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LIMIT POINT CRITERIA FOR DIFFERENTIAL 
EQUATIONS 

DON HINTON 

In t roduc t ion . For certain ordinary differential operators L of order 2n, 
this paper considers the problem of determining the number of linearly inde
pendent solutions of class L2[a, GO) of the equation L(y) = \y. Of central 
importance is the operator 

(0.1) L(y) = (-l)n(p0y
wyn) + ( - i ) ^ i y n - 1 ) ) ( n - 1 ) + • . . + pny 

where the coefficients pt are real. For thisL, classical results give that the number 
m of linearly independent L2[a, GO) solutions of L(y) = Xy is the same for all 
non-real X, and is at least n [10, Chapter V]. When m = n, the operator L is said 
to be in the limit-point condition at infinity. We consider here conditions on the 
coefficients pt of L which imply m = n. These conditions are in the form of 
limitations on the growth of the coefficients. 

For n = 1 in (0.1), numerous limit point criteria for (0.1) have been given. 
Notable among these are the criteria of N. Levinson [8] and E. C. Titchmarsh 
[11]. The fourth-order equation has been less investigated. However, effective 
limit point criteria have been given by W. N. Everitt [5 ; 6] and W. N. Everitt 
and J. Chanduri [7]. 

Limit point criteria for (0.1) for n ^ 2 obtained by the use of asymptotic 
methods have long been known (cf. [10, Chapter VIII]). Such criteria usually 
require considerable differentiability on the coefficients, and in addition to 
calculating the deficiency indices, give information on the asymptotic behavior 
of all solutions. A comprehensive such treatment for n = 2 has recently been 
given by P. Walker [12; 13]. 

A. Devinatz [1] has given a very general theorem for the calculation of 
deficiency indices of a class of formally self-ad joint operators by the use of 
asymptotic methods. This work contains, as special cases, many of the known 
results on deficiency indices. The paper of Devinatz also shows how to construct 
a differential operator with given deficiency indices (m, m),n ^ m rg 2n. While 
we require here much weaker conditions on the coefficients pt than in the papers 
using asymptotic methods, it appears that our techniques are limited to the case 
where the deficiency indices are (n, n). 

Our proofs depend on inequalities for a system of differential equations. These 
are given in § 1. The techniques are similar to those used by W. N. Everitt in [6] 
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294 DON HINTON 

together with certain linear transformations. In § 2 the equation (0.1) is studied. 
The limit point criteria obtained is similar to known results for n = 1 or n = 2. 
In particular, we obtain the theorem that 

(_!)Y2W) + q(t)y = \y 

is in the limit point condition at infinity if for some K > 0, ~q(t) ^ xt2n/i2n~1). 
This extends the known criteria when n — 1, and when n = 2 [6]. 

In § 3 we treat the general fourth-order self-ad joint operator with complex 
coefficients. In the last section certain nonself-adjoint equations are considered. 

1. Inequalities for a system of equations. In this section we establish 
inequalities which will be used in the remainder of the paper. Consider the 
system of differential equations 

(1.1) X' = wBX, 

where X = (xi, . . . , xm)T is a column vector, w is a positive continuous function 
on a ray [a, oo), and B = {btj} is an m X m matrix of measurable, locally 
integrable, complex valued functions on [a, oo ) satisfying 

( 0 if j>i + l 
bij~\±l ^ j = * + l. 

THEOREM 1.1. Suppose X is a solution of (1.1) and that for some k S m, btj is 
bounded on [a, oo ) for i ^ k. Let 

It = It(t) = max%l, I w\Xi\2ds} (i = 1, . . . , m) 

and suppose Ji(oo) < oo. 
(i) Ifk< m, then fori = 1, . . . , k, the following order relations hold as t —» oo : 

(1.2) It = OCZW*"1*") and \Xi\
2 = 0(Ii+1^-l)/2i). 

(ii) Ifk = m, then fori = 1, . . . , m and as t —> oo , Ii = 0(1) and |x*|2 = 0(1). 

Proof. Since Ii = 0(1), we have I\ = O(/2
0/1)- From 

(1.3) |^z(0|2 = \xi(a)\2 + I [Xiôc/ + x/Xi]ds 

and Xi = w[bnXi + bi2x2], we obtain by the Cauchy-Schwarz inequality, 

IxxWI2 = 0(h + [hh]1'2) =0(11*). 

If k = 1, the proof of (i) is complete. Assume now Kk <m and that (1.2) holds 
fori = 1 , . . . ,£ for some £ S k - 1. Then fori ^ p, It = 0(IP) = 0(IP+1^~1)/P)1 
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and (for Ip+1 > 1), 

ip+i = I wxp+ixp+ids 
"a 

ds = I xp+1(bPjP+1)\ xp
f — w X ) K,3X 

= \bp,p+i)%p+iXp\ I \bp,p+i)%p+i Xpds + 0{llplp+i\ ) 

\ t s*t p+2 

= (bPtP+1)xp+iXp\ + 0{[IvIv+i] ' ) — I (bPtP+1)xpw ^ 5p+i):?-x^ iVV jU/O 

\"j?,p+l/«*'îH-l**7? 
l / 2 r 

+ Od/,/̂ !]4'") + 0(VU + 1 ^ + W 1 ) 
Using (1.3) fori = p + \,IV = 0(Ip+i),andxp+1' = w ^ ^ ^ 2 bp+lijx}, we have 

(1.4) \xv+1\
2 = 0{Iv+S'VvW2 + 4+21/2]). 

Applying (1.4), \xp\
2 = 0(/2,+l<2^,-1)/2^,), and Ip = 0 ( W * - » * ) to the above 

equation for Ip+i yields 

(1.5) iv+1 = Oii^'Vv+i1'2 + 4+21 / 2]1 / 2W2 p-1 ) / 4 p + / r + i ( M , 2 f 

If 7„+i = 0(1), then Ip+1 = 0(/„+2
!'/(2'+1)) ; otherwise, a division of (1.5) by Ip+1 

gives 

1 = 0{[4+1-1/2* + I]1 /2 + / H - I - 1 * + I\ 

where / = IP+i
lli/Iv+i

(»+»1*1'; hence limit inf I(t) > 0 as t -> oo. The relation 
Jp+i = 0(4+2

2 ' / (?+1)) is immediate, and from (1.4), 

ta+1|
2 = 0([IP+Jp+i]

Ui) = 0(W 2 î , + 1 ) / ( 2 p + 2 ) ) ; 

thus the proof of (i) is complete. For k = m, we have from (i) that (1.2) holds 
for i ^ m - l . Using It = 0(IB<"-»/<"-1>) = 0(Im) iori^m- 1 and (1.3) for 
i = m gives |xm|2 = 0(Im). This relation and |xm_i|2 = 0(/m

(2m_3)/(2m_2)) gives 
(for JM > 1), 

•^ m—1 ^ / J Om—l,j%j 
3=1 

WXmXm(lS = I Xm\ym—\tm) 
a *Ja 

I t ft 

I %m \Pm—\,m)^"m—l \ U\lm -Z? 
a va 

= 0(1 1/2I ( 2 m - 3 ) / ( 4 w _ 4 ) N ) J_ Q(T l'2T (^-2)/(2m-2)s 

= 0( T ( 4 m — 5 ) / ( 4 w — 4 ) \ 

Thus Im = 0(1) and the proof of (ii) is complete. 

ds 

(m-2)/(2w-2K 
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2. Equations of order 2w. We consider now the differential operator 

(2.1) L{y) = (-l)n(PoywYn) + {-iy-\piy^-»y"-v + . . . + pny. 

The coefficients of L are assumed to be real measurable functions on a ray [a, oo ) 
with^o > 0 having n continuous derivatives and pi, . . . , pn Lebesgue integrable 
on compact intervals. The operator L is formally self-adjoint. The theory of 
deficiency indices tells us that the equation L{y) = \y, I m X ^ O , has at least n 
linearly independent solutions in the Hilbert space L2[a, oo) of quadratically 
summable complex functions on [a, oo). 

It is assumed throughout this section that p is a positive function on [a, oo) 
with n continuous derivatives and X denotes a complex number with Re X = 0. 
We consider the conditions: 

(2.2) \pi\pAi/Po = 0(1) as t -» oo (i = 1, . . . , n - 1). 

(2.3) For some K > 0, -pnP
An/po S K. 

(2.4) p'p and p2po/po are 0(1) as t -> oo. 

[pin~2/po]dt = oo. 
a 

(2.6) For j = 1, . . . , n, [pin~2/po]a) = 0{pin-^]/pa) and 

[p 47£oP = O(pin-u/po) as t -» oo . 

For (2.1), thequasi-derivativesy1*1 are defined by y[<1 = yii\i = 0 , . . . ,n — 1, 
y["i = poyw,andy^+^ = pty<"-*> - ( y + ' - u ) ' ^ = 1 « .Then i (y ) = yP»] 
and the equation L(y) = Ay has the vector formulation 

(2.7) F ' = A Y, 

where F = (y[°i, . . . , yV-u)T and 

"0 1 

A = 0 l//>„ 
/»i 0 - 1 

£B-1 
/ » » - x 

- 1 
0 
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We transform the equation (2.7) by the transformation X = I f F where M is 
the diagonal matrix 

M = diagonal {p, p3, . . . , p2n~\ p2n+1/po, . . . , P 4 " " 1 / ^ } -

The vector X satisfies 

(2.8) X' = (1/P
2)BX, B = p'IMAM-1 + M'M-1]. 

Condition (2.4) implies by is bounded for i :g n with 6if <+i = 1. The transforma
tion X = MY gives the integral relations 

f (i/P*)M\fc = f V'-V'Y* (* = i « + l), 
(2.9) *'« Ua 

f , ( l / p i ) | x < | 2 d5= f (p^/PÏÏly^Ydt (i = n + 2,...,2n). 

The Lagrange identity for (2.1) is 

(2.10) L(y)z - yW) = [y, *] ' , 

where 

b,*]= Z {y [4¥2re- i-11-y [2K- i-1]2 [ i IJ. 

We note that L(y) = \y and L(z) = Xz implies [y, z]' = 0. For L(y) = Xy, the 
quadratic expression 

(2.1D -x | , r + Ê /Uy"T = { £ y^'-Y*1}', 
i=0 \ i=0 / 

holds. We also make use of the vector spaces 

V= {y\L(y) = \y}, 

Vi = {y\L(y) = \y,y £ L2[a, oo)}, 
and 

V2 = {z\L(z) = \z,z £ L2[a, oo)}. 

LEMMA 2.1. If dim FL + dim V2 > 2n, then there is ay Ç Fi and z Ç F2 swcA 
/Aa£ [y, z] == 1. 

Proof. Define the linear transformation T on F by T(y) is the unique w £ F 
with initial values 

(wf°], . . . , wf2w-1l)(a) = (yV»-U, ... , yW, - y ^ \ . . . , -ym)(a). 

Then T is nonsingular and dim T( Fi) = dim V\. Let 5 be the linear transforma
tion from V2 into F defined by S(z) is the unique y £ F with initial values 

(3/[0], . . . , y[2n~1])(a) = ( z ^ , . . . , z ^ - ^ X a ) . 

Then 5* is one-one and dim S( V2) = dim F2. Since dim F = 2w, we have 
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dim[r(Fi) H S(V2)} £ 1. Choose S(z) € r ( 7 i ) H S(72) , s * 0. Then there is 
a y G Fi such that 

(*[°1, . . . , S ^ - l ] ) ( a ) = (yP«- l ] f . . . , y[n] f - y [ « - U , . . . , - y [ 0 ] ) ( a ) . 

Hence 

(2.12) [y,s] = - E b l < 1 ( o ) | V 0 . 

Multiplication of (2.12) by an appropriate constant completes the proof. 

LEMMA 2.2. Let y 6 Vi, z Ç F2, assume conditions (2.2), (2.4), (2.6), and define 

/ i ( 0 = maxj l , J V V ' V ^ } awd J 2 (0 = maxj l , J ' p4w |s(w) |2^} • 

Then for i = w, . . . , 2n — 1, awd (wi, ze/2) = (y, 2) or (z, y), 

(i) £ w w 1 {(i - s/tr-'p^/po)Mds = o{\j1 /2]
i/2) 

as t -^ co for all j , k such that i-\-j-\-k = 2n— 1. 

(ii) f wiWwi^Kl - s/t)np*/p*}Mds = 0(J^2n-^/2n) 

as t—> co for all j , k such that k ^ 1 and i + j + k = 2n. 

Proof of (i). Applying Theorem 1.1 to (2.8), we have from (2.9) for i ^ n, 

(2.13) f P^V^fds = f (l/p^xtfds 

= 0( maxjl, I J (l/p2)\xn+i\2ds ç) 

= 0( / ! ( w- 1 ) M) = 0 ( / i ) ; 

similarly, for i S n, 

(2.14) f V ^ V ^ I 2 ^ = 0(/2
(w-1)/w) = 0(/2). 

Consider (wi, 702) = (y, z) (the case (w±, w2) = (2, 3>) has a similar proof). We 
note that pp = 0(1) implies that p2(t) = 0(i). Hence conditions (2.4) and (2.6) 
give for k S n — 1 and s ^ t, 

(2.i5) f-ik{a-s/tr^r^/Pois)} = g (^{d-^rr^v^VM^ 

= è o(iA*-")0(p4"-2-27£o) 

= 0(p4"-2-2V^o); 
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thus with i — n'm (i) and j + k = n — 1, it follows from (2.14), 

f'y[n¥i]l(i - sArV""VM ( t^ = f ' yMzU)0{pWj/P*)ds 
J a va 

= 0([J1J2
te-1)/"]1/2) = 0 ( [J 1 / 2 ] 1 / 2 ) . 

Assume now (i) holds for some i, n ^ i < 2n — 1. Then for 

(i + 1) +j + k = 2n - 1, 

(2.16) f^ u + 1 ]s° ' ){ (1 - s/tf-'p^/Po} a)ds 

= f î/>i+1_rey
(2"-i-1, - y[<I '}2w{(l - s/tT-y-2/p0}™ds 

+o(D + f V v ^ a - s/tr-yn-2/p0}
(k)Yds. 

By the induction hypothesis the second integral on the right hand side of (2.16) 
is 0([7i J2]1/2). By (2.2), (2.6), and (2.15), 

/>,+!-»{(i - s/t)n-yn-*/po}w = pi+1-no(p"n-^/p,) = o(p8*-4*-6-2*). 
NOW p^-4*-6-2* = p4^2i-2+2i s i n c e (^ __|_ ]_) + j + & = 2 ^ - 1 ; tllUS t h e first 

integral on the right hand side of (2.16) is 

o([ J V ^ V ^ I ^ f p'ynfds]1") 
which is 0([Ji/2]1/2) by application of (2.13) and (2.14). This inductive step 
completes the proof of (i). The proof of (ii) is similar. 

LEMMA 2.3. Let F be a nonnegative, continuous function on [a, GO) and define 

H(t) = j {t- s)nF(s)ds. 

Ifast~^oo1 H(t) = 0(tn[H^]a) where a = (2n - l)/2n, then 

f F(s)ds = 0(1) 

as t —> co. 

Proof. Suppose to the contrary that 

J'»oo 
F(s)ds = oo. 

a 
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Then by L'Hopital's rule H^/t71-* ->oo as t -» co for i = 0, . . . n. We now 
prove by induction that for i = 0, . . . , n — 1, there is a constant Kt > 0 such 
that for all large /, 

(2.17) W S Kr/aH(n-v[H']\ Pi = i + I/a. 

For i = 0, (2.17) is a consequence of the hypothesis. If (2.17) holds for some 
i, 0 S i < n — 1, then 

(2.18) iT iJ^ ^ Kit
n/aH(n-v[H']i+1 

^ Ki[tn/aH^n-i-1\H,)i+1]\ 

An integration of (2.18) yields (2.17) for i + 1 and the induction is complete. 
From (2.17) for i = n — 1, i.e., 

jH*-i+i/« ^ Kn^tnla{Hf)n, 
we obtain 

l//1/a ^ Kn^
lnH'/H$, |8 = 1 + l/»(2» - 1). 

An integration of this inequality over [/, oo ) gives 

(2.19) l/^i/(2n-D ^ Kn^^n/H1'71^-». 

The inequality (2.19) is contrary to H/tn —* co as t —» oo ; thus the proof is 
complete. 

THEOREM 2.1. Under the conditions (2.2)-(2.6), the equation L(y) = Xy has at 
most n linearly independent solutions in L2[a, oo ). 

Proof. Let y £ Fi, s G F2, and J i and 72 be as in Lemma 2.2. We first show 
/i(°o) < °° • From (2.11) and an integration by parts, 

(2.20) f |"-x|y|8+E Pn-i\y ( * ) | 2 

* w—1 

(1 - s/tTif/pùds 

= - f i/^fKi-^^/wi^ + oa). 
By part (ii) of Lemma 2.2, the right hand side of (2.20) isO(J^2n-1)/2n). We have 
by (2.2) and (2.13) that for 0 < i < n, 

J[V,b (Y(i - s/t)n(P
An/po)ds = o( Ja

f
P

4V°l^) 

= 0 ( / i ( w - 1 ) M ) = 0 ( / i ( 2 n - 1 ) / 2 n ) . 
We also have by (2.3), 

Re P \y\\pn - X)(l - s/m^/pùds ^ -K P \y\2ds. 
•Ja Oa 

These inequalities in (2.20) give 

J (/ - 5) w
P

4 n b ( w ) | 2 ^ = 0(;Vi ( 2 w~ 1 ) / 2 w ) . 
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Lemma 2.3 with F = p4w|;y(w)|2 now applies to yield Ji(oo) < oo. Similarly, 
J2(co) < oo. 

If Im X = 0, then V\ = F2. If Im X ^ 0, then the correspondence y —» y is 
one-one from V\ onto V2 ; thus dim Vi = dim F2. Suppose now dim V\ > n. By 
Lemma 2.1, we may choose y Ç V\ and z £ F2 such that [y, z] = 1 ; hence 

x ci - s/;rvn-2/£o)^ 
\t n—\ 

= 1 £ [y'V*-*-" - y^-t-'Y^Kl - s/tT-\P
in-*/Po)ds 

a t=0 

l / 2 \ 
= 0 ( [ / l / 2 ] 1 / i ) , 

by part (i) of Lemma 2.2. Now Ji(oo) < oo and /2(°o) < °o ; thus the above 
yields 

limit sup f (1 ~ s/t)n-\pAn-2/p0)ds < oo , 

contrary to (2.5), i.e., 
/•oo 

(p4K-2/^o)rf5 = œ . 
«'a 

Therefore dim Vx ^ n and the proof is complete. For Im X ^ 0, we have in 
addition that dim V\ = n. 

COROLLARY 2.1. If p0(t) = ta, a ^ 2», |£<| = O(/70, 

7 i = [4i + a(4» - 4i - 2)]/(4w - 2) (z = 1, . . . , » - 1), 

and -pn{t) S Kt^n~2a)'^n-2) for some K > 0, then dim Fi ^ ». 

Proof. Choose p(0 = /(«-D/(^-2). 

For n = 1 and a = 0, Corollary 2.1 has been given by E. C. Titchmarsh [11] 
and N. Levinson [8]. For n = 1 in Theorem 2.1, the conditions on p reduce to 
—piPA/Po ^ K, pp and p2po/po are 0(1) as t —» oo , and 

r (p2/po)dt = oo. 

This does not quite give the more general criterion of Levinson [8] that 
L(y) = —(poyf)' -\~ p\y is in the limit point at oo if for some continuous 
differentiate M > 0, -pi(t) ^ M(t), 

r {pfMT ' dt = oo, 

and AT = O(M*/2/p0
1/2). However, with p = (p0/M)lU, we need only add 

£0
; = 0([poM]1/2) to the above conditions on M in order to satisfy the hypothesis 

of Theorem 2.1. 
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W. N. Everitt [6] has given the following criterion for the equation 
u(*«0 _ {piyJ + P^y = \y 

to be in the limit point case at oo : 

\Pl(t)\ = 0(t2/3) and -p2(t) S Kt**, K>0. 

This criterion is the statement of Corollary 2.1 with a = 0, n = 2. 
The smoothness condition of n derivatives on p0 can be relaxed in the following 

manner. Suppose po is a positive function with w continuous derivatives such 
that conditions (2.2) through (2.6) hold with p0 replaced by p0} and there are 
positive numbers c and d such that c ^ Po(t)/po(t) ^ d for t ^ a. Then the 
conclusion of Theorem 2.1 holds. We have avoided this more general setting in 
order to simplify the proof. The generalization requires using p0 in place of p0 

in the transformation (2.8) and in Lemma 2.2. The proof of Lemma 2.2 with p0 

requires the observation that form = 2n and k = n in Theorem 1.1, part (i) still 
holds if the condition bntU+i = ± 1 is replaced by bn,n+1 = 0(1). 

3. Self-adjoint fourth-order equations. The methods in the preceding 
section are applicable to formally self-adjoint operators with complex co
efficients. We consider in this section the fourth-order case. A general such 
operator can be written as a sum of even order operators with real coefficients 
and odd order operators with imaginary coefficients (cf. [9, Chapter I]). We 
define the formally self-adjoint operator L by 

(3.1) L(y) = (y**)' + (tP2/2)yf + gy, 

where y™ = ry" + (ipi/2)y' and y[^ = (yW)' + py' + (ipi/2)y" + (ip2/2)y. 
The coefficients r, p, q, pu and pi are assumed to be real, measurable functions 
on [a, oo ) with r > 0 having two continuous derivatives and the other coefficients 
Lebesgue integrable on compact interval. The equation L(y) = X̂  has the vector 
formulation 

(3.2) Y' = AY, 

where Y = (y, y', y[2], yW)T and 

0 1 0 0' 
0 -ip1/2r 1/r 0 

-ip2/2 -(p+ p^/2r) -ipx/2r 1 
L X - q -ip2/2 0 0. 

The Lagrange identity for (3.1) is 

L{y)z - yL(z) = [y, z]', 

where 

[y, z\ = y[3]z — ymzf + y'z [2] 
yz [3] 
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For L(y) = \y, we have the quadratic expression 

(3.3) {yWy - y^y'}' = (X - q)\y\* - r\y"\2 + p\y'\2 

+ (ipi/2)b"yf - y'f] + (ip2/2)\yy' - y'y]. 

The analysis is similar to that of § 2. We transform (3.2) by X = M Y where M 
is the matrix 

M = diagonal [p, p3, pb/r, p7/r] 

and p is a positive, twice continuously differentiate function. 

THEOREM 3.1. Suppose that p and the coefficients of (3.1) satisfy the following 
conditions. 

(0 \Pi\p2/r, \p2\p6/r, \p\p*/r are 0(1) as t -> oo . 
(ii) For some K > 0, —qps/r ^ i£. 
(iii) p'p, /-VA, pV r , r"p4A arc 0(1) as t -> oo . 

(iv) P (p6/r)* = °o • a 

Then the equation L(y) = X̂  (Re X = 0) has at most two linearly independent 
solutions in L2[a, oo). 

Proof. The proof is analogous to Theorem 2.1 and is only sketched. The 
elements bijy i ^ 2, of X' = (l/p2)BX are bounded with b12 = b2% = 1. Let Vi 
and V2 be defined as in § 2. It can then be shown that Lemma 2.2 (with n = 2) 
holds forL of (3.1) (as before, y[0] = y,yM = y'). The condition (2.6) is fulfilled by 
(iii) above. The proof of Lemma 2.2, part (i) is the same as before except for con
sideration of integrals of piy',py',piy", and p2y times z[i]{(l — s/'t)n~lpAn~2/'r\[k] 

with j + k = 0 for py', p\y", and p2y and j + k = 1 for pxy
f (and with y and z 

interchanged). Condition (i) above implies each of these integrals is 0([/i/2]1 /2). 
Similar integrals arise in the proof of part (ii). 

We multiply the quadratic expression (3.3) by (1 — s/t)2ps/r and integrate. 
The integrals of pi(y"y' — y'y") and p2(yy' — y'y) times (1 — s/t)2ps/r are 
0(/i1/27i1/4) = 0(/i3 / 4) and 0(/i1 /4) = 0(Ji*/A) respectively; hence as before 
(when n = 2) as t —» oo , 

f ' (t - s)V\y"\2ds = OirJ^). 

By Lemma 2.3, Ji(oo) < oo for y £ V\. Similarly, J"2(oo) < oo for z £ F2. 
It has been proved by W. N. Everitt [2; 3; 4] that if Im À ^ 0, then 

2 ^ dim Vi ^ 4 (i = 1, 2), although in general, dim Fi F^ dim F?. As before 
Vi = F2 if X is real ; hence we may prove as in Lemma 2.1 that if dim V\ > 2, 
then [y, z] = 1 for some y £ Fi, s £ F2. (Define the linear transformation T 
here by T(y) is the unique w with initial values 

(wi°\w^,wW,wW)(a) = (yWt - j i P l j W , -3>[0])(a).) 

The remainder of the proof is the same as that of Theorem 2.1. 
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4. Nonself-adjoint equations. The technique of §§ 2 and 3 may be 
applied to nonself-adjoint equations if the one-sided condition on the coefficient 
of y is replaced by an absolute value condition. We consider the operator L 
defined by (2.1), but now allow the coefficients to be complex valued. However, 
po is still required to be real and positive. The operator!/ and its formal adjoint 
L+ are then given by 

(4.i) L(y) = (-inp0y
(n)yn) + (-iy-\piy(

n-»yn-» + . . . + pny 

and 

(4.2) !,+(*) = (-i)n(p0zw)w + (-ly-^p^-vy71-^ + ... + pnz. 
For X a complex number, define 

V1 = 7i(X) = {y\L(y) = \y, y G L2[a, oo)} 
and 

V2 = F2(X) = \z\L+(z) = \z,ze L2[a, oo)}. 

For (4.1) define the quasi-derivatives y[i] by y[i] = y(i) (i = 0, . . . , n — 1), 
y[n] = p0y(n\ and y[n+i^ = pxy^n~^ - (yi»+t-»y (i = 1, . . . , n) ; for (4.2) define 
the quasi-derivatives as for y, but replacing pt by pt. Then the Lagrange identity 
is 

L(y)z - yLHz) = [y, z]', 

where [y, z] is the same as (2.10). Thus L(y) = \y and L+(z) = \z implies that 
[y, z]' = 0. Let p be a positive, continuously differentiable function. 

THEOREM 4.1. Suppose p and the coefficients of L satisfy the conditions (2.2), 
(2.4), (2.5), and for some K > 0, \{pn - X)pén/p0\ ^ K. Then 

dim Fi(X) = dim F2(X) ^ n. 

Proof. Let X, M be as in § 2. The elements of B are all bounded on [a, oo ), and 
biti+i = dzl for each i. By Theorem 1.1 and (2.9), we have for y £ Vu 

f V V - Y * < °° (* = i »), 
(4.3) Ja 

f ( P 4 * - 4 / ^ * ) ^ 1 * - 1 1 ! ^ < oo (* = » + 1, . . . , 2«). 
«'a 

Similar considerations yield that for z G F2, the integrals (4.3) are finite with y 
replaced by z. 

By taking complex conjugates in L(y) = \y and L+(s) = Xz, it follows that 
the correspondence y —> y is one-one from Fi onto F2 ; hence dim V\ = dim F2. 
If dim Vi > n, we may repeat the argument of Lemma 2.1 to find that for some 
y 6 Vi and z G V2, [y, z] = 1. The integrals (4.3) and their analogs for z imply 
that 

7 1 - 1 

(4.4) 2L̂  \y z — y z \p /po = P /po 
i=0 

is integrable over [a, co)} contrary to (2.5). The proof is now complete. 
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