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ABSTRACT 

The effects of an instantaneous asymmetric supernova explosion in 
an eccentric binary system are analyzed, taking into account the mass 
loss out of the system, the influence of the impact of the supernova 
shell on the companion star and the extra "kick" velocity which a col­
lapsed star might receive in an asymmetric supernova explosion. For a 
random orientat-ion in space of this asymmetric kick velocity, the sur­
vival probability and the runaway velocities are derived and their pro­
perties discussed for an explosion occurring at a given position in the 
initial keplerian orbit and the mean and extreme values of these quanti­
ties over one orbit are derived. As an example, the outcome of a pos­
sible supernova explosion in the ten best known WR+OB binaries is studied 
and a comparison is made with the observed run-away OB stars, radio pul­
sars and binary X-ray pulsars. 

1 . INTRODUCTION 

The effects of supernovae occurring in binaries were first studied 
by Blaauw (i960) in the context of run-away OB stars. In those days one 
was not yet aware of the great effects of mass exchange and mass trans­
fer on the evolution of components of close binary systems and the idea 
that the most massive component exploded first as a supernova was invoked 
to explain the observed run-away OB stars as being the released compa­
nions of stars which had gone through the supernova stage. The main 
effect studied was the mass loss from the initially circular system, 
taking into account numerically the details of the mass distribution in 
the ejected shell (Boersma, i960). Later on the mass exchange in a 
binary system was included and the effects of the explosion of the less 
massive star were studied in the same way (van den Heuvel, 1968; De 
Cuyper, de Loore and van den Heuvel, 1977). Analytic approximations 
were given by Savedorff and Vila ( 196U) and by Hut and Verhulst (1981). 
The extention to initial eccentric orbits was given by Hadjidemetriou 
(1966), which studied the time dependent mass loss problem numerically 
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and gave an analytic solution for the instantaneous case. Analytic solu­
tions for initially circular orbits in case of an instantaneous explosion 
were also given by Sofia (1967), Gott (1972) and Mitalas (1976). 

The effects of the interaction of the supernova shell with the 
companion star were found to be unable (unless under very special condi­
tions) to make systems unbound, which were revolving initially in circu­
lar orbits, and which had undergone a mass loss of less than half of the 
initial total mass (Colgate, 1970; McCluskey and Kondo, 1971; Cheng, 
197^; Sutantyo, 197^,1975; Khabazin, 1975)- Wheeler, Lecar and McKee 
(1975) made an analytic approximation taking into account the effects of 
the internal structure on the reduction of the effective cross section 
of the star and on the mass ablated by the subsequent heating. A fully 
hydrodynamical treatment of the impact problem was given by Fryxell and 
Arnett (1981). 

An acceleration of the collapsed star due to an asymmetry in the 
explosion process was taken into account numerically by De Cuyper (197*0; 
de Loore, De Greve, van den Heuvel and De Cuyper (1975) for a time depen­
dent explosion in a circular orbit. The analytic treatment of an in­
stantaneous asymmetric explosion neglecting the effects of impact was 
given by Sutantyo (1978). 

We will generalize here the problem to an instantaneous asymmetric 
explosion occurring at a given position in an initially eccentric orbit 
taking into account the mass loss out of the system, the effects of the 
interaction of the supernova shell with the companion star and the asym­
metric kick velocity the collapsed star gets due to the asymmetry of the 
explosion process. 
In section 2 the supernova explosion of a component of a binary is 
formulated, using observational data and theoretical prospections, as a 
celestial mechanical problem and the effects of an instantaneous asym­
metric supernova explosion on the orbital parameters are derived analyt­
ically. 
In section 3 the survival condition of the post-supernova system is 
analyzed and the survival probability for a given probability distribu­
tion of the asymmetric velocity parameter, the collapsed star gets as a 
result of the asymmetry of the explosion, is defined for an explosion 
occurring in a given point of the initial orbit and for its mean value 
over one orbit. Analytic expressions for the run-away velocities of the 
remaining bound system or of both remaining components in case of dis­
ruption with respect to the center of mass of the pre-supernova system 
are given in section h. 
These formulae are used to study the outcome of the first supernova 
explosion in massive close binaries. In section 5 an evaluation of the 
explosion parameters is made using observational data and theoretical 
model results. In section 6 the initial systems are derived from the 
best observed WR+OB binaries and the outcome of the supernova explosion 
of the Wolf-Rayet star at the end of its nuclear evolution is analyzed. 
The results are discussed together with the concluding remarks in 
section 7. 
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2. THE EFFECTS OF AM INSTANTANEOUS ASYMMETRIC SUPERNOVA EXPLOSION ON THE 
ORBITAL PARAMETERS 

2.1. Formulation of the problem 

One of the major events in the evolution of a binary system is the 
supernova explosion of one of its components. The supernova itself is 
characterized by the implosion of a gravitationally unstable stellar 
core forming a neutron star (or possibly a black hole), the ejection of 
the stellar envelope with an observed velocity of the order of 1-3 10^ 
km.s-1 (Shklovsky, 1968; Schatzman, 1965; Zwicky, 1965; Minkowski, 1969). 
In case the explosion itself is not fully symmetric internal forces will 
accelerate the exploding star. Hence the collapsed star may get an extra 
asymmetric velocity (Shklovsky, 1970; Fryxell, 1979). 

In a binary, part of the ejected supernova shell will impact on the 
companion star. This inelastic collision strips off the outer edges of 
the companion star (as seen from the supernova) and accelerates the re­
maining part by direct momentum transfer and subsequent anisotropic abla­
tion of some mixed stellar and impacting material due to the heating 
behind the shockfront, which forms a bow shock around the stellar core 
(Fryxell and Arnett, 1981). 
When the supernova shell has past the companion star it no longer exerts 
any significant attraction on the remaining system. This is due to the 
fact that the mass in the ejected shell is nearly isotropically distri­
buted so that its inside gravitational field can be neglected. 
As a consequence of this the orbital motion of the remaining components 
changes. First of all the mass loss out of the system will decrease the 
gravitational binding energy. Secondly the orbital velocity change, due 
to the effects of the impact and the asymmetric explosion, will modify 
the orbital kinetic energy. 
As the orbital velocities (-10 km.s-^) are some orders of magnitude 
smaller than the supernova ejection velocities (~10^ km.s-^) and the typi­
cal thickness of the supernova shell is about one third of its expansion 
distance (Colgate, 1970), the time needed for the supernova shell to pass 
the companion star is much shorter than the initial orbital period. Hence 
we can neglect the time dependence of the mass loss out of the system and 
assume that the explosion occurs instantaneously. 

2.2. The pre-supernova system 

We consider a binary system with component masses M° (the pre-
supernova star) and MS (the companion star) revolving around their common 
center of gravity C° in a keplerian orbit with period P°, eccentricity e° 
and barycentric semi-major axes a° and a2, respectively. The semi-major 
axis of the relative orbit one component describes around its companion 
is denoted a°. 

At the instant of the explosion the barycentric distances and velo­
cities: r-|, respectively r2, and v°, respectively v2; the separation 
between both components r and the relative velocity v° of the companion 
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star with respect to the pre-supernova star, can be determined from the 

eccentric anomaly E° (figure 1a,b) (Whittaker, 19UU; Roy, 1978) as : 

with: 

r = (1 „Ov O 
cos E ; . a 

«»o ,,0 
M .r = M .r 
1 1 2 2 

o 
y .r 

(2.1) 

(2.2) 

where: 
M° + M° 

(2.3) 

denotes the reduced mass of the initial system, 

and 
• , , 0 T-,O 
1 + e . cos E 

1 - ê  cos E 
(2.U) 

with radial and tangental components given by, respectively: 

o e 
v = — 

sin E 

cos E 

o 
- -v 
,0 c [2.5! 

/ 

cos E 
(2.6) 

Making use of the pre-supernova momentum relation with respect to the 
center of gravity C one finds: 

M r v i 
,,0 -o o -o 
M2.v2 = y . v :2.7) 

whereas: 
M° + M° 

,°2 = G -! i 
c o 

a 

2.E 

y 

(2.8) 

(with G the universal constant of gravity), denotes the square of the 
constant relative velocity the pre-supernova system would have if it 
revolved in a circular orbit of radius a°. More generally this quantity 
is identical to the mean over one orbit of the square of the relative 
orbital velocity of the pre-supernova system. It can be expressed as a 
function of the total orbital energy: 

M" NL 
-G (2.9) 

2 a 

and the reduced mass y° of the initial system and is therefore, indepen­
dent of the eccentricity. 
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Figure 1 The orbital change due to an asymmetric instantaneous super 

(a) and (b) show nova explosion in an eccentric binary (e°=.U). Part 
the position and relative velocities at the instant of the supernova" 
event in the initial barycentric and relative orbits, respectively. 
The velocity change with respect to C° is given in part (c). The new 
barycentric velocities with respect t§ Cf are given in part (d) together 
with the run-away velocity vg of c| with respect to C°. 
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We will make the problem dimensionless by expressing the distances in 
units of the semi-major axis of the initial relative orbit a° and the 
velocities in units of the initial circular orbital velocity v°. 

2.3. The instantaneous supernova explosion 

The instantaneous asymmetric supernova explosion of a component of 
a binary system will change the masses and velocities of both components. 
The collapsed star, a neutron star (or possibly a black hole) of mass M?, 
receives an extra kick velocity v^, as a consequence of the assumed asym­
metry of the explosion. The companion star loses a fraction of its mass 
by stripping and ablation and receives an extra radial velocity vi m , due 
to the effects of the impact of the supernova shell. Hence, immediately 
after the supernova event (assumed to be of negligible duration) the 
collapsed star and its remaining companion of mass Mo revolve with bary-
centric velocities (cf. figure 1c) : 

and 

-r -o -
v1 = v1 + vk 

-r _ -o _ -
v„ = v_ + v. 
2 2 lm 

(2.10) 

(2.11) 

respectively, with respect to their initial center of gravity C„, while 
the companion star has a relative velocity versus the collapsed star: 

-f -o _,_ -
V = V + V. - V. 

lm k 
(2.12) 

The new center of mass C_ of the remaining components has a run-away 
velocity Vg with respect to C° (cf. figure 1 d). 

2.k. The final orbital parameters 

Prom the vis-viva integral of the final relative orbit: 

rf2 = G . {Vlf + M^) 

one finds, using eq. (2.1) and (2.8) that: 

a 

where: 

cos E 

f f 
M1 + M0 

(2.13) 

(2.11+) 

(2.15) 

denotes the fractional mass of the remaining system. 
Hence the ratio of the semi-major axis of the pre- and post-supernova 
relative orbit is a function of the ratio of the final to the initial 
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total mass of the system, the ratio of the post explosion relative velo­
city to the initial circular velocity and the relative separation in the 
initial orbit at the time of the supernova explosion. Using Kepler's 
third law we can express the ratio of the initial and final orbital 
period as a function of the ratios of the pre- and post-supernova total 
mass and relative semi-major axis, as: 

pO r en 
a 

3 
(2.16) 

Hence the changes in the relative semi-major axis and orbital period are 
independent of the individual mass loss of each component, but depend 
only on the total fraction of mass loss. 

The ratio of the total orbital energy of the pre- and post-supernova 
relative orbit is given (cf. eq. 2.9) as a function of the ratios of the 
initial and final mass of each component and relative semi-major axis 
as: 

E 

f f 
M r M 2 

1 2 

o 

f 
(2.17) 

For the final eccentricity we find using Kepler's second law the equality: 

p2 
1 »f̂  = 

(r.vj)2 

G.(M^ + M^.a1" 
( 2 . i s ; 

which gives using eq. (2.1) and (2.8): 

„ (1 - e° . cos E°)2 

h 
f - -f u r A v1 

[2.19: 

The orbital angular momentum of the post explosion relative orbit is 
defined as: 

(2.20) 

Hence the ratio of the magnitude of the initial and final orbital angular 
momentum is given as a function of the ratio of the reduced mass of the 
pre- and post-supernova system and of the ratio of the tangental component 
of the initial and final relative orbital velocity, and using eq. (2.6) 
becomes: 

h° 

f f 
v -vt 
o o 
y .vt 

1 cos E f 
y 

AT 
f 
"_t 
o 

(2.21) 
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3. THE SURVIVAL PROBABILITY 

3.1. The survival condition 

The condition for the system to remain bound, after the supernova 
explosion of one of its components, is that the final orbit is elliptic; 
i.e. the relative semi-major axis a^ must be positive. Hence, the con­
dition for survival may be written using eq. (2.11+) as: 

f-fl2 v 
(3.1) 

with 3 depending on the fractional mass of the remaining system and the 
relative separation at the time of the explosion: 

2a " 1/2 

cos E 
.3.2) 

In carthesian coordinates, for example with the X-axis connecting the 
exploding star to its companion at the instant of the explosion and the 
Y-axis lying in the orbital plane, we find that: 

(̂  V - V. ) + (Vi. 
r lm Ay 

+ vk7 

2 
(3.3) 

where subscripts x, y, z indicate the components along the X, Y, Z axes. 
From this we can state: 

T}yZ_MiAvival.JLOncU£Lo_n_for the remaining system requires that in 
the velocity space the endpoint of the kick velocity vector v^, the 
collapsar gets as a result of the asymmetry of the supernova explosion, 
is situated inside the sphere S of radius 3-v° and center coinciding 
with the endpoint of the velocity vector v° + v£m. 

An explosion for which the endpoint of the vector vĵ  is situated on 
the surface of the sphere 5 gives a parabolic final orbit. Hereto the 
velocity vector vj<- of magnitude K.v°, should make an angle Go with re­
spect to V° + V̂ JJ 

cos G = 
s 

lven by: 

2 K2
 + A 
2.K.A (3A) 

where the value of 3 needed for this ranges from 3min .£ $ j£ Smax> with: 

and 

3 • = K - A 
mm ' ' 

max 
K + A 

o . T1o e . sin E 

1 - e . cos E 
+ I 

1 - e 
/. o o>2 
(1 - e . cos E ) 

1/2 

(3.5) 

(3.6) 

(3.7) 
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Figure 2. The i n t e r s e c t i o n of the spheres S and K t oge the r 
with the c r i t i c a l values of the su rv iva l parameter 3 for the 
two poss ib le cases A > K and A < K. 
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where K, I and A denote the magnitude of v^, v-j_m and v° + vim, respecti­
vely, in units of the circular orbital velocity v°. 

If 3 < A a symmetric explosion disrupts the system whereas if 3 > A 
the opposite is true. 
Hence for the asymmetric survival condition three cases are to be dis­
tinguished according to the value of 3 (cf. figure 2), i.e.: 

case a : 3 < 3min 

Here the endpoint of the velocity vector vĵ  is situated outside the 
sphere S, i.e. the system is disrupted for any direction of the asymme­
tric kick velocity v^. If K < A the origin lies outside the sphere S, 
hence a symmetric explosion would also disrupt the system. If K > A the 
magnitude of the kick velocity is so large that it even disrupts the 
retrograde revolving final system. 

c a s e b : Smin £ 3 < 3max 

In this case the system will survive the supernova explosion for 
those directions of the asymmetric velocity vector v̂ -, which are situated 
inside the solid angle centered at v° + vj_m with semi-apex angle 6S given 
by eq. {3-k). 

case c : 3max < B 

Here the velocity vector y^ lies entirely inside the sphere S, i.e. 
the system remains bound for any direction of the asymmetric velocity 
Vfc. As 3max >. A, the origin is also situated inside the sphere S, so the 
system would survive a symmetric explosion (|| v^H = 0) occurring at the-
same position in the initial orbit. 

For an initially circular orbit (e° = 0) the magnitude of the orbit­
al velocity and the separation between both components remains constant, 
hence: 

3 = v^ToT (3.8) 

g . = A = / 1 + I2' (3.9) 
m m 
max 

Here the survival condition is a function of the fractional mass and 
relative velocity of the remaining system. A symmetric explosion would 
disrupt the system if: 

2 
a < 1 g J (3.10) 

which is always fulfilled if more than half of the mass leaves the sys­
tem. In terms of energy this is due to the fact that in a circular orbit 
the total orbital energy is one half of the constant gravitational energy. 
Taking away half of the total mass without changing the kinetic energy 
will unbound the system. 
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3.2. The survival probability for an explosion occurring in a given 
point of the initial orbit 

Assuming a certain probability disruption of the asymmetric velocity 
vector vjj, one can define the survival probability for an instantaneous 
supernova explosion occurring in a given point with eccentric anomaly E° 
of the initial orbit (of eccentricity e° and circular velocity v°), for 
a mass loss parameter a and impact parameter I. 

As the supernova explosion itself is supposed to be unaffected by 
the presence of a companion star, we restrict ourselves here to a random 
orientation of the asymmetric velocity vector v^ with given magnitude 
k.vc. Hence the endpoint of the asymmetric velocity vector v̂ _ is random­
ly situated on the sphere K, centered at' the origin with radius k.v°. 
From the survival condition it follows that the corresponding survival 
probability P (k;E°) is equivalent to the fraction of the surface of the 
sphere K that is located inside the sphere S. 

For 3min £ 3 £ 3max "the part of the surface of K inside S is a polar cap 
centered at v° + v±m with semi-apex angle 0S, given by eq. [3-h). The 
survival probability is thus given by: 

1 - cos 6 32 - [k-A]2 32 - 32-

If 3 < A the origin lies outside the sphere S and P(k;E°) < 1/2. 
The survival probability P(k;E°) of the remaining system after an instan­
taneous supernova explosion at a given point of eccentric anomaly E°, for 
a randomly orientated asymmetric velocity vjj- of given magnitude k.v0, can 
be summarized as in Table I. 

Table I 

3 < 3 • mm 

3 • < 3 < 3 mm — — max 

3 < 3 max 

P(k;E°) 

0 
3 2 - 3 2 -p p m m 

U.k.A 

1 

For a circular pre-supernova orbit the dependence of the survival proba­
bility P on the total mass loss and magnitude of the asymmetric kick veloc­
ity is given in figure 3 for two values of the impact velocity. 

3.3.The mean survival probability over one orbit 

As the supernova explosion may equally likely occur at any instant 
of time during the revolution in the initial orbit, we define the mean 
survival probability <P(k)> as the weighted average over one orbital 
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Figure 3. The dependence of the survival probability P on the magnitude 
of the asymmetric kick velocity for different constant values of the 
mass loss parameter and two values of the impact parameter in case of a 
circular pre-supernova orbit. 

period of the survival probability P(k;E°) for an explosion that occurs 
in a given point of the initial orbit, with equal weight per unit of 
time; i.e. using Kepler's law of areas as weighting function: 

po 

<P(k)> = 
1 

P(k;Ec dt (3.13) 
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Differentiating Kepler's parametric representation: 

2.TT.t „o o . o 
= E - e . sin E (3.1U) 

the time integral defining <P(k)> can be replaced by an integral over 
the position in the initial orbit in function of the eccentric anomaly 
as : 

IT 
<P(k)> = - / P(k;Eu) . (1 - e~. cos E") dE" 

o 

(3.15) 

k. THE RUN-AWAY VELOCITIES 

k.1. The run-away velocity of the new center of gravity 

f 
The run-away velocity of the center of gravity Cg of the remaining 

system, after an instantaneous supernova explosion, with respect to the 
center of gravity C° of the pre-supernova binary is given by the momen­
tum equation of the post-supernova components in the initial center of 
mass system as a function of the velocities, at the instant after the 
instantaneous supernova explosion, and the masses of the remaining com­
ponents. This equation takes the form using eq. (2.10, 2.11): 

(M^ + Mg) M1 -1 + M2-2 + M 2-im + M1 \ ( ^ 1 ) 

The first two terms on the right-hand side denote the momentum due to 
the mass loss from the system, the third term represents the momentum 
imparted by the supernova shell to the companion and the last term gives 
the momentum contributed by the asymmetry of the supernova explosion. 
Making use of the pre-supernova momentum relation with respect to C2 
(cf. eq. 2.7) this can be written as: 

fM„ 

f 
M + 

4 -»°. 
M° + 

X 

MLV. 
2 lm 

M i - V (U.2) 

1 + q 1 + q̂  

-o f - - i 
.v + q .v. + v, } 

lm k (k.3) 

with: 

and: 

M. 

M 
f 2 

(h.h) 

(k.5) 
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denoting the mass ratio of the secondary to the primary component before 
and after the supernova explosion, respectively. 

Hence the extreme values of the magnitude of v„ as a function of the 
asymmetric velocity vector v^ with given magnitude k.v° coincide with vĵ  

directed along or opposite to the vector 
given respectively by: 1 + q 

.v + a .v. , and are 
^ im' 

1 

1 + q 

1 

with 

B = 

Smax 

' f o 

1 • , ° ' 

1 + q 

(k - B) 

U + B) 

(h.6) 

(h.D 

o . o 
e . sin E 

1 - e . cos E 
•q f.I 

o\ 

1 + 4 

1/2 

1 - e°.cos E°)2J 
(U.8) 

denoting the magnitude of the vector 

the circular orbital velocity v . 

' f o' 
q - q 
1 + q°> 

.v + q .v. in units of 
im 

h.2. The run-away velocity of the bound systems 

If the system survives the supernova explosion of one of its compo 
nents, the newly formed remnant and its remaining companion revolve in 
elliptic orbits around their center of gravity c£. This center of grav 
ity will possess a run-away velocity v-5 with respect to the center of 
gravity of the initial system as given by eq. (U.3) of the preceeding 
section. Here the extreme values of the magnitude of v^ as a function 
of the asymmetric velocity vector v^ with given magnitude k.v° also 
depend on the survival condition, i.e. on the extreme values of the 

' f o 
1 ~ 1 a .v. , to the 

^ im' 
distance of the endpoint of the vector: 

1 + q 
part of the sphere K inside the sphere S, deduction of which will be 
given elsewhere. 

U.3. The run-away velocities of the disrupted components 

The magnitude of the relative velocity at infinity v°° of the re­
maining components of an unbound system is given by the vis-viva integ­
ral as : 

o2 
= -G 

IM^ + Mr
2) 

(U.9) 
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Using the definition of the initial circular velocity v° (eq. 2.8) to­
gether with the expression of the semi-major axes of the relative orbit 
(eq. 2.1*0 this becomes: 

o 2 
a o -a . — . vc 
a 

,2 oc 

i . v 
c (U.10) 

Hence the run-away velocities of both components in case of disruption 
are, respectively: 

v. = v 
1 P 

2 g 

. v (U.11) 

(U.12) 

where we used the momentum equation at infinity of the post-supernova 
system with respect to the new center of gravity C : 

o 
f _°° f _°° f _°° 

-M1.v 1 = M 2 . v 2 = y .v (U.13) 

5. EVALUATION OF THE EXPLOSION PARAMETERS 

Observations of white dwarfs in galactic clusters and theoretical 
stellar models indicate that for single stars the lower mass limit for 
becoming a supernova is around 6-8 M® (Gunn and Ostriker, 1970; van den 
Heuvel, 1975; Sugimoto and Nomoto, 1980 ) - On the other hand, a component 
of a close binary loses before the end of its evolution more than two 
thirds of its mass by mass transfer to its companion and mass loss out 
of the system. As a consequence of this mass loss a much larger initial 
mass of a component of a binary is required for direct collapse of the 
stellar core to a relativistic star (van den Heuvel, 1981). Theoretical 
computations (van den Heuvel, 197̂ +; de Loore and De Greve, 1975,1976) in­
dicate that the lower mass limit for a component of a close binary to 
become a supernova by direct core collapse is at least 12-15 M©. Mass 
loss by stellar wind during the main sequence and especially during the 
helium burning stage (presumably identified with Wolf-Rayet stars 
(Paczynski, 1971)) gives a lower limit of 15-20 M®. Such stars leave 
helium cores more massive than k M@. Helium stars of smaller masses 
evolve in close binaries through a second stage of mass exchange and 
are expected to end up as white dwarfs with masses below the Chandrasek-
har limit (Arnett, 197*+; Tutukov and Yungelson, 1973; van den Heuvel and 
Heise, 1972; de Loore and De Greve, 1975,1976). More massive helium com­
ponents of a binary are expected to explode as supernovae (Arnett, 1975, 

). 

We assume here that the core of a supernova star will form a neutron 
star of mass 1.5 M® (Weaver and Woosley, 1978). 
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The initial stellar mass function (in the mass range 1 to 100 MQ ) 
may be approximated by : 

\p(M) = C M-2"55 

(Limber, i960; Taff, 197^; Miller and Scalo, 1979)- As during the last 
109 years the stellar birth rate in the galaxy was practically constant 
(Schmidt, 1959; Miller and Scalo, 1979) the number of the short lived 
stars of mass larger than 2 M0 will be close to a steady state in which 
the birth rate equals the death rate. Assuming that 50% of the new born 
stars are in close binaries (Garmany, Conti and Massey, 1980; Abt and 
Levy, 1978) the ratio ^ of the birth rate of collapsing stars in close 
binaries and of collapsing single stars is given by : 

00 00 

6 - .5 / M M ) m / f M M ) dM = .09 
15 5 

Radio pulsars are thought to be neutron stars formed during a supernova 
explosion (Ruderman, 1972), hence most of them must have originated from 
low velocity single stars. As they are high velocity objects (up to 
6 102 km.s~1)(Taylor and Manchester, 1977,1981; Gullahorn and Rankin, 
1978; Lyne, 1981) their acceleration must be due to their formation 
process (Shklovsky, 1970;, Iben, 1972, Buchler, 1973) or their relativis-
tic nature (Harrison and Tademaru, 1977)- The radio pulsars with mea­
sured run-away velocities belong to the maximum part of the velocity 
distribution as they are easiest measurable. Hanson (1979) in a statis­
tical study estimated the mean of the run-away velocity distribution to 
be about 100 km.s_1. 

We will assume here that the observed run-away velocities of radio 
pulsars originating from single stars are due to the asymmetry of the 
supernova explosion which created them and to be 75-150 km.s-' 

For collapsed stars formed in binaries the run-away velocities 
depend on the initial binary conditions. In a binary system mass ex­
change will cause the originally most massive star (primary) to become 
the less massive one. As the evolution of this primary remains faster 
than the evolution of the now more massive secondary, it will as first 
become a supernova while its companion is still a main sequence star 
(van den Heuvel and Heise, 1972). Hence during the first supernova ex­
plosion in a binary less than half of the total mass will leave the sys­
tem, which cannot enhance the disruption of the remaining system. Accord­
ing to two-dimensional hydrodynamical calculations by Fryxell and 
Arnett (1981) the momentum imparted by the supernova shell to a companion, 
of polytropic structure with polytropic index n=3, decreases from 80% to 
35% of the momentum incident on the geometric cross section of the star 
as the kinetic energy of the incident matter increases from 20% to 60% 
of the binding energy of the companion star. They find a fairly good 
agreement between their hydrodynamical results and the analytic model of 
Wheeler, Lecar and McKee (1975) for the evaluation of the mass loss due 
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to stripping and ablation and the reduction of the effective cross 
section in case that the ratio ip of the momentum of the impacting matter 
to the momentum which the undisturbed companion would have if it moved 
with outer escape velocity (as defined below) ranges from: 

4) = 6.10~ h. 10 -2 (5.D 

As the effects of the impact may become important only for larger values 
of \\> we make the following extrapolation. 

The mass loss from the companion due to stripping and ablation is 
assumed to be given by the results for polytropic models of Wheeler et 
al. (1975) which can be fitted by a simple function of Log-|Q \p as: 

M^ = M°- Log ty + 3 
k , c 

^.3 if 4) > .01 
3.3 if ljj < .01 

(5-2) 

where: 

xL» = F. • 
m 

V - 1 
SN shell 

(5-3) 

with: (M° - M*) 
(5.U) 

and 
M. 
.0 

2.G. —J-

4 
1/2 

;5 .5; 

Fj_n denotes the ratio of the mass of the supernova shell which interacts 
with the companion to the total mass of this companion; v e s stands for 
the magnitude of the escape velocity in the outer part of the companion; 
Vgu shell denotes the ejection velocity of the supernova shell. Obser­
vations give values between 0.5~3.10^ km.s~1 (Shklovsky, 1968; Schatzman. 
1965; Zwicky, 1965; Minkowski, 1969)-

^ •1 
R2 represents the pre-supernova radius of the companion star, which is 
still on the main sequence. 

We assume here that R2 equals two times the radius on the zero age 
main sequence given by Plavec (1968) in solar units: 

R° = 2 10(°-6 3 l 0 g M2 " °- (5-6) 

As to the impacted momentum we assume it equals 30% of the incident 
momentum, hence 

v. = 0.3 F. . VC1NT v m 1m in SN shell !5.7) 
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This way the effects of the interaction of the supernova shell 
with the companion star will be overestimated if they play a role in the 
faith of the post-supernova binary (ip > . 1 ) . 

6. THE OUTCOME OF THE FIRST SUPERNOVA EXPLOSION IN MASSIVE BINARIES 

6.1. The data 

Out of the best known data on Wolf-Rayet + OB binaries we selected 
our pre-supernova systems by assuming a value for the inclination i of 
the orbital plane. Except for V 1*1+1* Cyg. the only system with an accu­
rately measured value of i = 78°1+ (Munch 1950) For the other systems 
the choice of the inclination was inferred from the eclipse condition 
taking into account the radius of the Wolf-Rayet envelope the spectral 
type of the OB star and the Roche radii of both components. The value 
retained yields the best mass-spectral type relation for the OB star and 
a minimum mass of 5 M0 for the Wolf-Rayet star. For the two systems with 
highly eccentric orbits, i.e. y2Vel (e° - 0.1*0) and HD 90657 (e° = 0.1*2) 
this condition was tested at periastron. 

Table II . The pre-supernova data. 

a 

b 

c 

d 

e 

f 

g 

h 

i 

J 

System 
(* eclipses) 

CX Cep 

HD 193576= 
Vkkk Cyg * 

HD 

HD 

HD 
SP 

HD 

HD 

HD 
CV 

HD 

Y2 

HD 

9k5k6 

90657 

211853= 
Cep * 

152270 

iseg^a 

168206= 
Cer (*) 

68273= 
Vel 

190918 

Spectral 
type 

WU5 
0 

WN6 
06l 

WNU 
0 

WN5 
06 

WN6 
061 

WC7 
05-8 

WNU 
09V 

WC8 
08-9 

WC8 
091 

WNU 
091 

po 

(days) 

2.12 

U.21 

k.90 

6.1*2 
e°=.l*2 

6.69 

8.89 

9-55 

29-7 

78.5 
e°=.l* 

85.0 

M̂ jj. sin3i 
MOB.sin3i 

5.3 
12. 

9.5 
2k. 

8. 
23. 

7.6 
17. 

7.6 
20. 

1.8 
k.9 

9-
18. 

11. 
22. 

17. 
32. 

0.20 
0.77 

qO 

2.3 

2.It 

2.9 

2.2 

2.6 

2-7 

2.0 

2.0 

1.9 

3.8 

i 

55° 

7 8°. 4 

6o° 

50° 

75° 

30° 

60° 

75° 

70° 

20° 

MtfR 
MOB 

9.6 
22. 

11. 
26. 

12. 

35. 

17. 
37. 

8.5 
22. 

9.3 
26. 

9.k 
19. 

12. 

25-

20. 

39. 

5.9 
22. 

0 
vc 

(km.s-1) 

521* 

k39 

1+52 

1*32 

353 

337 

306 

229 

191* 

11»7 

(a) Massey and Conti ( 1980 ) (f) Seggewiss (1971*) 
(b) Munch (1950) (g) Massey (1981) 
(c) Niemela (1980) (h) Massey and Niemela ,(1980) 
(d) Niemela (1976) (i) Niemela and Sahade (1980) 
(e) Hiltner (191+5) and Massey (1981) (j ) Wilson ( M 9 ) 
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The assumption is made that these data, as given in Table II, are 
comparable with the pre-supernova binary parameters at the time the Wolf-
Rayet star becomes a supernova 

6.2. The results 

Table III shows the results of a supernova event leaving a collapsed 
star of mass Mp = 1.5 M@ for an assumed value of Vgjj shell = 10^ km.s~1 
and a random orientated kick velocity v^ of 75 km.s_1 (case a) and 150 
km.s-1 (case b ) , respectively. In case of an eccentric orbit the results 
for the supernova explosion occurring at periastron and at apastron are 
given. In the first three columns the pre-supernova parameters are 
shown. The initial mass of the pre-supernova star M^R and its companion 
MQ2 are given in the first column in solar units, in the second column 
the initial period P°, expressed in days, and the initial eccentricity e°, 
if non zero, is shown. Column three gives the barycentric velocities at 
the instant before the explosion of both components v ™ and VR-D . If 
e° f̂  0 the upper and lower case correspond to an explosion occurring at 
periastron and at apastron, respectively. Column four gives the mass 
loss parameter a and if e° ^ 0 the survival parameter 32 is also given. 
The effects of the impact are shown in the subsequent columns. The fifth 
column shows the magnitude of the impact velocity v-^m and the value of 
the momentum parameter TJJ and column six the final mass of the companion 
MQ-g. In column seven the run-away velocity of the bound system vt, g ^ 
or of the disrupted components V? s y m and V Q B are given for the symmet­
ric supernova explosion (||vk|| = 0). In case of an asymmetric explosion 
the survival probability P and the extreme values of the run-away velo­
city of the bound system v^, of the disrupted companion star VQ-Q , and of 
the single collapsed star v„ are shown respectively in columns eight, 
nine and ten for case a (||vk|| = 75 km.s

-^) and in colums eleven, twelve 
and thirteen for case b (|Iv̂|j = 150 km.s~1). In case of an eccentric 
initial orbit the value of the mean survival probability <P> is also 
shown in columns seven, eight and eleven, respectively. 

6.3. The survival probability 

A massive close binary revolving in a nearly circular initial orbit 
survives the symmetric supernova explosion of its most evolved and hence 
less massive component. If the initial revolution is eccentric the sys­
tem is disrupted in case the symmetric explosion occurs at the less 
probable positions around periastron in the initial orbit. The mean 
survival probability over one revolution for the short periodic system 
(d) is <PSym> = .80, due to the influence of the impact especially around 
periastron; whereas for the long periodic system (i) : <PSym

> = -92. 

In case the supernova explosion is asymmetric the survival condition 
also depends on the ratio of the asymmetric kick velocity to the initial 
circular velocity. As v° decreases for increasing values of a° (equa­
tion 2.8), the influence of the asymmetric kick velocity will increase 
with P°. 
Originally circular systems with an initial orbital period up to about 
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Table III. The survival probability and the run-away velocities. 

"WE 

a 9.6 
22. 

b 11. 
26. 

c 12. 

35. 

d 17. 

37. 

e 8.5 
22. 

f 9-3 
26. 

g 9-k 
19. 

h 12. 

25. 

i 20. 

39. 

j 5.9 
22. 

P° 
<e°) 

2.12 

U .21 

1*.90 

6.1*6 

(.1*2) 

6.69 

8.89 

9-55 

29.7 

78.5 
(.1*) 

85.0 

o 
V W R 
v° 
OB 

365 
159 

309 
131 

337 
115 

' 1*63 

213 

189 
87 

255 
98 

21*8 

89 

205 
101 

155 
71* 

' 195 
100 

81* 
. >*3 

116 
31 

a 

(B2) 

.66 

• 70 

.71* 

.61* 

(1.1) 

.70 
(.1*9) 

• 75 

• 77 

.71 

.72 

.68 
(1.1) 

.69 
(U.9) 

.81* 

v. 
1m 

* 

78. 
.28 

3l*. 
.12 

29. 
.09 

60. 
.26 

13-
.01* 

15 
• 05 

11. 
.01* 

11. 
.01* 

3. 
.01 

3. 
.01 

1. 
0. 

0. 
0. 

4 

19.3 

21*. 1* 

33.3 

32.8 

36.2 

21.1* 

25-5 

18.6 

21*. 8 

38.6 

39-0 

22.0 

b sym/ 
00 

P sym 
v» 
OB sym. 

3r 

(<P >) 
sym 

11*1 

110 

100 

[20l*J 
(.80) 

77 

77 

71 

79 

61 

f88l [90J 
(.92) 
38 

. 
22 

case a: 

P 

(<P>] 

• 98 

.20 

(.80) 

.86 

.75 

C .1*2 

(.69) 
.89 

. 
.71 

IFklh 
vb 

135 
ll*7 

105 
115 

96 
103 

200 
202 

71* 
80 

71 
82 

66 
75 

75 
85 

59 
66 

89 
92 

36 
1*1 

20 
26 

75 km 
00 

V0B 

136 
137 

200 
208 

75 
78 

59 
63 

89 
91* 

36 
37 

19 
21* 

-1 
s 

VP 

11*2 

151 

180 
295 

66 
100 

1.0 
98 

1.6 
152 

27 
55 

9 
91* 

case b: 

P 

(<P>) 

.68 

.70 

.77 

'.31 

(.71) 
1. 

.68 

.68 

• 59 

.50 

f.36 

(.1*3) 
.1*8 

I 
.1*1 

Ikll" 
V 
P 

131* 

152 

105 
119 

95 
106 

199 
205 

71 
83 

72 
86 

67 
79 

77 
90 

62 
70 

91 
95 

39 
1.1* 

25 
31 

150 km 
00 

V 0 B 

135 
H*5 

106 
113 

96 
100 

201 
212 

72 
81 

67 
75 

75 
87 

58 
68 

89 
96 

35 
1.1 

18 

28 

-1 
.s 

00 

V P 

116 
263 

79 
221 

81 
205 

11*3 
385 

1*1* 

202 

39 
199 

25 
201* 

1 
201 

5 
21*6 

20 
162 

22 

202 

one week stay together for case a and have a survival probability of 
.7 <_ P £ .8 for case b. Except the shortest system (a) which has a 
relatively small value for a = .66 and is disrupted for a kick directed 
along v° + v£m of minimum magnitude v^ m i n = 78 km.s

-1 if vj_m = 0, with 
P = 1 (case a) and P = .71 (case b), respectively. Whereas here vim = 
78 km.s"1 so that vk m i n = 73 km.s

_1, with P = .98 (case a) and P = .68 
(case b), respectively. Hence the impact lowers the survival probabili­
ty here with a few percent. 
The short periodic system (d) with an initially eccentric orbit is dis­
rupted for some directions of the asymmetric kick velocity if the ex­
plosion occurs near periastron in the initial orbit, with Pper = -20 
(case a) and Pper = .31 (case b), respectively; but stays bound for an 
explosion occurring around apastron, so the mean survival probability 
over one orbit is as high as <P> = .80 (case a), i.e. equal to the sym­
metric value,and <P> = .71 (case b), respectively. This last value lies 
in the range of the survival probabilities of the circular short perio­
dic systems. 
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For originally circular systems having an initial orbital period 
of the order of months the survival probability lies in the range 
• 7 £ P £ .9 (case a) and .k £ P £ .6 (case b), respectively. The long 
periodic system (i) with an initially eccentric orbit has a survival 
probability around periastron as low as Pper = .k2 (case a) and Pper = 

.36 (case b), respectively and around apastron up to Pap = .89 (case a) 
and Pap = .1+8 (case b), respectively; with a mean survival probability 
of <P> = .69 (case a) and <P> = .1+3 (case b), respectively, both in the 
range of the corresponding survival probabilities for long periodic 
circular systems. 

6.U. The run-away velocities 

The magnitudes of the run-away velocities of the OB stars with a 
— . 00 

collapsed companion vb and of the disrupted OB stars VOB are comparable. 
They are slightly smaller than the barycentric velocity vSg of the OB 
star at the instant of the supernova explosion and their asymmetric 
values enclose the symmetric one : v^ s y m or VQB sym- According to the 
pre-supernova momentum relation with respect to the initial center of 
gravity C° (eq. 2.7), these run-away velocities are inversely proportion­
al to the pre-supernova mass ratio q°. They decrease for increasing 
values of the initial orbital period. The possible values of V)-, are 
slightly larger than those of VQB (except for an explosion occurring 
near periastron in an elliptic initial orbit where the opposite is true) 
and their maximum values are most probable (cf. figure h). 

Originally circular systems with an orbital period up to one week 
create high velocity OB stars (single or with a collapsed companion) 
with run-away velocities between 75-150 km.s-1. If the initial orbit 
is eccentric, as in the short periodic system (d), a supernova explosion 
occurring at the less probable positions near periastron in the initial 
orbit releases run-away OB stars faster than 200 km.s_1. 
For originally long periodic circular systems the post-supernova system, 
consisting of an 0B star and a collapsed companion, and the disrupted 
single OB stars have run-away velocities in the range 60-70 km.s_1 if 
the initial orbital period is about one month and smaller than 25 km.s~1 
if the initial orbital period is longer than a few months. If the 
initial orbit is eccentric and the explosion occurs near periastron 
somewhat faster run-away OB stars are released. 

In case a nearly circular system is disrupted a single pulsar is 
formed with a run-away velocity up to Vp £ 100 km.s_1 (case a) and 
Vp £ 200 km.s-1 (case b), respectively; independent of the initial 
orbital period. Few of them have a negligible run-away velocity (cf. 
figure k). Except system (a) where 1Uo km.s-1 £ Vp £ 150 km.s-1 (case a) 
and 115 km.s-1 £ Vp £ 265 km.s-1 (case b),-respectively due to the 
relative large mass loss and the high value of the impact velocity. 
In case the supernova explosion disrupts an initially eccentric revolving 
system the run-away velocity of the collapsed star is comparable with the 
value for circular systems. Only in the less probable cases the super­
nova explosion occurs near periastron in the initial orbit, much higher 
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Figure k. The run-away velocity range as a function of the 
angle 9 between the asymmetric kick velocity v̂ . and the vector 
v° + vim. The outcome for a case (b) supernova is shown for 
the system (h) in part (a) and for the system (d) with Eo = 
IT/2 in part (b) . 

velocity pulsars are created. For example the symmetric explosion 
occurring near periastron in the short periodic system (d) releases a 
run-away pulsar with Vp Sym = 220 km.s

-''; for an asymmetric explosion 
near periastron : 180 km.s-'' <_ Vp £ 295 km.s-1 (case a) and 1Uo km.s-1 

1 (case b), respectively. For an explosion near peri-< Vp <_ 385 km.s 
astron in the long periodic system (i) p sym 90 km.s" •1 
km.s 1 (case a) and Vp £ 2̂+5 km.s 1 (case b), respectively. 

p̂ 1 150 
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7. DISCUSSION AND CONCLUDING REMARKS 

In view of the above we can conclude that the main effect of the 
impact of the ejected supernova shell on the companion star is the in­
duced mass loss out of the system. Its magnitude is roughly inversely 
proportional to the square of the separation at the time of the super­
nova explosion. But, even for the shortest initial orbital periods 
considered or near periastron in eccentric orbits, the influence of 
the impact on the survival probability and the run-away velocities is 
marginal. Though vim enters the equation (3.̂ -) of T , multiplied with 
qf = 15-26. S 

The asymmetric kick velocity v-^, the collapsed star is supposed 
to receive due to the asymmetry of the supernova explosion, lowers the 
survival probability of the remaining system and its importance is in­
versely proportional to the initial circular velocity v°; i.e. increases 
for increasing values of the initial orbital period. The run-away 
velocity of the disrupted collapsed stars depends only on the magnitude 
of the asymmetric kick velocity. Whereas its influence on the run-away 
velocities of the remaining systems and of the disrupted OB stars is 
found to be marginal. 

An initially eccentric orbit is mostly disrupted if the explosion 
occurs in the less probable positions near periastron. As most of the 
short periodic systems are expected to be circularized by tidal forces, 
OB stars with run-away velocities larger than 160 km.s~1 should be very 
rare. Initially eccentric systems with long orbital periods may be 
quite common. The range of their run-away velocities is somewhat larger 
than in the circular case, but their mean survival probability equals 
the circular value. 

If the supernova explosion is symmetric all the run-away OB stars 
originating from initially circular systems will have a collapsed 
companion. Single run-away OB stars are formed only in case the super­
nova explosion occurs at the less probable positions near periastron 
in an initially eccentric orbit. In case of an asymmetric supernova 
explosion however the mean survival probability and the run-away veloc­
ity of the OB star (be it single or with a collapsed companion) are 
related. They both decrease for increasing values of the initial orbit­
al period. 
Hence most of the high velocity OB stars (>_ 60 km.s~1) have a collapsed 
companion. They originate from systems, with an initial orbital period 
up to one month, which have a large survival probability. Whereas 
systems with an initial orbital period of a few months create low veloc­
ity OB stars and about half of them are disrupted. Single run-away 
OB stars are expected to be less numerous and most of them have small 
run-away velocities. 

In a bound system the collapsed star can show up as an X-ray pulsar, 
in the very rare case a suitable mode of mass transfer is available 
(cf. Davidson and Ostriker, 1973; Illarionov and Sunyaev, 1975; Savonije, 
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19T9 51978). From observations of massive X-ray binaries we know that 
most of them have a high z-latitude, indicating that it are run-away 
objects; the observed orbital periods are up to about- one month and 
they revolve in nearly circular orbits. The theoretically expected 
number of massive X-ray binaries in the galaxy (van den Heuvel, 19T̂ +) 
is in agreement with the observed number in case their survival proba­
bility is high. This supports our results that a supernova explosion 
in a massive close binary, with an initial orbital period up to a few 
months, creates run-away OB stars most of which have a collapsed compan­
ion . Hence an asymmetric supernova explosion in a massive close binary 
with initial period up to one year cannot lower the survival probability 
by orders of magnitude (cf. De Cuyper, De Greve, de Loore and van den 
Heuvel, 1976). 

If the collapsed star is not directly observable, most of the bound 
systems will be regarded as single stars. This is due to the small 
barycentric velocity of the much heavier OB star in its final orbit, 
to the marginal effects the collapsed star has on its photometric light 
variations (unless the side towards the pulsar companion is heated by 
electromagnetic radiation from the pulsar beams) and to the observation­
al limits on these quantities for OB stars. 

In spite of the above, Stone (1979, 198la,b) derived a mass-velocity 
relation for 0-stars from a theoretical evolution model. Starting from 
a "standard" zero-age-main-sequence WR+OB binary with fixed initial 
orbital period and mass ratio, equal to their so called "most probable" 
value, only the initial total mass of the system was used as a free 
parameter. The system was assumed to revolve in a circular orbit and 
the period change due to mass and momentum loss and exchange was calcu­
lated neglecting the rotational energy and angular momentum of both 
components. The observational evidence given for the supposed increase 
of the run-away velocity of 0-stars with their mass is weak. It depends 
on only three high run-away velocities of stars heavier than 60 M0, 
which may be due to selection effects. Whereas the given run-away veloc­
ities of stars smaller than 60 MQ are uncorrelated. 

Our results show no evidence for a correlation between the mass of 
the remaining companion and its run-away velocity, in agreement with 
the observed run-away OB-star velocities (Cruz-Gonzalez et al., 197^; 
Stone, 1979). 

If the system is disrupted a single pulsar is released with maximum 
run-away velocity merely depending on the magnitude of the asymmetric 
kick velocity. We started by deriving this magnitude from observations 
of single radio pulsars. The run-away velocities calculated for pulsars 
escaping from massive binaries are spread around the magnitude of the 
asymmetric kick velocity used. But even for ||vjj| = 150 km.s-1 they are 
not larger than 200 km.s-^ for initially circular systems and about U00 
km.s-'' for supernovae occurring near periastron in initially short 
periodic eccentric orbits. The highest run-away velocities observed 
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(< 650 km.s-1) are probably the outcome of the second supernova explo­
sion in a massive close binary which survived the supernova explosion 
of its less massive companion. Here the effect of the second supernova 
depends critically on the outcome of the instable spiral-in of the 
collapsed star into the envelope of its more massive companion. 
Hence the supposed asymmetric supernova explosions reproduce the observed 
run-away velocities of pulsars. 
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