative rational norm that requires
justification.
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§5. Significance of the theorems. Taken together, the non-factive Dutch book
theorem and non-factive converse Dutch book theorem show that Kolmogorov
conditionalization has highly desirable pragmatic properties. Any alternative credal
reallocation policy leaves you vulnerable to a guaranteed net loss in Kolmogorov
certainty acquisition scenarios. If you are a Kolmogorov conditionalizer, then you are
immunized from that unsavory prospect. Kolmogorov conditionalization is the unique
credal reallocation strategy that guards against Dutch bookability in Kolmogorov
certainty acquisition scenarios.

The theorems also clarify the status of impropriety. Upon learning that rcds are
not always proper, one naturally asks whether some alternative theory of conditional
probability might prove superior to Kolmogorov’s. Section 4’s theorems show that,
whatever benefits an alternative theory might offer, it would carry serious costs. Any
proper update rule besides an rcd will run afoul of Section 4’s Dutch book theorem. If
the specter of impropriety impels you to replace Kolmogorov conditionalization with
some alternative update strategy, then you face a sure loss no matter the true outcome
and no matter your new certainty profile.

We must distinguish between Dutch book theorems and Dutch book arguments.
Dutch book theorems are uncontroversial mathematical results. Dutch book arguments
use Dutch book theorems to argue that one should conform to certain credal norms.
For example, Lewis [26] and Skyrms [43] cite diachronic Dutch book theorems to
argue that epistemic rationality favors conditionalization over rival credal reallocation
policies. Critics have raised various objections to Dutch book arguments [17], especially
diachronic Dutch book arguments [5]. In this paper, I have not mounted a Dutch book
argument. I have not argued that epistemic rationality requires you to be a Kolmogorov
conditionalizer, or anything along those lines.

To my mind, Section 4’s theorems are important primarily for elucidatory and
diagnostic purposes, not for their potential to sustain a Dutch book argument. The
theorems help us understand the benefits that accrue when your update rule abides by
the integral formula. Someone who flouts the integral formula leaves herself vulnerable
to a guaranteed net loss in a way that someone who conforms to it does not. Whether or
not the theorems show that Kolmogorov conditionalization is an epistemically rational
credal reallocation policy, they show that it has uniquely attractive pragmatic virtues. In
that respect, the theorems depict Kolmogorov conditionalization as a natural extension
of ratio conditionalization to null updating scenarios.

Admittedly, the extension does not go quite as smoothly as one might hope. We have
encountered several concerning features of rcds:

(a) Rcds may not exist, in which case Kolmogorov conditionalization is impossible.
(b) Outside the special case where the ratio formula prevails, there are infinitely

many rcds for P given G.
(c) Rcds may be improper, in which case Kolmogorov conditionalization is

impossible in Kolmogorov certainty acquisition scenarios.

(a) and (c) show that Kolmogorov conditionalization is not always possible. (b)
shows that there are sometimes infinitely many distinct ways to be a Kolmogorov
conditionalizer; in contrast, ratio conditionalization dictates a single unique credal
update.

Despite challenges regarding existence, uniqueness, and impropriety, Kolmogorov
conditionalization is a highly general credal reallocation strategy that applies across

https://doi.org/10.1017/S1755020323000345 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000345


NON-FACTIVE KOLMOGOROV CONDITIONALIZATION 25

a huge range of null updating scenarios. Most likely, it applies to all null updating
scenarios that might arise in scientific and philosophical applications of Bayesian
decision theory. Section 4’s theorems establish that it offers distinctive benefits. All the
more fitting, then, that it figures so centrally in contemporary scientific applications
of Bayesian decision theory. The time is long past for philosophers to join the broader
scientific community by assigning rcds a central role within the foundations of Bayesian
inference.
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