FROM SEPARABLE POLYNOMIALS TO NONEXISTENCE OF RATIONAL POINTS ON CERTAIN HYPERELLIPTIC CURVES

NGUYEN NGOC DONG QUAN

(Received 6 November 2012; accepted 29 October 2013)

Communicated by J. Borwein

Abstract

We give a separability criterion for the polynomials of the form $$
a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)
$$

Using this separability criterion, we prove a sufficient condition using the Brauer-Manin obstruction under which curves of the form $$
z^{2}=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)
$$ have no rational points. As an illustration, using the sufficient condition, we study the arithmetic of hyperelliptic curves of the above form and show that there are infinitely many curves of the above form that are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction.

2010 Mathematics subject classification: primary 14G05; secondary 11G35, 11G30.
Keywords and phrases: Azumaya algebras, Brauer groups, Brauer-Manin obstruction, Hasse principle, hyperelliptic curves.

1. Introduction

Let \mathcal{V} be a smooth geometrically irreducible variety defined over a global field k. A fundamental problem in arithmetic geometry is to determine what the set of k-rational points on \mathcal{V} is. The problem is widely open even in the case where \mathcal{V} is an algebraic irreducible curve. One of the most celebrated theorems dealing with the understanding of the set of rational points on curves of genus greater than one is Faltings' theorem, or equivalently the Mordell conjecture, which says that an algebraic irreducible curve of genus greater than one over a number field has finitely many rational points. Despite this striking result, there exists no known algorithm that determines what the set of

[^0]rational points on a curve looks like, or says whether or not an algebraic irreducible curve over a number field possesses a rational point.

Take an algebraic irreducible curve C over \mathbb{Q}, and for each prime p including $p=\infty$, let $\mathbb{Q} \hookrightarrow \mathbb{Q}_{p}$ be the embedding of \mathbb{Q} into \mathbb{Q}_{p}. Under these embeddings, one can view \mathcal{C} as a curve over \mathbb{Q}_{p} for each prime p, and one can ask what the relationship is between the set of all \mathbb{Q}-rational points on C and that of all \mathbb{Q}_{p}-rational points on C for each prime p. It is not difficult to realize that if $C\left(\mathbb{Q}_{p}\right)=\emptyset$ for some prime p, then it follows immediately that C has no \mathbb{Q}-rational points. Thus, in an ideal setting and with some skill, this fact provides a simple way to show that $\mathcal{C}(\mathbb{Q})$ is empty by proving that C has no \mathbb{Q}_{p}-points for some prime p. To add some interest, we assume that $C\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for each prime p including $p=\infty$. The Hasse principle expects that C should have a \mathbb{Q}-rational point. The Hasse principle fails in general, and even does not hold in the case where C is of genus one; for example, the Lind-Reichardt curve $[9,11]$ defined by

$$
2 z^{2}=x^{4}-17
$$

has points over each \mathbb{Q}_{p} including $p=\infty$ whereas it possesses no points over \mathbb{Q}.
Recall that the Hasse reciprocity law [12] states that the sequence of abelian groups

$$
0 \rightarrow \operatorname{Br}(\mathbb{Q}) \rightarrow \bigoplus_{p} \operatorname{Br}\left(\mathbb{Q}_{p}\right) \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0
$$

is exact, where the third map is the sum of the local invariant maps from local class field theory. For each scheme \mathcal{X}, we denote by $\operatorname{Br}(\mathcal{X})$ the Brauer group of \mathcal{X}, and for a commutative ring A, define

$$
\operatorname{Br}(A):=\operatorname{Br}(\operatorname{Spec}(A)) .
$$

In 1970, Manin [10], based on the Hasse reciprocity law, introduced the notion of the Brauer-Manin obstruction. Roughly speaking, the Brauer-Manin obstruction measures how badly the Hasse principle for varieties fails. Let $\mathbb{A}_{\mathbb{Q}}$ be the ring of rational adeles, and let $C\left(\mathbb{A}_{\mathbb{Q}}\right)$ denote the set of adelic points on C. Assume further that \mathcal{C} is projective. It is well known [8] that

$$
C\left(\mathbb{A}_{\mathbb{Q}}\right)=\prod_{p} C\left(\mathbb{Q}_{p}\right)
$$

Manin [10] introduced a subset of $C\left(\mathbb{A}_{\mathbb{Q}}\right)$, say $C\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}$, such that

$$
C(\mathbb{Q}) \subseteq C\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}} \subseteq C\left(\mathbb{A}_{\mathbb{Q}}\right) .
$$

Here $C\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}$ is defined to be the right kernel of the adelic Brauer-Manin pairing (see [12])

$$
\begin{align*}
\mathcal{E}: \operatorname{Br}(C) \times C\left(\mathbb{A}_{\mathbb{Q}}\right) & \longrightarrow \mathbb{Q} / \mathbb{Z} \tag{1.1}\\
\left(\mathcal{A},\left(P_{p}\right)_{p}\right) & \mapsto \sum_{p} \operatorname{inv}_{p}\left(\mathcal{A}\left(P_{p}\right)\right),
\end{align*}
$$

where for each prime $p, \operatorname{inv}_{p}: \operatorname{Br}\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}$ is the invariant map of local class field theory. We will say that C is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction if $C\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset$ but $C\left(\mathbb{A}_{\mathbb{Q}}\right)=\emptyset$.

In this paper, we are interested in using the Brauer-Manin obstruction to study the arithmetic of curves of the form

$$
\begin{equation*}
z^{2}=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right) \tag{1.2}
\end{equation*}
$$

where (n, m, k) is a triple of positive integers, and a, b, c, d, e are some integers such that $a \neq 0$. For each quintuple (a, b, c, d, e) with $a \neq 0$, we also assume that $n>m+k-1$ and that the polynomial on the right-hand side of (1.2) is separable. These conditions are equivalent to saying that the affine part is smooth so that the nonsingular projective curve associated to (1.2) is of genus n. To add some interest to the arithmetic of curves of the form (1.2), we require that they are everywhere locally solvable.

Before stating the main problem we are interested in, let us recall the following definition.

Defintition 1.1.

(i) Let C_{0} be the affine curve defined by the equation $z^{2}=F(x)$, where $F(x) \in \mathbb{Q}[x]$ is a polynomial of degree $2 n+2$. Let C_{1} be the affine curve defined by the equation $v^{2}=u^{2 n+2} F(1 / u)$. Throughout this paper, by the smooth projective model C of the affine curve C_{0} we mean that C is the variety obtained by gluing together C_{0} and C_{1} via $u=1 / x$ and $v=z / x^{n+1}$.
(ii) Let C be the projective smooth model as in (i). A point at infinity on C is one of the points on C_{1} with $u=0$.

The main interest of this paper lies in partially answering the following problem.
Problem 1.2. Let (n, m, k) be a triple of positive integers such that $n>m+k-1$. Describe all the quintuples (a, b, c, d, e) of integers with $a \neq 0$ such that the smooth projective model of the affine curve defined by

$$
z^{2}=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)
$$

is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction.
Some results on Problem 1.2 are known when letting $m=k=1$. The curves of the form (1.2) with $m=k=1$ first appeared in the work of Coray and Manoil [3] out of the attempt to construct hyperelliptic curves of arbitrary genus greater than one violating the Hasse principle. To be more precise, letting

$$
\left\{\begin{array}{l}
a=605 \times 10^{6} \tag{1.3}\\
b=18 \\
c=-4400 \\
d=45 \\
e=-8800
\end{array}\right.
$$

Coray and Manoil [3] showed that the family of hyperelliptic curves of varying genus $n \geq 2$ with fixed coefficients defined by

$$
\begin{equation*}
z^{2}=605 \times 10^{6} x^{2 n+2}+\left(18 x^{2}-4400\right)\left(45 x^{2}-8800\right) \tag{1.4}
\end{equation*}
$$

for any integer $n \geq 2$ is counterexamples to the Hasse principle explained by the Brauer-Manin obstruction. Thus the quintuple (a, b, c, d, e) given by (1.3) satisfies the conditions in Problem 1.2, where $m=k=1$ and n is an arbitrary positive integer greater than one. The main idea in the approach of Coray and Manoil is that they define a \mathbb{Q}-morphism from the curve given by (1.4) to the threefold in \mathbb{P}^{5} defined by

$$
\left\{\begin{array}{l}
u_{1}^{2}-5 v_{1}^{2}=2 x y \\
u_{2}^{2}-5 v_{2}^{2}=2(x+20 y)(x+25 y)
\end{array}\right.
$$

which was first studied by Colliot-Thélène et al. [2]. The latter is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction, and hence it follows from functoriality that the curve defined by (1.4) is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction.

Upon directly studying the Brauer-Manin obstruction of curves of the form (1.2) with $m=k=1$ without relating them to certain threefolds in \mathbb{P}^{5} in the same spirit as in the approach of Coray and Manoil, the author [4] described infinitely many quintuples (a, b, c, d, e) of integers satisfying the conditions in Problem 1.2, where n is an arbitrary positive integer greater than one and $m=k=1$. On the other hand, following the approach of Coray and Manoil, the author [5] showed that there are certain rational functions $P_{i}(t) \in \mathbb{Q}(t)$ for $1 \leq i \leq 5$ such that curves defined by

$$
z^{2}=P_{1}(t) x^{2 n+2}+\left(P_{2}(t) x^{2}+P_{3}(t)\right)\left(P_{4}(t) x^{2}+P_{5}(t)\right)
$$

for each $t \in \mathbb{Q}$ are counterexamples to the Hasse principle explained by the BrauerManin obstruction, where n is a positive integer such that $n>5$ and $n \neq 0 \bmod 4$. In other words, the author [5] described a one parameter family of quintuples (a, b, c, d, e) satisfying the requirements in Problems 1.2, where $m=k=1$ and n is a positive integer such that $n>5$ and $n \neq 0 \bmod 4$.

We are mainly concerned with investigating Problem 1.2 for curves of the form (1.2), where m and k are arbitrary positive integers. Note that when $m+k \geq 3$, it seems that one cannot follow the approach of Coray and Manoil. The reason is that in order to embed curves of the form (1.2) into a certain threefold in \mathbb{P}^{5} of the same form as that studied by Colliot-Thélène et al. [2], we must require that $m+k=2$ so that the threefold is the intersection of two quadrics.

For the rest of this section, for rational numbers $a, b, c, d, e \in \mathbb{Q}$ with $a \neq 0$, let $F(x) \in \mathbb{Q}[x]$ be the polynomial defined by

$$
\begin{equation*}
F(x):=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right) \in \mathbb{Q}[x] . \tag{1.5}
\end{equation*}
$$

Now, fix a curve of the form $z^{2}=F(x)$ for some $a, b, c, d, e \in \mathbb{Q}$ with $a \neq 0$, and denote it by C. Under mild hypotheses, we will construct an explicit Azumaya
algebra on \mathcal{C}, say \mathcal{A}. The adelic Brauer-Manin pairing \mathcal{E} defined as in (1.1) defines the mapping $\mathcal{E}_{\mathcal{P}}: C\left(\mathbb{A}_{\mathbb{Q}}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}$ by sending an adelic point $\left(P_{p}\right)_{p} \in C\left(\mathbb{A}_{\mathbb{Q}}\right)$ to $\mathcal{E}\left(\mathcal{A},\left(P_{p}\right)_{p}\right)$. Under certain conditions, we will show that $\mathcal{E}_{\mathcal{A}}\left(\left(P_{p}\right)_{p}\right)=1 / 2$ for each $\left(P_{p}\right)_{p} \in C\left(\mathbb{A}_{\mathbb{Q}}\right)$, and hence it follows that $C\left(\mathbb{A}_{\mathbb{Q}}\right)^{\mathrm{Br}}=\emptyset$. This approach follows the same spirit as that of the author in [4]. The main difference between this paper and [4] is that in this paper the quintuples (a, b, c, d, e) run through a large infinite subset of \mathbb{Z}^{5} and n, m, k are arbitrary positive integers such that $n>\min (m+2 k-1,2 m+k-1)$, whereas in [4] m and k are equal to one and the choice of the quintuples (a, b, c, d, e) is somehow restrictive.

To produce an Azumaya algebra on C, it is crucial that the curve C is smooth of genus n; in other words, the polynomial $F(x)$ defined by (1.5) is separable. Hence, one of the main difficulties we need to solve is to find certain reasonably mild conditions on a, b, c, d, e for which the polynomial $F(x)$ defined by (1.5) is separable. Theorem 2.1 in Section 2 gives a sufficient condition for polynomials of the above form to have distinct roots. This sufficient condition is easy to test, and is of independent interest.

The outline of the paper is as follows. In Section 2, we prove a separability criterion for the polynomials $F(x)$. The separability criterion depends on the lower bound of n, and certain congruences modulo some prime dividing a. This is Theorem 2.1. The conditions in Theorem 2.1 are mild, and allow one to produce a large class of smooth curves of the form (1.2) of arbitrary genus greater than two that are counterexamples to the Hasse principle in subsequent sections.

In Section 3, using the separability criterion in Section 2, we prove a sufficient condition under which curves of the form (1.2) have no rational points. In the last two sections, in order to prove that the sufficient condition in Section 3 can apply to a large class of curves of the form (1.2), we construct infinitely many quintuples (a, b, c, d, e) for which the curves of the form (1.2) are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction, where n, m, k are positive integers such that

$$
n>\min (m+2 k-1,2 m+k-1)
$$

The construction of such quintuples (a, b, c, d, e) depends on a theorem of Iwaniec [7], which says that quadratic polynomials in two variables satisfying certain mild conditions represent infinitely many primes.

2. A separability criterion

In this section, we will give a separability criterion for the polynomials defined by

$$
a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)
$$

for some integers a, b, c, d, e and some positive integers n, m, k. The main result in this section is the following theorem, which is a generalization of a lemma in the author's PhD Thesis (see [6, Lemma 4.1.1]).

Theorem 2.1. Let n, m, k be positive integers, and let a, b, c, d, e be integers such that $a \neq 0$. Let p be an odd prime such that p divides a. Let $F(x) \in \mathbb{Q}[x]$ be the polynomial defined by

$$
\begin{equation*}
F(x):=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right) . \tag{2.1}
\end{equation*}
$$

Define

$$
\begin{aligned}
& n_{1}:=(m+k)\left(v_{p}(a)-v_{p}(b d)\right)+m+k-1, \\
& n_{2}:=(m+k)\left(v_{p}(a)-v_{p}(b)\right)+m-1, \\
& n_{3}:=(m+k)\left(v_{p}(a)-v_{p}(d)\right)+k-1, \\
& n_{4}:=(m+k) v_{p}(a)-1, \\
& n_{5}:=v_{p}(a)-v_{p}(b d)+m+k-1,
\end{aligned}
$$

where v_{p} denotes the p-adic valuation with the usual convention that $v_{p}(0)=\infty$. Suppose that the following are true:
(A1) $n>m+k-1$ and $n>\max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$;
(A2) $c e \not \equiv 0 \bmod p, k m \not \equiv 0 \bmod p$, and $b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m} \not \equiv 0 \bmod p$.
Then F is separable: that is, it has exactly $2 n+2$ distinct roots in \mathbb{C}.
Proof. Assume the contrary, that is, there exists an element α in \mathbb{C} such that

$$
F(\alpha)=\frac{\partial F}{\partial x}(\alpha)=0,
$$

where $\partial F / \partial x$ denotes the formal derivative of F with respect to the variable x. We see that

$$
\begin{aligned}
&(2 n+2) F(\alpha)-\alpha\left(\frac{\partial F}{\partial x}(\alpha)\right)=2(n-m-k+1) b d \alpha^{2(m+k)}+2(n-m+1) b e \alpha^{2 m} \\
&+2(n-k+1) c d \alpha^{2 k}+(2 n+2) c e=0,
\end{aligned}
$$

and hence

$$
\begin{equation*}
G(\beta)=0, \tag{2.2}
\end{equation*}
$$

where $G(x)$ is the polynomial in $\mathbb{Q}[x]$ defined by

$$
\begin{align*}
G(x):=(n & -m-k+1) b d x^{m+k}+(n-m+1) b e x^{m} \\
& +(n-k+1) c d x^{k}+(n+1) c e \tag{2.3}
\end{align*}
$$

and $\beta=\alpha^{2}$. Since $F(\alpha)=0$, we see that

$$
\begin{equation*}
a \beta^{n+1}+\left(b \beta^{m}+c\right)\left(d \beta^{k}+e\right)=0 \tag{2.4}
\end{equation*}
$$

Define $K=\mathbb{Q}(\beta)$, and let \mathfrak{p} be a prime of K above p. Let $K_{\mathfrak{p}}$ be the completion of K at \mathfrak{p}. Set $f:=v_{\mathfrak{p}}(p)$, where $v_{\mathfrak{p}}$ denotes the extension of the p-adic valuation of \mathbb{Q}_{p} to K_{p}. Recall that f is the ramification index of $K_{\mathfrak{p}}$ over \mathbb{Q}_{p}, and that for each $\gamma \in \mathbb{Q}$, we have

$$
v_{p}(\gamma)=f v_{p}(\gamma)
$$

Since the degree of $G(x)$ is at most $m+k$, we see that the degree of $K_{\mathfrak{p}}$ over \mathbb{Q}_{p} is at most $m+k$. Furthermore, f satisfies

$$
\begin{equation*}
1 \leq f \leq m+k \tag{2.5}
\end{equation*}
$$

We now prove that

$$
\begin{equation*}
n>\max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \geq \max \left(m_{1}, m_{2}, m_{3}, m_{4}\right), \tag{2.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& m_{1}:=f\left(v_{p}(a)-v_{p}(b d)\right)+m+k-1, \\
& m_{2}:=f\left(v_{p}(a)-v_{p}(b)\right)+m-1, \\
& m_{3}:=f\left(v_{p}(a)-v_{p}(d)\right)+k-1, \\
& m_{4}:=f v_{p}(a)-1 .
\end{aligned}
$$

By (A1), it suffices to show that

$$
\max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \geq \max \left(m_{1}, m_{2}, m_{3}, m_{4}\right)
$$

If $v_{p}(a)-v_{p}(b d) \geq 0$, we deduce from (2.5) that

$$
\begin{aligned}
m_{1} & =f\left(v_{p}(a)-v_{p}(b d)\right)+m+k-1 \\
& \leq(m+k)\left(v_{p}(a)-v_{p}(b d)\right)+m+k-1=n_{1} .
\end{aligned}
$$

If $v_{p}(a)-v_{p}(b d)<0$, we see that

$$
m_{1}=f\left(v_{p}(a)-v_{p}(b d)\right)+m+k-1 \leq v_{p}(a)-v_{p}(b d)+m+k-1=n_{5} .
$$

Thus we deduce that

$$
\begin{equation*}
m_{1} \leq \max \left(n_{1}, n_{5}\right) \leq \max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \tag{2.7}
\end{equation*}
$$

If $v_{p}(a)-v_{p}(b) \geq 0$, we see that

$$
m_{2}=f\left(v_{p}(a)-v_{p}(b)\right)+m-1 \leq(m+k)\left(v_{p}(a)-v_{p}(b)\right)+m-1=n_{2}
$$

If $v_{p}(a)-v_{p}(b)<0$, we deduce that

$$
v_{p}(b)>v_{p}(a) \geq 1,
$$

and hence it follows that

$$
b \equiv 0 \bmod p
$$

It follows from (A2) that

$$
(-1)^{m+k+1} c^{k} d^{m} \not \equiv 0 \bmod p
$$

and thus $d \not \equiv 0 \bmod p$. Therefore we see that

$$
\begin{aligned}
n_{5} & =v_{p}(a)-v_{p}(b d)+m+k-1 \\
& =v_{p}(a)-v_{p}(b)-v_{p}(d)+m+k-1 \\
& =v_{p}(a)-v_{p}(b)+m+k-1
\end{aligned}
$$

Since $v_{p}(a)-v_{p}(b)<0$, we deduce that

$$
\begin{aligned}
m_{2} & =f\left(v_{p}(a)-v_{p}(b)\right)+m-1 \\
& \leq v_{p}(a)-v_{p}(b)+m-1 \\
& <v_{p}(a)-v_{p}(b)+m+k-1=n_{5} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
m_{2} \leq \max \left(n_{2}, n_{5}\right) \leq \max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \tag{2.8}
\end{equation*}
$$

We now prove that $m_{3} \leq \max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)$. Indeed, if $v_{p}(a)-v_{p}(d) \geq 0$, we see that

$$
m_{3}=f\left(v_{p}(a)-v_{p}(d)\right)+k-1 \leq(m+k)\left(v_{p}(a)-v_{p}(d)\right)+k-1=n_{3} .
$$

If $v_{p}(a)-v_{p}(d)<0$, we deduce that $v_{p}(d)>v_{p}(a) \geq 1$, and hence $d \equiv 0 \bmod p$. Using (A2), it follows that $b \neq 0 \bmod p$. Therefore

$$
\begin{aligned}
n_{5} & =v_{p}(a)-v_{p}(b d)+m+k-1 \\
& =v_{p}(a)-v_{p}(b)-v_{p}(d)+m+k-1 \\
& =v_{p}(a)-v_{p}(d)+m+k-1,
\end{aligned}
$$

and thus it follows that

$$
\begin{aligned}
m_{3} & =f\left(v_{p}(a)-v_{p}(d)\right)+k-1 \\
& \leq v_{p}(a)-v_{p}(d)+k-1 \\
& <v_{p}(a)-v_{p}(d)+m+k-1=n_{5}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
m_{3} \leq \max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \tag{2.9}
\end{equation*}
$$

Finally we see that

$$
\begin{equation*}
m_{4}=f v_{p}(a)-1 \leq(m+k) v_{p}(a)-1=n_{4} \leq \max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \tag{2.10}
\end{equation*}
$$

By (2.7)-(2.10), we deduce that

$$
n>\max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) \geq \max \left(m_{1}, m_{2}, m_{3}, m_{4}\right) .
$$

We prove that β is an integral element of $K_{\mathfrak{p}}$. Assume the contrary, that is, $v_{\mathfrak{p}}(\beta)<0$. Since $v_{\mathrm{p}}(\beta)$ is an integer, we see that $v_{\mathfrak{p}}(\beta) \leq-1$. We have that

$$
v_{p}\left(a \beta^{n+1}\right)=f v_{p}(a)+(n+1) v_{p}(\beta),
$$

and it follows from (A2) that

$$
\begin{aligned}
& v_{\mathfrak{p}}\left(\left(b \beta^{m}+c\right)\left(d \beta^{k}+e\right)\right)= v_{\mathfrak{p}}\left(b \beta^{m}+c\right)+v_{\mathfrak{p}}\left(d \beta^{k}+e\right) \\
& \geq \min \left(v_{p}\left(b \beta^{m}\right), v_{p}(c)\right)+\min \left(v_{p}\left(d \beta^{k}\right), v_{p}(e)\right) \\
& \geq \min \left(f v_{p}(b)+m v_{p}(\beta), 0\right)+\min \left(f v_{p}(d)+k v_{p}(\beta), 0\right) \\
& \geq \min \left(f v_{p}(b d)+(m+k) v_{p}(\beta), f v_{p}(b)+m v_{p}(\beta), f v_{p}(d)\right. \\
&\left.\quad+k v_{p}(\beta), 0\right) .
\end{aligned}
$$

By (2.6), we see that

$$
-(n-m-k+1) v_{p}(\beta) \geq n-m-k+1>f\left(v_{p}(a)-v_{p}(b d)\right),
$$

and hence

$$
v_{p}\left(a \beta^{n+1}\right)=f v_{p}(a)+(n+1) v_{p}(\beta)<f v_{p}(b d)+(m+k) v_{p}(\beta) .
$$

Similarly, we can show that

$$
\begin{aligned}
& v_{\mathfrak{p}}\left(a \beta^{n+1}\right)<f v_{p}(b)+m v_{p}(\beta), \\
& v_{\mathfrak{p}}\left(a \beta^{n+1}\right)<f v_{p}(d)+k v_{p}(\beta), \\
& v_{p}\left(a \beta^{n+1}\right)<0 .
\end{aligned}
$$

Thus we deduce that

$$
\begin{aligned}
v_{\mathfrak{p}}\left(a \beta^{n+1}\right) & <\min \left(f v_{p}(b d)+(m+k) v_{p}(\beta), f v_{p}(b)+m v_{p}(\beta), f v_{p}(d)+k v_{p}(\beta), 0\right) \\
& \leq v_{\mathfrak{p}}\left(\left(b \beta^{m}+c\right)\left(d \beta^{k}+e\right)\right),
\end{aligned}
$$

and hence it follows from (2.4) that

$$
\begin{aligned}
+\infty & =v_{p}(0)=v_{p}\left(a \beta^{n+1}+\left(b \beta^{m}+c\right)\left(d \beta^{k}+e\right)\right) \\
& =v_{p}\left(a \beta^{n+1}\right)=f v_{p}(a)+(n+1) v_{p}(\beta) \leq f v_{p}(a)-(n+1),
\end{aligned}
$$

which is a contradiction. Therefore β is an integral element of $K_{\mathfrak{p}}$.
Taking (2.4) modulo \mathfrak{p} and noting that \mathfrak{p} is a prime over p and p divides a, we see that

$$
\left(b \beta^{m}+c\right)\left(d \beta^{k}+e\right) \equiv 0 \bmod \mathfrak{p}
$$

and hence we deduce that

$$
\begin{equation*}
b \beta^{m} \equiv-c \bmod \mathfrak{p} \tag{2.11}
\end{equation*}
$$

or

$$
\begin{equation*}
d \beta^{k} \equiv-e \bmod \mathfrak{p} \tag{2.12}
\end{equation*}
$$

Suppose that (2.11) holds. Taking (2.2) modulo \mathfrak{p}, we see that

$$
\begin{aligned}
0 & =G(\beta) \\
& \equiv-(n-m-k+1) c d \beta^{k}-(n-m+1) c e+(n-k+1) c d \beta^{k}+(n+1) c e \\
& \equiv c d m \beta^{k}+c e m \bmod \mathfrak{p},
\end{aligned}
$$

and it follows from (A2) that

$$
d \beta^{k} \equiv-e \bmod \mathfrak{p}
$$

Thus we deduce from (2.11) and the last congruence that

$$
b^{k} d^{m} \beta^{m k} \equiv(-1)^{k} c^{k} d^{m} \equiv(-1)^{m} b^{k} e^{m} \bmod \mathfrak{p}
$$

and hence

$$
(-1)^{m} b^{k} e^{m}-(-1)^{k} c^{k} d^{m} \equiv 0 \bmod \mathfrak{p}
$$

Therefore we see that

$$
b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m} \equiv 0 \bmod \mathfrak{p}
$$

which contradicts (A2).
Suppose that (2.12) holds. Taking (2.2) modulo \mathfrak{p}, we see that

$$
\begin{aligned}
0 & =G(\beta) \\
& \equiv-(n-m-k+1) b e \beta^{m}+(n-m+1) b e \beta^{m}-(n-k+1) c e+(n+1) c e \\
& \equiv k b e \beta^{m}+c e k \bmod \mathfrak{p},
\end{aligned}
$$

and hence it follows from (A2) that

$$
b \beta^{m} \equiv-c \bmod \mathfrak{p}
$$

Using the same arguments as above, we deduce that

$$
b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m} \equiv 0 \bmod \mathfrak{p}
$$

which contradicts (A2).
Therefore we see that F is separable.

3. Nonexistence of rational points on certain hyperelliptic curves

In this section, using Theorem 2.1, we give a sufficient condition under which certain curves C of the form

$$
C: z^{2}=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)
$$

satisfy $C\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset$. We begin by proving the following lemma, which shows how to construct an Azumaya algebra on the curves C of the form as above.

Lemma 3.1. We maintain the notation and assumptions of Theorem 2.1. Assume (A1) and (A2) in Theorem 2.1. Suppose that the following are true:
(A3) $a=a_{1} a_{2}^{2}$, where a_{1}, a_{2} are relatively prime integers such that a_{1} is a positive squarefree integer and $a_{1} \equiv 1 \bmod 8$;
(A4) $b \neq 0$.
Let C be the smooth projective model of the affine curve defined by

$$
\begin{equation*}
z^{2}=F(x) \tag{3.1}
\end{equation*}
$$

where $F(x) \in \mathbb{Q}[x]$ is the polynomial defined by (2.1). Let \mathcal{A} be the class of the quaternion algebra $\left(a_{1}, b x^{2 m}+c\right)$ in $\operatorname{Br}(\mathbb{Q}(C))$, where $\mathbb{Q}(C)$ denotes the function field of C. Then the quaternion algebras

$$
\mathcal{B}:=\left(a_{1}, d x^{2 k}+e\right)
$$

and

$$
\mathcal{E}:=\left(a_{1}, \frac{b x^{2 m}+c}{x^{2 m}}\right)
$$

represent the same class as \mathcal{A} in $\operatorname{Br}(\mathbb{Q}(\mathcal{C}))$. Furthermore $\mathcal{A}, \mathcal{B}, \mathcal{E}$ together define an Azumaya algebra on C.

Proof. Throughout the proof, let C_{0} and C_{1} be the affine curves associated to C as in part (i) of Definition 1.1. Recall that C_{0} is given by the equation $z^{2}=F(x)$ and C_{1} is given by the equation $v^{2}=u^{2 n+2} F(1 / u)$, where $u=1 / x$ and $v=z / x^{n+1}$.

We will prove that there is a Zariski open covering $\left\{U_{i}\right\}$ of \mathcal{C} such that \mathcal{A} extends to an element $\operatorname{Br}\left(U_{i}\right)$ for each i. We see that (3.1) can be written in the form

$$
\begin{equation*}
\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)=z^{2}-a_{1} a_{2}^{2} x^{2 n+2}=\operatorname{Norm}_{\mathbb{Q}}\left(\sqrt{a_{1}}\right) / \mathbb{Q}\left(z-\sqrt{a_{1}} a_{2} x^{n+1}\right) \tag{3.2}
\end{equation*}
$$

Hence it follows that $\mathcal{A}+\mathcal{B}=0$. Furthermore, since $x^{2 m}$ is a square, we have $\mathcal{A}-\mathcal{E}=\left(a_{1}, x^{2 m}\right)=0$. Since \mathcal{A}, \mathcal{B} and \mathcal{E} belong to the 2-torsion part of $\operatorname{Br}(\mathbb{Q}(C))$, this implies that $\mathcal{A}=\mathcal{B}=\mathcal{E}$.

Now let U_{1} be the largest open subvariety of C in which the rational function $F:=b x^{2 m}+c$ has neither a zero nor a pole, and let U_{2} be the largest open subvariety of C in which $G:=d x^{2 k}+e$ has neither a zero nor a pole. Since $\mathcal{A}=\mathcal{B}$, we have that \mathcal{A} is an Azumaya algebra on U_{1} and also on U_{2}. We prove that in the open subset C_{0} of C, the locus where both F and G have a zero is empty. Assume the contrary, that is, there is a point (x, z) on C_{0} such that

$$
b x^{2 m}+c=d x^{2 k}+e=0 .
$$

Hence we deduce that

$$
b^{k} d^{m} x^{2 k m}=(-1)^{k} c^{k} d^{m}=(-1)^{m} b^{k} e^{m}
$$

and it follows that

$$
(-1)^{m} b^{k} e^{m}-(-1)^{k} c^{k} d^{m}=0
$$

Thus we see that

$$
b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m}=0
$$

which contradicts (A2). Therefore, in the open subset C_{0} of C, the locus where both F and G have a zero is empty.

Let $H:=\left(b x^{2 m}+c\right) / x^{2 m}$ be a rational function in $\mathbb{Q}(C)$. Since $u=1 / x$, the rational function H can be written in the form $H=b+c u^{2 m}$. Let ∞ be a point at infinity on C. By part (ii) of Definition 1.1 and the equation of \mathcal{C}_{1}, we know that $\infty=(u, v)=$ $(0, \pm \sqrt{a})$. Thus we see that

$$
H(\infty)=b \neq 0
$$

Hence H is regular and nonvanishing at the points at infinity on C.
Now let U_{3} be the largest open subvariety of C in which H has neither a zero nor a pole. Since $\mathcal{A}=\mathcal{E}$, we deduce that \mathcal{A} is an Azumaya algebra on U_{3}. By what we have shown, we see that $C=U_{1} \cup U_{2} \cup U_{3}$ and \mathcal{A} is an Azumaya algebra on each U_{i} for $i=1,2,3$. Therefore \mathcal{A} is an Azumaya algebra of C.

Theorem 3.2. We maintain the notation and assumptions of Lemma 3.1. Assume that $a_{1} \neq 1$, and write

$$
a_{1}=p_{1} p_{2} \ldots p_{h}
$$

where h is a positive integer and $p_{1}, p_{2}, \ldots, p_{h}$ are the distinct primes dividing a_{1}. Assume (A1)-(A4), and suppose further that the following are true:
(A5) there are positive integers h_{1}, h_{2}, h_{3} such that $1 \leq h_{1} \leq h_{2} \leq h_{3} \leq h$ and $h_{1}+h_{3}-h_{2}$ is odd; furthermore, $\operatorname{gcd}\left(c, p_{i}\right)=1$ for each $1 \leq i \leq h_{2}, \operatorname{gcd}\left(e, p_{i}\right)=1$ for each $h_{2}+1 \leq i \leq h$,

$$
\left(\frac{c}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } 1 \leq i \leq h_{1}, \\
1 & \text { if } h_{1}+1 \leq i \leq h_{2},
\end{aligned}\right.
$$

and

$$
\left(\frac{e}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } h_{2}+1 \leq i \leq h_{3}, \\
1 & \text { if } h_{3}+1 \leq i \leq h,
\end{aligned}\right.
$$

where (\cdot / \cdot) denotes the Jacobi symbol;
(A6) for each odd prime l dividing a_{2}, a_{1} is a square modulo l;
(A7) for each odd prime l dividing $b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m}$ such that a_{1} and l are relatively prime, l does not divide $\operatorname{gcd}(c, e)$ or a_{1} is a quadratic residue modulo l;
(A8) $b \equiv 0 \bmod p_{i}$ for each $1 \leq i \leq h_{2}$ and $d \equiv 0 \bmod p_{i}$ for each $h_{2}+1 \leq i \leq h$.
Let C be the smooth projective model as in Lemma 3.1. Then $C\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset$.
Proof. We maintain the notation of the proof of Lemma 3.1. Set

$$
\begin{equation*}
\mathbf{P}:=\left\{p_{1}, p_{2}, \ldots, p_{h_{1}}\right\} \cup\left\{p_{h_{2}+1}, p_{h_{2}+2}, \ldots, p_{h_{3}}\right\} . \tag{3.3}
\end{equation*}
$$

We will prove that for any $P_{l} \in C\left(\mathbb{Q}_{l}\right)$,

$$
\operatorname{inv}_{l}\left(\mathcal{A}\left(P_{l}\right)\right)= \begin{cases}0 & \text { if } l \notin \mathbf{P}, \tag{3.4}\\ \frac{1}{2} & \text { if } l \in \mathbf{P} .\end{cases}
$$

Since C_{0} is smooth and C is the smooth projective model of C_{0}, we know that $C_{0}\left(\mathbb{Q}_{l}\right)$ is l-adically dense in $C\left(\mathbb{Q}_{l}\right)$. It is well known [13, Lemma 3.2] that $\operatorname{inv}_{l}\left(\mathcal{A}\left(P_{l}\right)\right)$ is a continuous function on $C\left(\mathbb{Q}_{l}\right)$ with the l-adic topology. Hence it suffices to prove (3.4) for $P_{l} \in C_{0}\left(\mathbb{Q}_{l}\right)$. We consider the following cases.

Case 1: $l=\infty, 2$ or l is an odd prime such that $\operatorname{gcd}\left(a_{1}, l\right)=1$ and a_{1} is a square in \mathbb{Q}_{l}^{\times}.
We see that the Hilbert symbol $\left(a_{1}, t\right)_{l}$ is one for any $t \in \mathbb{Q}_{l}^{\times}$. Hence $\operatorname{inv}_{l}\left(\mathcal{A}\left(P_{l}\right)\right)$ is zero.

Case 2: l is an odd prime such that $\operatorname{gcd}\left(a_{1}, l\right)=1$ and a_{1} is not a square in \mathbb{Q}_{l}^{\times}.
In this case, we consider the following subcases.
Subcase $2(i): v_{l}(x) \geq 0$.
We contend that at least one of $b x^{2 m}+c$ and $d x^{2 k}+e$ is nonzero modulo l. Assume the contrary, that is,

$$
\begin{equation*}
b x^{2 m}+c \equiv d x^{2 k}+e \equiv 0 \bmod l . \tag{3.5}
\end{equation*}
$$

Hence we see that

$$
b^{k} d^{m} x^{2 m k} \equiv(-1)^{k} c^{k} d^{m} \equiv(-1)^{m} b^{k} e^{m} \bmod l,
$$

and hence

$$
(-1)^{m} b^{k} e^{m}-(-1)^{k} c^{k} d^{m} \equiv 0 \bmod l .
$$

Therefore we see that

$$
b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m} \equiv 0 \bmod l
$$

By (A7) and since a_{1} is not a square modulo l, we deduce from the congruence above that l does not divide $\operatorname{gcd}(c, e)$.

On the other hand, we see from (3.5) and (3.2) that

$$
z^{2} \equiv a_{1} a_{2}^{2} x^{2 n+2} \bmod l
$$

By (A6) and since a_{1} is not a square modulo l, we deduce that l does not divide a_{2}. Since a_{1} is a quadratic nonresidue modulo l, it follows from the last congruence that $x \equiv z \equiv 0 \bmod l$. Hence we deduce from (3.5) that $c \equiv e \equiv 0 \bmod l$, and hence l divides $\operatorname{gcd}(c, e)$, which is a contradiction. Thus, at least one of $b x^{2 m}+c$ and $d x^{2 k}+e$ is nonzero modulo l, say U. Hence the local Hilbert symbol $\left(a_{1}, U\right)_{l}$ is one. Therefore $\operatorname{inv}_{l}\left(\mathcal{P}\left(P_{l}\right)\right)$ is zero.
Subcase 2(ii): $\epsilon:=v_{l}(x)<0$.
By (A6) and since a_{1} is not a square modulo l, we deduce that l does not divide a_{2}. By (A1) and (3.1), we see that

$$
v_{l}(z)=\frac{v_{l}\left(z^{2}\right)}{2}=\frac{v_{l}\left(a_{1} a_{2}^{2} x^{2 n+2}\right)}{2}=(n+1) \epsilon
$$

Hence there exist elements $x_{0}, z_{0} \in \mathbb{Z}_{l}^{\times}$such that

$$
\begin{aligned}
& x=x_{0} l^{\epsilon}, \\
& z=z_{0} l^{(n+1) \epsilon} .
\end{aligned}
$$

Hence we see from (3.1) that

$$
z_{0}^{2} l^{2(n+1) \epsilon}=a_{1} a_{2}^{2} x_{0}^{2 n+2} l^{(2 n+2) \epsilon}+\left(b x_{0}^{2 m} l^{2 m \epsilon}+c\right)\left(d x_{0}^{2 k} l^{2 k \epsilon}+e\right),
$$

and hence

$$
z_{0}^{2}=a_{1} a_{2}^{2} x_{0}^{2 n+2}+l^{-2(n-m-k+1) \epsilon}\left(b x_{0}^{2 m}+c l^{-2 m \epsilon}\right)\left(d x_{0}^{2 k}+e l^{-2 k \epsilon}\right) .
$$

Taking the above equation modulo l and noting that $n-m-k+1$ is greater than zero, we deduce that

$$
z_{0}^{2} \equiv a_{1} a_{2}^{2} x_{0}^{2 n+2} \bmod l
$$

By (A6), we easily see that $a_{2} \not \equiv 0 \bmod l$. Thus it follows that

$$
a_{1} \equiv\left(\frac{z_{0}}{a_{2} x_{0}^{n+1}}\right)^{2} \bmod l
$$

which is a contradiction since a_{1} is not a square modulo l. Therefore, in any event, we see that $\operatorname{inv}_{l}\left(\mathcal{A}\left(P_{l}\right)\right)$ is zero.

Case 3: l is an odd prime such that l divides a_{1}.
By assumption, we see that $l=p_{i}$ for some $1 \leq i \leq h$. We contend that $v_{p_{i}}(x) \geq 0$. Assume the contrary, that is, $v_{p_{i}}(x)<0$. Set $\epsilon=v_{p_{i}}(x)$. We see that

$$
\begin{aligned}
v_{p_{i}}\left(\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)\right) & =v_{p_{i}}\left(b x^{2 m}+c\right)+v_{p_{i}}\left(d x^{2 k}+e\right) \\
& \geq \min \left(2 m \epsilon+v_{p_{i}}(b), v_{p_{i}}(c)\right)+\min \left(2 k \epsilon+v_{p_{i}}(d), v_{p_{i}}(e)\right) \\
& \geq \min (2 m \epsilon, 0)+\min (2 k \epsilon, 0) \\
& \geq 2 m \epsilon+2 k \epsilon \\
& \geq 2(m+k) \epsilon .
\end{aligned}
$$

Since $n>m+k-1$, we deduce that

$$
-2(n-m-k+1) \epsilon \geq 2>1
$$

and hence

$$
v_{p_{i}}\left(a x^{2 n+2}\right)=1+2(n+1) \epsilon<2(m+k) \epsilon \leq v_{p_{i}}\left(\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)\right) .
$$

By (3.1), we see that

$$
2 v_{p_{i}}(z)=v_{p_{i}}\left(z^{2}\right)=v_{p_{i}}\left(a x^{2 n+2}\right)=1+(2 n+2) \epsilon
$$

which is a contradiction since the left-hand side is an even integer whereas the righthand side is odd. Therefore $v_{p_{i}}(x) \geq 0$.

We now consider the following subcases.
Subcase 3 (i): $1 \leq i \leq h_{1}$ or $h_{2}+1 \leq i \leq h_{3}$.
If the integer i satisfies $1 \leq i \leq h_{1}$, then by (A5) and (A8) we see that $\left(c / p_{i}\right)=-1$ and $b \equiv 0 \bmod p_{i}$. Thus we deduce that

$$
b x^{2 m}+c \equiv c \not \equiv 0 \bmod p_{i} .
$$

Since $a_{1}=p_{i} a_{1}^{*}$, where a_{1}^{*} is an integer such that $\operatorname{gcd}\left(a_{1}^{*}, p_{i}\right)=1$, it follows from [1, Theorem 5.2.7] that the local Hilbert symbol $\left(a_{1}, b x^{2 m}+c\right)_{p_{i}}$ satisfies

$$
\left(a_{1}, b x^{2 m}+c\right)_{p_{i}}=\left(\frac{c}{p_{i}}\right)=-1 .
$$

Therefore we deduce that $\operatorname{inv}_{p_{i}}\left(\mathcal{A}\left(P_{p_{i}}\right)\right)$ is $1 / 2$.
If the integer i satisfies $h_{2}+1 \leq i \leq h_{3}$, then using the same arguments as above, we see from (A5) and (A8) that the local Hilbert symbol ($\left.a_{1}, d x^{2 k}+e\right)_{p_{i}}$ satisfies

$$
\left(a_{1}, d x^{2 m}+e\right)_{p_{i}}=\left(\frac{e}{p_{i}}\right)=-1 .
$$

Since \mathcal{A} and \mathcal{B} represent the same class in $\operatorname{Br}(\mathbb{Q}(C))$, we deduce that

$$
\operatorname{inv}_{p_{i}}\left(\mathcal{A}\left(P_{p_{i}}\right)\right)=1 / 2
$$

Subcase 3(ii): $h_{1}+1 \leq i \leq h_{2}$ or $h_{3}+1 \leq i \leq h$.
If the integer i satisfies $h_{1}+1 \leq i \leq h_{2}$, then by (A5) and (A8) we see that $\left(c / p_{i}\right)=1$ and $b \equiv 0 \bmod p_{i}$. Thus we deduce that

$$
b x^{2 m}+c \equiv c \not \equiv 0 \bmod p_{i} .
$$

Since $a_{1}=p_{i} a_{1}^{*}$, where a_{1}^{*} is an integer such that $\operatorname{gcd}\left(a_{1}^{*}, p_{i}\right)=1$, it follows from [1, Theorem 5.2.7] that the local Hilbert symbol $\left(a_{1}, b x^{2 m}+c\right)_{p_{i}}$ satisfies

$$
\left(a_{1}, b x^{2 m}+c\right)_{p_{i}}=\left(\frac{c}{p_{i}}\right)=1 .
$$

Therefore we deduce that

$$
\operatorname{inv}_{p_{i}}\left(\mathcal{A}\left(P_{p_{i}}\right)\right)=0
$$

If the integer i satisfies $h_{3}+1 \leq i \leq h$, then using the same arguments as above, we see from (A5) and (A8) that the local Hilbert symbol $\left(a_{1}, d x^{2 m}+e\right)_{p_{i}}$ satisfies

$$
\left(a_{1}, d x^{2 m}+e\right)_{p_{i}}=\left(\frac{e}{p_{i}}\right)=1 .
$$

Since \mathcal{A} and \mathcal{B} represent the same class in $\operatorname{Br}(\mathbb{Q}(C))$, we deduce that

$$
\operatorname{inv}_{p_{i}}\left(\mathcal{A}\left(P_{p_{i}}\right)\right)=0
$$

By what we have shown and since $h_{1}+h_{3}-h_{2}$ is odd, we see that for any $\left(P_{l}\right)_{l} \in$ $\mathcal{C}\left(\mathbb{A}_{\mathbb{Q}}\right)$, the sum $\sum_{l} \operatorname{inv}_{l} \mathcal{F}\left(P_{l}\right)$ satisfies

$$
\begin{aligned}
\sum_{l} \operatorname{inv}_{l} \mathcal{A}\left(P_{l}\right) & =\sum_{1 \leq i \leq h_{1}} \operatorname{inv}_{p_{i}} \mathcal{A}\left(P_{p_{i}}\right)+\sum_{h_{2}+1 \leq i \leq h_{3}} \operatorname{inv}_{p_{i}} \mathcal{A}\left(P_{p_{i}}\right) \\
& =\sum_{1 \leq i \leq h_{1}} \frac{1}{2}+\sum_{h_{2}+1 \leq i \leq h_{3}} \frac{1}{2} \\
& =\frac{1}{2} \bmod \mathbb{Z}
\end{aligned}
$$

which proves that $\mathcal{C}\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset$.
Using Theorem 3.2, we reprove the following result, which is the main assertion of [4, Theorem 1.2].

Corollary 3.3 [4, Theorem 1.2]. Let p be a prime such that $p \equiv 1 \bmod 8$ and let n be a positive integer such that $n \geq 3$. Assume that the following are true:
(i) there is an integer d_{*} such that d_{*} is a quadratic nonresidue in $\mathbb{F}_{p}^{\times}, d_{*}$ is odd and $\operatorname{gcd}\left(d_{*}, n\right)=1$;
(ii) there is a nonzero integer m_{*} such that m_{*} is even and $q=d_{*}^{2}+p m_{*}^{2}$ is a prime.

Let \mathcal{X} be the smooth projective model of the affine curve given by

$$
\begin{equation*}
\mathcal{X}: z^{2}=p q^{2} x^{2 n+2}+\left(d_{*}\left(p+d_{*}\right) x^{2}-q\right)\left(p m_{*}^{2}\left(p+d_{*}\right) x^{2}-d_{*} q\right) . \tag{3.6}
\end{equation*}
$$

Then $\mathcal{X}\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset$.

Proof. Let

$$
\begin{aligned}
& h_{1}=h_{2}=h_{3}=h=1, \\
& \left\{\begin{array}{l}
a_{1}:=p, \\
a_{2}:=q, \\
a:=a_{1} a_{2}^{2}, \\
b:=p m_{*}^{2}\left(p+d_{*}\right), \\
c:=-d_{*} q, \\
d:=d_{*}\left(p+d_{*}\right), \\
e:=-q,
\end{array}\right.
\end{aligned}
$$

and

$$
m=k=1 .
$$

By (i) and (ii) in Corollary 3.3, one can verify that the quintuple (a, b, c, d, e) defined as above satisfies (A1)-(A8). Hence Theorem 3.2 implies that $\mathcal{X}\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset$, and thus our contention follows.

4. Certain hyperelliptic curves violating the Hasse principle

In this section, using Theorem 3.2, we will construct certain hyperelliptic curves of arbitrary genus greater than two having no \mathbb{Q}-rational points. To add some interest to these curves, we require that they are everywhere locally solvable, that is, they are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction.

Let h be a positive integer, and let $p_{1}, p_{2}, \ldots, p_{h}$ be distinct odd primes. Define

$$
\begin{equation*}
a_{1}:=p_{1} p_{2} \ldots p_{h} . \tag{4.1}
\end{equation*}
$$

Let q_{1}, q_{2}, q_{3} be nonzero odd integers, and define

$$
\begin{equation*}
a_{2}:=q_{1} q_{2} q_{3} . \tag{4.2}
\end{equation*}
$$

Let c_{1}, e_{1} be nonzero integers, and let n, m, k be positive integers. Suppose that the following are true:
(B1) $\operatorname{gcd}\left(a_{2}, c_{1}\right)=\operatorname{gcd}\left(a_{2}, e_{1}\right)=\operatorname{gcd}\left(c_{1}, e_{1}\right)=1$ and $\operatorname{gcd}\left(a_{2}, p_{i}\right)=\operatorname{gcd}\left(c_{1}, p_{i}\right)=$ $\operatorname{gcd}\left(e_{1}, p_{i}\right)=1$ for each $1 \leq i \leq h$;
(B2) there exist integers h_{1}, h_{2}, h_{3} such that $h_{1}+h_{3}-h_{2}$ is odd, $1 \leq h_{1} \leq h_{2} \leq h_{3} \leq h$,

$$
\left(\frac{c_{1}}{p_{i}}\right)=\left(\frac{e_{1}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } 1 \leq i \leq h_{1}, \\
1 & \text { if } h_{1}+1 \leq i \leq h_{2},
\end{aligned}\right.
$$

and

$$
\left(\frac{c_{1}}{p_{i}}\right)=\left(\frac{e_{1}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } h_{2}+1 \leq i \leq h_{3}, \\
1 & \text { if } h_{3}+1 \leq i \leq h ;
\end{aligned}\right.
$$

(B3) $p_{i} \equiv 1 \bmod 4$ for each $1 \leq i \leq h$ and $a_{1} \equiv 1 \bmod 8$.
(B4) for each $1 \leq i \leq h$, the prime p_{i} is a square modulo l, where l is any odd prime dividing a_{2};
(B5) $q_{1}=\Delta c_{1}^{2}+\Phi e_{1}^{2}$, where

$$
\begin{equation*}
\Phi:=\prod_{i=1}^{h_{2}} p_{i} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta:=\prod_{i=h_{2}+1}^{h} p_{i} \tag{4.4}
\end{equation*}
$$

(B6) $n-m+1 \not \equiv 0 \bmod l$ for each odd prime l dividing c_{1};
(B7) $n-k+1 \not \equiv 0 \bmod l$ for each odd prime l dividing e_{1};
(B8) there is some integer t with $1 \leq t \leq h$ such that $k m \not \equiv 0 \bmod p_{t}$;
(B9) let t be the integer in (B8). Then

$$
\begin{cases}n>m+2 k-1 & \text { if } 1 \leq t \leq h_{2} \\ n>2 m+k-1 & \text { if } h_{2}+1 \leq t \leq h\end{cases}
$$

Define

$$
\left\{\begin{array}{l}
a:=a_{1} a_{2}^{2} \tag{4.5}\\
b:=\Phi\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right) e_{1} q_{2} \\
c:=c_{1} q_{1} q_{2}^{2} q_{3} \\
d:=-\Delta\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right) c_{1} q_{3} \\
e:=-e_{1} q_{1} q_{2} q_{3}^{2}
\end{array}\right.
$$

The following result is the main theorem in this section.
Theorem 4.1. We maintain the notation and assumptions as above. Assume (B1)-(B9). Let \mathcal{D} be the smooth projective model of the affine curve defined by

$$
\begin{equation*}
\mathcal{D}: z^{2}=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right) \tag{4.6}
\end{equation*}
$$

Then \mathcal{D} is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction.

For the proof of Theorem 4.1, we need the following lemmas.
Lemma 4.2. We maintain the notation as in Theorem 4.1, and assume that (B1)-(B9) hold. Then (A1), (A2) in Theorem 3.2 hold, where p is taken to be p_{t} in (A1).
Proof. Using (4.5) and noting that $a_{1}-c_{1} e_{1} q_{2} q_{3} \equiv-c_{1} e_{1} q_{2} q_{3} \not \equiv 0 \bmod p_{t}$, we see that

$$
\begin{aligned}
& v_{p_{t}}(a)=1, \\
& v_{p_{t}}(b d)=v_{p_{t}}\left(-a_{1} c_{1} e_{1} q_{2} q_{3}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)^{2}\right)=v_{p_{t}}\left(a_{1}\right)=1 .
\end{aligned}
$$

Furthermore, we see that

$$
v_{p_{t}}(b)= \begin{cases}1 & \text { if } 1 \leq t \leq h_{2} \\ 0 & \text { if } h_{2}+1 \leq t \leq h\end{cases}
$$

and

$$
v_{p_{t}}(d)= \begin{cases}0 & \text { if } 1 \leq t \leq h_{2} \\ 1 & \text { if } h_{2}+1 \leq t \leq h\end{cases}
$$

Letting $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}$ as in Theorem 2.1 with p replaced by p_{t}, we note that

$$
\begin{gathered}
n_{1}=n_{4}=n_{5}=m+k-1, \\
n_{2}= \begin{cases}m-1 & \text { if } 1 \leq t \leq h_{2}, \\
2 m+k-1 & \text { if } h_{2}+1 \leq t \leq h,\end{cases}
\end{gathered}
$$

and

$$
n_{3}= \begin{cases}m+2 k-1 & \text { if } 1 \leq t \leq h_{2} \\ k-1 & \text { if } h_{2}+1 \leq t \leq h\end{cases}
$$

Thus we deduce that

$$
\max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)= \begin{cases}m+2 k-1 & \text { if } 1 \leq t \leq h_{2} \\ 2 m+k-1 & \text { if } h_{2}+1 \leq t \leq h\end{cases}
$$

Therefore, we deduce from (B9) that

$$
n>\max \left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)
$$

Furthermore, it follows from (B9) that

$$
n>\min (m+2 k-1,2 m+k-1)>m+k-1 .
$$

Thus (A1) in Theorem 2.1 holds.
We now prove that (A2) is true. We easily see from (4.5) and (B1) that $c e \not \equiv 0 \bmod p_{t} . \quad$ By (B8), it is clear that $k m \not \equiv 0 \bmod p_{t}$. We contend that $b^{k} e^{m}+$ $(-1)^{m+k+1} c^{k} d^{m} \not \equiv 0 \bmod p_{t}$. If $1 \leq t \leq h_{2}$, then it follows from (4.5) that $a_{1} \equiv 0 \bmod p_{t}$ and $b \equiv 0 \bmod p_{t}$. Hence we deduce from (4.4) and (B1) that

$$
\begin{aligned}
b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m} & \equiv(-1)^{m+k+1} c^{k} d^{m} \\
& \equiv(-1)^{m+k+1}\left(c_{1} q_{1} q_{2}^{2} q_{3}\right)^{k}\left(\Delta c_{1}^{2} e_{1} q_{2} q_{3}^{2}\right)^{m} \\
& \equiv 0 \bmod p_{t}
\end{aligned}
$$

If $h_{2}+1 \leq t \leq h$, then it follows from (4.5) that $a_{1} \equiv 0 \bmod p_{t}$ and $d \equiv 0 \bmod p_{t}$. Hence we deduce from (4.3) and (B1) that

$$
\begin{aligned}
b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m} & \equiv b^{k} e^{m} \\
& \equiv\left(-c_{1} e_{1}^{2} q_{2}^{2} q_{3} \Phi\right)^{k}\left(-e_{1} q_{1} q_{2} q_{3}^{2}\right)^{m} \\
& \not \equiv 0 \bmod p_{t}
\end{aligned}
$$

Therefore (A2) in Theorem 3.2 holds. Hence our contention follows.
Lemma 4.3. We maintain the notation in Theorem 4.1, and assume that (B1)-(B9) hold. Let \mathcal{D} be the curve in Theorem 4.1. Then \mathcal{D} is everywhere locally solvable.

Proof. By Lemma 4.2, we know that (A1), (A2) in Theorem 3.2 hold. Set

$$
F(x)=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right) \in \mathbb{Q}[x] .
$$

Let $\mathcal{D}_{0}, \mathcal{D}_{1}$ be the affine curves associated to \mathcal{D} as in part (i) of Definition 1.1. Recall that \mathcal{D}_{0} is given by the equation $z^{2}=F(x)$ and \mathcal{D}_{1} is given by the equation $v^{2}=u^{2 n+2} F(1 / u)$, where $u=1 / x$ and $v=z / x^{n+1}$.

Since (A1), (A2) hold, it follows from Theorem 2.1 that $F(x)$ is separable, and hence \mathcal{D} is smooth of genus n.

We now prove that \mathcal{D} is everywhere locally solvable. For any odd prime l not dividing $a_{1} c_{1} e_{1} q_{2} q_{3}$, note that since

$$
a_{1}\left(-c_{1} e_{1} q_{2} q_{3}\right)\left(-a_{1} c_{1} e_{1} q_{2} q_{3}\right)=\left(a_{1} c_{1} e_{1} q_{2} q_{3}\right)^{2}
$$

is a square in \mathbb{Q}_{l}^{\times}, we deduce that at least one of $a_{1},-c_{1} e_{1} q_{2} q_{3},-a_{1} c_{1} e_{1} q_{2} q_{3}$ is a square in \mathbb{Q}_{l}^{\times}. Hence it suffices to consider the following cases.
Case 1: $l=2, l=\infty$ or l is any odd prime such that $\operatorname{gcd}\left(l, a_{1}\right)=1$ and a_{1} is a square in \mathbb{Q}_{l}^{\times}.

Let ∞ be a point at infinity on \mathcal{D}. By part (ii) of Definition 1.1, we see that ∞ is one of the points on \mathcal{D}_{1} with $u=0$, that is,

$$
\infty=(u, v)=(0, \pm \sqrt{a})=\left(0, \pm a_{2} \sqrt{a_{1}}\right) .
$$

Since $a_{1} \equiv 1 \bmod 8$, we know that a_{1} is a square in \mathbb{Q}_{2}^{\times}. Furthermore, we also know that a_{1} is a square in \mathbb{R}. Thus we see that ∞ belongs to $\mathcal{D}\left(\mathbb{Q}_{l}\right)$. Therefore \mathcal{D} is locally solvable at l.

Case 2: l is any odd prime such that $\operatorname{gcd}\left(l, c_{1} e_{1} q_{2} q_{3}\right)=1$ and $-c_{1} e_{1} q_{2} q_{3}$ is a square in \mathbb{Q}_{l}^{\times}.

We see that the point $P_{1}=(x, z)=\left(0, q_{1} q_{2} q_{3} \sqrt{-c_{1} e_{1} q_{2} q_{3}}\right)$ belongs to $\mathcal{D}\left(\mathbb{Q}_{l}\right)$, which proves that \mathcal{D} is locally solvable at l.
Case 3: l is any odd prime such that $\operatorname{gcd}\left(l, a_{1} c_{1} e_{1} q_{2} q_{3}\right)=1$ and $-a_{1} c_{1} e_{1} q_{2} q_{3}$ is a square in \mathbb{Q}_{l}^{\times}.

Using (4.5) and (4.1), we see that

$$
b d=-a_{1} c_{1} e_{1} q_{2} q_{3}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)^{2}
$$

By (4.5), we deduce that

$$
\begin{aligned}
a+c e+b e+c d= & a_{1} q_{1}^{2} q_{2}^{2} q_{3}^{2}-c_{1} e_{1} q_{1}^{2} q_{2}^{3} q_{3}^{3}-e_{1}^{2} q_{1} q_{2}^{2} q_{3}^{2} \Phi\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right) \\
& -c_{1}^{2} q_{1} q_{2}^{2} q_{3}^{2} \Delta\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)
\end{aligned}
$$

and hence it follows from (B5) that

$$
\begin{aligned}
a+c e+b e+c d & =q_{1}^{2} q_{2}^{2} q_{3}^{2}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)-q_{1} q_{2}^{2} q_{3}^{2}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)\left(\Delta c_{1}^{2}+\Phi e_{1}^{2}\right) \\
& =q_{1} q_{2}^{2} q_{3}^{2}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)\left[q_{1}-\left(\Delta c_{1}^{2}+\Phi e_{1}^{2}\right)\right] \\
& =0
\end{aligned}
$$

Thus we deduce that

$$
\begin{align*}
a & +(b+c)(d+e)=a+b d+b e+c d+c e \\
& =b d+(a+c e+b e+c d) \\
& =b d \tag{4.7}\\
& =-a_{1} c_{1} e_{1} q_{2} q_{3}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)^{2},
\end{align*}
$$

which proves that the point $P_{2}=(x, z)=\left(1,\left[a_{1}-c_{1} e_{1} q_{2} q_{3}\right]\left[-a_{1} c_{1} e_{1} q_{2} q_{3}\right]^{1 / 2}\right)$ belongs to $\mathcal{D}\left(\mathbb{Q}_{l}\right)$. Therefore \mathcal{D} is locally solvable at l.

Case 4: $l=p_{i}$ for some $1 \leq i \leq h$.
By (B2) and (B3), we easily see that

$$
\left(\frac{-c_{1} e_{1}}{p_{i}}\right)=\left(\frac{-1}{p_{i}}\right)\left(\frac{c_{1}}{p_{i}}\right)\left(\frac{e_{1}}{p_{i}}\right)=1 .
$$

We prove that q_{2}, q_{3} are squares modulo p_{i}. We first show that q_{2} is a square modulo p_{i}. Write

$$
q_{2}=\delta \prod_{l_{s} \mid q_{2}} l_{*}^{v_{k}\left(q_{2}\right)},
$$

where the product is taken over all the primes l_{*} dividing q_{2} and δ is either 1 or -1 . Note that by (B3) we know that

$$
\left(\frac{\delta}{p_{i}}\right)=1 .
$$

By (B3), (B4) and the quadratic reciprocity law, we see that

$$
\left(\frac{q_{2}}{p_{i}}\right)=\left(\frac{\delta \prod_{l_{*} \mid q_{2}} l_{*}^{v_{l_{*}}\left(q_{2}\right)}}{p_{i}}\right)=\left(\frac{\delta}{p_{i}}\right) \prod_{l_{*} \mid q_{2}}\left(\frac{l_{*}}{p_{i}}\right)^{v_{k *}\left(q_{2}\right)}=\prod_{l_{*} \mid q_{2}}\left(\frac{p_{i}}{l_{*}}\right)^{v_{l_{*}}\left(q_{2}\right)}=1,
$$

and it thus follows that q_{2} is a square modulo p_{i}. Repeating the same arguments as above, we can show that q_{3} is a square modulo p_{i}. Therefore we deduce that

$$
\left(\frac{-c_{1} e_{1} q_{2} q_{3}}{p_{i}}\right)=1
$$

which proves that $-c_{1} e_{1} q_{2} q_{3}$ is a square in $\mathbb{Q}_{p_{i}}^{\times}$. Therefore the point P_{1} in Case 2 belongs to $\mathcal{D}\left(\mathbb{Q}_{p_{i}}\right)$. Hence \mathcal{D} is locally solvable at p_{i}.

Case 5: l is an odd prime such that l divides $q_{2} q_{3}$.
By (B4), we see that p_{i} is a square modulo l for each $1 \leq i \leq h$. Hence it follows from (4.5) that

$$
\left(\frac{a_{1}}{l}\right)=\prod_{i=1}^{h}\left(\frac{p_{i}}{l}\right)=1
$$

which proves that a_{1} is a square in \mathbb{Q}_{l}^{\times}. Thus we see that the point at infinity ∞ in Case l belongs to $\mathcal{D}\left(\mathbb{Q}_{l}\right)$. Therefore \mathcal{D} is locally solvable at l.

Case 6: l is an odd prime such that l divides c_{1}.
Recall that $F(x)=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)$ is the polynomial defining the curve \mathcal{D}. We consider the following system of equations:

$$
\begin{cases}F(x) & \equiv 0 \bmod l \\ \frac{\partial F}{\partial x}(x) & \not \equiv 0 \bmod l .\end{cases}
$$

Note that

$$
\frac{\partial F}{\partial x}(x)=(2 n+2) a x^{2 n+1}+2 m b x^{2 m-1}\left(d x^{2 k}+e\right)+2 k d x^{2 k-1}\left(b x^{2 m}+c\right)
$$

Since $c_{1} \equiv 0 \bmod l$, it follows from (4.7) that

$$
F(1)=a+(b+c)(d+e)=-a_{1} c_{1} e_{1} q_{2} q_{3}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)^{2} \equiv 0 \bmod l .
$$

Using (4.5) and the fact that $c_{1} \equiv 0 \bmod l$, we see that

$$
\begin{aligned}
\frac{\partial F}{\partial x}(1) & \equiv(2 n+2) a+2 m a_{1} e_{1} q_{2} \Phi\left(-e_{1} q_{1} q_{2} q_{3}^{2}\right) \\
& \equiv(2 n+2) a_{1} q_{1}^{2} q_{2}^{2} q_{3}^{2}-2 m a_{1} e_{1}^{2} q_{1} q_{2}^{2} q_{3}^{2} \Phi \\
& \equiv a_{1} q_{1} q_{2}^{2} q_{3}^{2}\left((2 n+2) q_{1}-2 m \Phi e_{1}^{2}\right) \bmod l
\end{aligned}
$$

Since

$$
q_{1}=\Delta c_{1}^{2}+\Phi e_{1}^{2} \equiv \Phi e_{1}^{2} \bmod l
$$

we deduce from (4.3), (B1) and (B6) that

$$
\begin{aligned}
\frac{\partial F}{\partial x}(1) & \equiv a_{1} q_{1} q_{2}^{2} q_{3}^{2}\left((2 n+2) \Phi e_{1}^{2}-2 m \Phi e_{1}^{2}\right) \\
& \equiv 2(n-m+1) a_{1} e_{1}^{2} q_{1} q_{2}^{2} q_{3}^{2} \Phi \\
& \equiv 0 \bmod l
\end{aligned}
$$

It thus follows from Hensel's lemma that \mathcal{D} is locally solvable at l.
Case 7: l is an odd prime such that l divides e_{1}.
We maintain the same notation as in Case 6. We see that

$$
F(1)=a+(b+c)(d+e)=-a_{1} c_{1} e_{1} q_{2} q_{3}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right)^{2} \equiv 0 \bmod l .
$$

Using (4.5) and the fact that $e_{1} \equiv 0 \bmod l$, we see that

$$
\begin{aligned}
\frac{\partial F}{\partial x}(1) & \equiv(2 n+2) a+2 k c d \\
& \equiv(2 n+2) a_{1} q_{1}^{2} q_{2}^{2} q_{3}^{2}-2 k a_{1} c_{1}^{2} q_{1} q_{2}^{2} q_{3}^{2} \Delta \\
& \equiv a_{1} q_{1} q_{2}^{2} q_{3}^{2}\left((2 n+2) q_{1}-2 k \Delta c_{1}^{2}\right) .
\end{aligned}
$$

Since

$$
q_{1}=\Delta c_{1}^{2}+\Phi e_{1}^{2} \equiv \Delta c_{1}^{2} \bmod l
$$

we deduce from (4.4), (B1) and (B7) that

$$
\begin{aligned}
\frac{\partial F}{\partial x}(1,0) & \equiv a_{1} q_{1} q_{2}^{2} q_{3}^{2}\left((2 n+2) \Delta c_{1}^{2}-2 k \Delta c_{1}^{2}\right) \\
& \equiv 2(n-k+1) a_{1} c_{1}^{2} q_{1} q_{2}^{2} q_{3}^{2} \Delta \\
& \not \equiv 0 \bmod l .
\end{aligned}
$$

Thus it follows from Hensel's lemma that \mathcal{D} is locally solvable at l.
By what we have shown, we deduce that \mathcal{D} is everywhere locally solvable.
We now prove Theorem 4.1.
Proof of Theorem 4.1. We will use Theorem 3.2 to prove that $\mathcal{D}\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset . \quad$ By Lemma 4.2, it suffices to show that conditions (A3)-(A8) in Theorem 3.2 hold. By (4.1), (4.2), (4.5), (B1) and (B3), we see that (A3) holds trivially. We contend that $a_{1}-c_{1} e_{1} q_{2} q_{3}$ is nonzero modulo p_{1}. Assume the contrary, that is, $a_{1}-c_{1} e_{1} q_{2} q_{3} \equiv$ $0 \bmod p_{1}$, and hence it follows from (4.1) that

$$
c_{1} e_{1} q_{2} q_{3} \equiv 0 \bmod p_{1}
$$

which is in contradiction to (B1). Therefore one sees that $a_{1}-c_{1} e_{1} q_{2} q_{3} \not \equiv 0 \bmod p_{1}$, and hence $a_{1}-c_{1} e_{1} q_{2} q_{3} \neq 0$. Thus we see from (4.5) that $b \neq 0$. Thus (A4) holds.

Now we prove that (A5) is true. Indeed, we know from Case 4 of the proof of Lemma 4.3 that q_{2} and q_{3} are squares modulo p_{i} for each $1 \leq i \leq h$. Using the same arguments as in Case 4 of the proof of Lemma 4.3, we can show that q_{1} is a square modulo p_{i} for each $1 \leq i \leq h$. Hence we deduce from (B2) and (B3) that

$$
\left(\frac{c}{p_{i}}\right)=\left(\frac{c_{1} q_{1} q_{2}^{2} q_{3}}{p_{i}}\right)=\left(\frac{c_{1}}{p_{i}}\right)\left(\frac{q_{1} q_{2}^{2} q_{3}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } 1 \leq i \leq h_{1} \\
1 & \text { if } h_{1}+1 \leq i \leq h_{2}
\end{aligned}\right.
$$

and

$$
\begin{aligned}
\left(\frac{e}{p_{i}}\right)=\left(\frac{-e_{1} q_{1} q_{2} q_{3}^{2}}{p_{i}}\right) & =\left(\frac{-1}{p_{i}}\right)\left(\frac{e_{1}}{p_{i}}\right)\left(\frac{q_{1} q_{2} q_{3}^{2}}{p_{i}}\right) \\
& =\left\{\begin{aligned}
-1 & \text { if } h_{2}+1 \leq i \leq h_{3}, \\
1 & \text { if } h_{3}+1 \leq i \leq h
\end{aligned}\right.
\end{aligned}
$$

Therefore (A5) follows.
Let l be any odd prime such that l divides a_{2}. By (B4), we see that

$$
\left(\frac{a_{1}}{l}\right)=\prod_{i=1}^{h}\left(\frac{p_{i}}{l}\right)=1
$$

and hence it follows that a_{1} is a square modulo l. Thus (A6) holds. By (4.5), we easily see that (A8) holds trivially.

We now prove that (A7) is true. Let l be an odd prime such that $\operatorname{gcd}\left(l, a_{1}\right)=1$ and l divides $b^{k} e^{m}+(-1)^{m+k+1} c^{k} d^{m}$. Assume further that l divides $\operatorname{gcd}(c, e)$. Since c_{1}, e_{1} are
relatively prime, we see that $\operatorname{gcd}(c, e)=q_{1} q_{2} q_{3}=a_{2}$. Hence l divides a_{2}, and thus it follows from (B4) that

$$
\left(\frac{a_{1}}{l}\right)=\prod_{i=1}^{h}\left(\frac{p_{i}}{l}\right)=1
$$

Therefore a_{1} is a square modulo l, and thus (A7) holds. Applying Theorem 3.2 for the curve \mathcal{D}, we deduce that $\mathcal{D}\left(\mathbb{A}_{Q}\right)^{\mathrm{Br}}=\emptyset$.

By Lemma 4.3, we know that \mathcal{D} is everywhere locally solvable, and thus \mathcal{D} is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction. Thus our contention follows.

5. Infinitude of the quintuples (a, b, c, d, e) satisfying (B1)-(B9)

In this section, we will show how to produce families of hyperelliptic curves of arbitrary genus greater than two violating the Hasse principle explained by the BrauerManin obstruction. Using Theorem 4.1, it suffices to prove that there are infinitely many quintuples (a, b, c, d, e) satisfying (B1)-(B9). Following [4], we will make use of a theorem of Iwaniec on the representation of primes using quadratic polynomials to show the existence of infinitely many quintuples (a, b, c, d, e) satisfying (B5). The other conditions in Theorem 4.1 will follow immediately. Note that by introducing two more parameters q_{2} and q_{3} in Theorem 4.1 and imposing mild conditions on them, the number of the quintuples (a, b, c, d, e) satisfying (B1)-(B9) is large. We begin by recalling the following definition in [7].

Defintion 5.1. Let $P(x, y) \in \mathbb{Q}[x, y]$ be a quadratic polynomial in two variables x and y. We say that P depends essentially on two variables if $\partial P / \partial x$ and $\partial P / \partial y$ are linearly independent as elements of the \mathbb{Q}-vector space $\mathbb{Q}[x, y]$.

Theorem 5.2 (Iwaniec [7, page 435]). Let $P(x, y)=a x^{2}+b x y+c y^{2}+e x+f y+g \in$ $\mathbb{Z}[x, y]$ be a quadratic polynomial defined over \mathbb{Z}, and assume that the following are true:
(i) a, b, c, e, f, g are in \mathbb{Z} and $\operatorname{gcd}(a, b, c, e, f, g)=1$;
(ii) $\quad P(x, y)$ is irreducible in $\mathbb{Q}[x, y]$, represents arbitrarily large odd numbers, and depends essentially on two variables;
(iii) $D=a f^{2}-b e f+c e^{2}+\left(b^{2}-4 a c\right) g=0$ or $\Delta=b^{2}-4 a c$ is a perfect square.

Then

$$
N \log ^{-1} N \ll \sum_{\substack{p \leq N, p=P(x, y) \\ \text { p prime }}} 1
$$

We now prove the main result in this section.
Lemma 5.3. Let n, m, k be positive integers such that $n>\min (m+2 k-1,2 m+k-1)$. Let h be a positive integer, and let h_{1}, h_{2}, h_{3} be positive integers. Assume that the following are true:
(H1) $1 \leq h_{1} \leq h_{2} \leq h_{3} \leq h$;
(H2) $h_{1}+h_{3}-h_{2}$ is odd; and
(H3) if $h_{2}=h$, then $n>m+2 k-1$.
Then there are infinitely many quintuples (a, b, c, d, e) that satisfy (B1)-(B9) in Theorem 4.1.

Proof. Define

$$
t= \begin{cases}1 & \text { if } \min (m+2 k-1,2 m+k-1)=m+2 k-1 \tag{5.1}\\ h & \text { if } \min (m+2 k-1,2 m+k-1)=2 m+k-1 \text { and } m \neq k\end{cases}
$$

Set

$$
\begin{equation*}
\mathcal{P}:=\{l \text { odd prime } \mid n-m+1 \equiv 0 \bmod l \text { or } n-k+1 \equiv 0 \bmod l\}, \tag{5.2}
\end{equation*}
$$

and define

$$
\begin{equation*}
\epsilon:=\prod_{l \in \mathcal{P}} l . \tag{5.3}
\end{equation*}
$$

Note that since $n>\min (m+2 k-1,2 m+k-1)$, it follows that $n-m+1 \neq 0$ and $n-k+1 \neq 0$. Hence the set \mathcal{P} is of finite cardinality.

We now define the odd primes $p_{1}, p_{2}, \ldots, p_{h}$. If $h=1$, we simply choose p_{1} to be an odd prime satisfying the following:
$\left(\mathrm{C} 1^{*}\right) p_{1} \equiv 1 \bmod 8, k m \not \equiv 0 \bmod p_{1}$ and $p_{1} \equiv 1 \bmod l$ for each $l \in \mathcal{P}$.
If $h \geq 2$, we let p_{1}, p_{h} be odd primes satisfying the following:
(C1) $p_{1} \equiv 1 \bmod 4, p_{h} \equiv 1 \bmod 4, p_{1} p_{h} \equiv 1 \bmod 8$;
(C2) $k m \not \equiv 0 \bmod p_{1}$ and $k m \not \equiv 0 \bmod p_{h}$;
(C3) $p_{1} \equiv 1 \bmod l$ and $p_{h} \equiv 1 \bmod l$ for each $l \in \mathcal{P}$;
(C4) p_{1} is a square modulo p_{h}.
Such odd primes p_{1}, p_{h} exist. Indeed, using the Chinese Remainder Theorem, Dirichlet's theorem on primes in arithmetic progressions, and noting that \mathcal{P} is of finite cardinality, we deduce that there is an odd prime p_{h} such that $p_{h} \equiv 1 \bmod 4$, $k m \not \equiv 0 \bmod p_{h}$ and $p_{h} \equiv 1 \bmod l$ for each $l \in \mathcal{P}$. Similarly, there exists an odd prime p_{1} such that p_{1} and $k m$ are relatively prime, $p_{1} \equiv 1 \bmod l$ for each $l \in \mathcal{P}$,

$$
p_{1} \equiv \begin{cases}1 \bmod 8 & \text { if } p_{h} \equiv 1 \bmod 8 \tag{5.4}\\ 5 \bmod 8 & \text { if } p_{h} \equiv 5 \bmod 8\end{cases}
$$

and p_{1} is a quadratic residue modulo p_{h}. It is easy to see that $p_{1} p_{h} \equiv 1 \bmod 8$, and hence p_{1}, p_{h} satisfy (C1)-(C4) above. Using similar arguments, there exist distinct odd primes $p_{2}, p_{3}, \ldots, p_{h_{2}}$ such that the following are true:
(C5) $p_{i} \equiv 1 \bmod 4$ for each $2 \leq i \leq h_{2}$ and

$$
\left(\prod_{\substack{1 \leq i \leq h_{2}, i \neq h}} p_{i}\right) p_{h} \equiv 1 \bmod 8
$$

(C6) $p_{i} \equiv 1 \bmod l$ for each $l \in \mathcal{P}$ and each $2 \leq i \leq h_{2}$ with $i \neq h$;
(C7) p_{i} is a quadratic residue modulo p_{h} for each $2 \leq i \leq h_{2}$ with $i \neq h$.
Similarly, there exist distinct odd primes $p_{h_{2}+1}, p_{h_{2}+2}, \ldots, p_{h-1}$ such that the following are true:
(C8) $p_{i} \equiv 1 \bmod 4$ for each $h_{2}+1 \leq i \leq h-1$ and $\prod_{i=1}^{h} p_{i} \equiv 1 \bmod 8$;
(C9) $p_{i} \equiv 1 \bmod l$ for each $h_{2}+1 \leq i \leq h-1$ and each $l \in \mathcal{P}$;
(C10) p_{j} is a square modulo p_{i} for each $1 \leq i \leq h_{2}$ and each $h_{2}+1 \leq j \leq h-1$.
Define

$$
\begin{equation*}
a_{1}:=p_{1} p_{2} \ldots p_{h} \tag{5.5}
\end{equation*}
$$

Since t is either 1 or h, it follows from the choice of p_{1} and p_{h} that $k m \not \equiv 0 \bmod p_{t}$, and hence (B8) holds. It is clear that (B3) is true.

We prove that (B9) is true. Indeed, if $h_{2}=h$, then it follows from (H3) that $n>m+2 k-1$. Thus (B9) follows immediately. Assume now that $h_{2}<h$. If $t=1$, then it follows from (5.1) that $n>m+2 k-1$, and thus (B9) holds. If $t=h$, then it follows from (5.1) that $n>2 m+k-1$. Since $h_{2}<t=h$, we deduce that (B9) is true. Therefore, in any event, (B9) holds.

Since $\mathcal{P} \cap\left\{p_{1}, p_{2}, \ldots, p_{h}\right\}$ is empty and \mathcal{P} is a finite set of odd primes, we deduce that there are nonzero integers c_{1}^{*}, e_{1}^{*} such that the following are true:
$(\mathrm{C} 11) c_{1}^{*}, e_{1}^{*}$ are odd and $\operatorname{gcd}\left(c_{1}^{*}, e_{1}^{*}\right)=1$;
(C12) $c_{1}^{*} \equiv \frac{1}{4} \bmod l$ and $e_{1}^{*} \equiv 1 \bmod l$ for each $l \in \mathcal{P}$, where \mathcal{P} is defined by (5.2);
(C13) $\operatorname{gcd}\left(c_{1}^{*}, p_{i}\right)=\operatorname{gcd}\left(e_{1}^{*}, p_{i}\right)=1$ for each $1 \leq i \leq h$,

$$
\left(\frac{c_{1}^{*}}{p_{i}}\right)=\left(\frac{e_{1}^{*}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } 1 \leq i \leq h_{1} \\
1 & \text { if } h_{1}+1 \leq i \leq h_{2}
\end{aligned}\right.
$$

and

$$
\left(\frac{c_{1}^{*}}{p_{i}}\right)=\left(\frac{e_{1}^{*}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } h_{2}+1 \leq i \leq h_{3} \\
1 & \text { if } h_{3}+1 \leq i \leq h .
\end{aligned}\right.
$$

Set

$$
\begin{align*}
& \Phi:=\prod_{i=1}^{h_{2}} p_{i} \tag{5.6}\\
& \Delta:=\prod_{i=h_{2}+1}^{h} p_{i} \tag{5.7}
\end{align*}
$$

and define the quadratic polynomial $P(x, y) \in \mathbb{Z}[x, y]$ by

$$
P(x, y):=16 \Delta\left(\epsilon a_{1} x+c_{1}^{*}\right)^{2}+\Phi\left(2 \epsilon a_{1} y+e_{1}^{*}\right)^{2}
$$

where ϵ is defined as in (5.3). Expanding $P(x, y)$ in the form $A x^{2}+B x y+C y^{2}+E x+$ $F y+G$, we see that

$$
\begin{aligned}
& A=16 a_{1}^{2} \epsilon^{2} \Delta \\
& B=0 \\
& C=4 a_{1}^{2} \epsilon^{2} \Phi \\
& E=32 a_{1} c_{1}^{*} \epsilon \Delta \\
& F=4 a_{1}^{*} e_{1}^{*} \epsilon \Phi \\
& G=16 c_{1}^{* 2} \Delta+e_{1}^{* 2} \Phi .
\end{aligned}
$$

We prove that $\operatorname{gcd}(A, B, C, E, F, G)=1$. Since Δ and Φ are relatively prime, we see that $\operatorname{gcd}(A, C)=4 a_{1}^{2} \epsilon^{2}$. Hence it suffices to prove that $\operatorname{gcd}\left(4 a_{1}^{2} \epsilon^{2}, G\right)=1$, that is, $G \not \equiv 0 \bmod 2, G \not \equiv 0 \bmod p_{i}$ for each $1 \leq i \leq h$ and $G \not \equiv 0 \bmod l$ for each $l \in \mathcal{P}$. Since e_{1}^{*} is odd, it is obvious that $G \equiv 1 \bmod 2$. By the definition of Δ and Φ, it follows from (C13) that

$$
G=16 c_{1}^{* 2} \Delta+e_{1}^{* 2} \Phi \equiv 16 c_{1}^{* 2} \Delta \not \equiv 0 \bmod p_{i}
$$

for each $1 \leq i \leq h_{2}$, and

$$
G=16 c_{1}^{* 2} \Delta+e_{1}^{* 2} \Phi \equiv e_{1}^{* 2} \Phi \not \equiv 0 \bmod p_{i}
$$

for each $h_{2}+1 \leq i \leq h$. Hence it remains to show that $G \not \equiv 0 \bmod l$ for each $l \in \mathcal{P}$. By (C3), (C6), (C9), (C12), (5.6) and (5.7) and since l is odd for each $l \in \mathcal{P}$, we deduce that

$$
G=16 c_{1}^{* 2} \Delta+e_{1}^{* 2} \Phi \equiv 1+1 \equiv 2 \not \equiv 0 \bmod l
$$

for each $l \in \mathcal{P}$. Thus it follows that $\operatorname{gcd}\left(4 a_{1}^{2} \epsilon^{2}, G\right)=1$, and hence $\operatorname{gcd}(A, C, G)=1$. Therefore $\operatorname{gcd}(A, B, C, E, F, G)=1$, and thus condition (i) in Theorem 5.2 is true. One can verify that

$$
D=A F^{2}-B E F+C E^{2}+\left(B^{2}-4 A C\right) G=0,
$$

and hence condition (iii) in Theorem 5.2 holds. Furthermore, since $\Phi\left(2 \epsilon a_{1} y+e_{1}^{*}\right)^{2}$ is an odd integer, we see that $P(x, y)$ represents arbitrarily large odd numbers. It is clear that $P(x, y)$ is irreducible in $\mathbb{Q}[x, y]$, and that it depends essentially on two variables. Thus condition (ii) in Theorem 5.2 is true. Hence Theorem 5.2 says that there are infinitely many odd primes q such that $q=P(x, y)$ for some $x, y \in \mathbb{Z}$. Take such integers x, y, and define

$$
\begin{align*}
& c_{1}:=4\left(\epsilon a_{1} x+c_{1}^{*}\right), \tag{5.8}\\
& e_{1}:=2 \epsilon a_{1} y+e_{1}^{*}, \tag{5.9}
\end{align*}
$$

and

$$
\begin{equation*}
q_{1}:=P(x, y)=\Delta c_{1}^{2}+\Phi e_{1}^{2} . \tag{5.10}
\end{equation*}
$$

Let \mathcal{S} be the set of odd primes l satisfying the following conditions:
(i) $\operatorname{gcd}\left(l, c_{1}\right)=\operatorname{gcd}\left(l, e_{1}\right)=1$ and $\operatorname{gcd}\left(l, p_{i}\right)=1$ for each $1 \leq i \leq h$;
(ii) l is a square modulo p_{i} for each $1 \leq i \leq h$.

We see that the set \mathcal{S} is of infinite cardinality. Let I and J be (possibly empty) finite subsets of \mathcal{S}. For each $l \in I$, take a positive integer m_{l}, and for each $l \in J$, take a positive integer n_{l}. Define

$$
\begin{equation*}
q_{2}:=\prod_{l \in I} l^{m_{l}} \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{3}:=\prod_{l \in J} l^{n_{l}} . \tag{5.12}
\end{equation*}
$$

We set

$$
\begin{equation*}
a_{2}:=q_{1} q_{2} q_{3}, \tag{5.13}
\end{equation*}
$$

where q_{1}, q_{2}, q_{3} are defined by (5.10)-(5.12), respectively.
Recall that we have shown above that (B3), (B8) and (B9) are true. It remains to prove that (B1), (B2) and (B4)-(B7) are true. By (5.6), (5.7) and (5.10), we see that (B5) holds trivially. By (5.8), (5.9), we see that

$$
c_{1}=4\left(\epsilon a_{1} x+c_{1}^{*}\right) \equiv 4 c_{1}^{*} \not \equiv 0 \bmod p_{i}
$$

and

$$
e_{1}=2 \epsilon a_{1} y+e_{1}^{*} \equiv e_{1}^{*} \not \equiv 0 \bmod p_{i}
$$

for each $1 \leq i \leq h$. By (5.10) and since q_{1} is an odd prime, we deduce that $\operatorname{gcd}\left(c_{1}, q_{1}\right)=$ $\operatorname{gcd}\left(e_{1}, q_{1}\right)=\operatorname{gcd}\left(c_{1}, e_{1}\right)=1$. It is easy to see from (5.10) that $\operatorname{gcd}\left(q_{1}, p_{i}\right)=1$ for each $1 \leq i \leq h$. By the definition of \mathcal{S}, it is now clear that (B 1) holds.

Since $c_{1} \equiv 4 c_{1}^{*} \bmod p_{i}$ for each $1 \leq i \leq h$, we see that

$$
\left(\frac{c_{1}}{p_{i}}\right)=\left(\frac{4 c_{1}^{*}}{p_{i}}\right)=\left(\frac{4}{p_{i}}\right)\left(\frac{c_{1}^{*}}{p_{i}}\right)=\left(\frac{c_{1}^{*}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } 1 \leq i \leq h_{1}, \\
1 & \text { if } h_{1}+1 \leq i \leq h_{2} .
\end{aligned}\right.
$$

Since $e_{1} \equiv e_{1}^{*} \bmod p_{i}$ for each $1 \leq i \leq h$, using the same arguments as above, we deduce that

$$
\left(\frac{e_{1}}{p_{i}}\right)=\left(\frac{e_{1}^{*}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } 1 \leq i \leq h_{1}, \\
1 & \text { if } h_{1}+1 \leq i \leq h_{2} .
\end{aligned}\right.
$$

Similarly, one can show that

$$
\left(\frac{c_{1}}{p_{i}}\right)=\left(\frac{e_{1}}{p_{i}}\right)=\left\{\begin{aligned}
-1 & \text { if } h_{2}+1 \leq i \leq h_{3}, \\
1 & \text { if } h_{3}+1 \leq i \leq h .
\end{aligned}\right.
$$

Therefore (B2) holds.
We now prove that (B4) is true. Let l be any odd prime dividing a_{2}. If l divides $q_{2} q_{3}$, then we see that l belongs to the set \mathcal{S}. By the definition of \mathcal{S}, we deduce that l is a square modulo p_{i} for each $1 \leq i \leq h$. By the quadratic reciprocity law and since $p_{i} \equiv 1 \bmod 4$ for each $1 \leq i \leq h$, we deduce that p_{i} is a square modulo l for
each $1 \leq i \leq h$. If l divides q_{1}, then it follows that $l=q_{1}$ since q_{1} is an odd prime. By (5.10), we see that

$$
q_{1} \equiv \begin{cases}\Delta c_{1}^{2} \bmod p_{i} & \text { if } 1 \leq i \leq h_{2} \\ \Phi e_{1}^{2} \bmod p_{i} & \text { if } h_{2}+1 \leq i \leq h\end{cases}
$$

We contend that Δ is a square modulo p_{i} for each $1 \leq i \leq h_{2}$ and Φ is a square modulo p_{i} for each $h_{2}+1 \leq i \leq h$. Indeed, by (C4), (C7) and the quadratic reciprocity law, we know that p_{h} is a square modulo p_{i} for each $1 \leq i \leq h_{2}$. Thus it follows from (C10) that p_{j} is a square modulo p_{i} for each $1 \leq i \leq h_{2}$ and $h_{2}+1 \leq j \leq h$. Using the quadratic reciprocity law and noting that $p_{i} \equiv 1 \bmod 4$ for each $1 \leq i \leq h$, we deduce that p_{i} is a square modulo $p_{j} \mathrm{k}$ for each $1 \leq i \leq h_{2}$ and $h_{2}+1 \leq j \leq h$. Thus it follows from (5.6), (5.7) that Δ is a square modulo p_{i} for each $1 \leq i \leq h_{2}$ and Φ is a square modulo p_{i} for each $h_{2}+1 \leq i \leq h$. Therefore we deduce that

$$
\left(\frac{q_{1}}{p_{i}}\right)=\left(\frac{\Delta c_{1}^{2}}{p_{i}}\right)=\left(\frac{\Delta}{p_{i}}\right)=1
$$

for each $1 \leq i \leq h_{2}$, and that

$$
\left(\frac{q_{1}}{p_{i}}\right)=\left(\frac{\Phi e_{1}^{2}}{p_{i}}\right)=\left(\frac{\Phi}{p_{i}}\right)=1
$$

for each $h_{2}+1 \leq i \leq h$. Thus, in any case, q_{1} is a quadratic residue modulo p_{i} for each $1 \leq i \leq h$, and hence it follows from the quadratic reciprocity law that p_{i} is a square modulo q_{1} for each $1 \leq i \leq h$. Therefore (B4) holds.

We prove that (B6) is true. Assume the contrary, that is, there is an odd prime l dividing c_{1} such that $n-m+1 \equiv 0 \bmod l$. It follows that l belongs to \mathcal{P}, where \mathcal{P} is defined by (5.2). Hence it follows from (5.3) that $\epsilon \equiv 0 \bmod l$. By (5.8) and (C12), we see that

$$
c_{1}=4\left(\epsilon a_{1} x+c_{1}^{*}\right) \equiv 4 c_{1}^{*} \equiv 1 \bmod l,
$$

which is a contradiction since $c_{1} \equiv 0 \bmod l$. Thus $n-m+1 \not \equiv 0 \bmod l$, and therefore (B6) holds.

We now show that (B7) holds. Assume the contrary, that is, there is an odd prime l dividing e_{1} such that $n-k+1 \equiv 0 \bmod l$. It follows that l belongs to \mathcal{P}, and hence $\epsilon \equiv 0 \bmod l$. By (5.9) and (C12), we deduce that

$$
e_{1}=2 \epsilon a_{1} y+e_{1}^{*} \equiv e_{1}^{*} \equiv 1 \bmod l,
$$

which is a contradiction since $e_{1} \equiv 0 \bmod l$. Thus $n-k+1 \not \equiv 0 \bmod l$, and therefore (B7) holds.

Now let (a, b, c, d, e) be the quintuple defined as in (4.5). By what we have shown, we see that the quintuple (a, b, c, d, e) satisfies (B1)-(B9) in Theorem 4.1, which proves our contention.

Corollary 5.4. Let k, m, n be positive integers such that

$$
n>\min (2 m+k-1, m+2 k-1)
$$

Then there exist infinitely many quintuples (a, b, c, d, e) of integers such that the smooth projective model $\mathcal{D}_{(a, b, c, d, e)}^{(n, m, k)}$ of the affine curve defined by

$$
\mathcal{D}_{(a, b, c, c, e)}^{(n, m, k)}: z^{2}=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right)
$$

is of genus n and a counterexample to the Hasse principle explained by the BrauerManin obstruction.

Proof. Let h be any positive integer, and let h_{1}, h_{2}, h_{3} be positive integers satisfying (H1), (H2), (H3) in Lemma 5.3. Using Lemma 5.3 and Theorem 4.1, our contention follows immediately.
Remark 5.5. For positive integers k, m, n with

$$
n>\min (2 m+k-1, m+2 k-1)
$$

Corollary 5.4 says that there are infinitely many hyperelliptic curves of genus n that are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction. The construction of such hyperelliptic curves are explicit, and the proof of Lemma 5.3 can be viewed as an algorithm for producing hyperelliptic curves of arbitrary genus greater than two violating the Hasse principle explained by the BrauerManin obstruction. We will use the proof of Lemma 5.3 to produce families of hyperelliptic curves of arbitrary genus greater than two with fixed coefficients in the example below.

Example 5.6. Let $h=2$, and let $\left(h_{1}, h_{2}, h_{3}\right)=(1,2,2)$. Let $p_{1}=17$ and $p_{2}=89$. Let $c_{1}=44, e_{1}=5$, and let $q_{1}=39761$. We see that

$$
q_{1}=39761=44^{2}+17 \times 89 \times 5^{2}=c_{1}^{2}+p_{1} p_{2} e_{1}^{2} .
$$

Following the proof of Lemma 5.3, let \mathcal{S} be the set of odd primes l satisfying the following conditions:
(i) $l \not \equiv 0 \bmod 5, l \not \equiv 0 \bmod 11, l \not \equiv 0 \bmod 17$ and $l \not \equiv 0 \bmod 89$;
(ii) l is a quadratic residue modulo 17 ;
(iii) l is a quadratic residue modulo 89.

Note that \mathcal{S} is of infinite cardinality. For example, the set consisting of the primes 47 , $53,67,157,179,223,251,257,263,271,307,331,373,409,443,461,463,467$ is a subset of \mathcal{S} consisting of the primes in \mathcal{S} that are less than 500.

Let I and J be (possible empty) finite subsets of \mathcal{S}. For each $l \in I$, choose a positive integer m_{l}, and for each $l \in J$, take a positive integer n_{l}. We define

$$
\begin{equation*}
q_{2}:=\prod_{l \in I} l^{m_{l}} \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{3}:=\prod_{l \in J} l^{n_{l}} . \tag{5.15}
\end{equation*}
$$

We set

$$
a_{1}:=p_{1} p_{2}=1513
$$

and

$$
a_{2}:=q_{1} q_{2} q_{3}=39761\left(\prod_{l \in I} l^{m_{l}}\right)\left(\prod_{l \in J} l^{n_{l}}\right) .
$$

Following (4.5) and the proof of Lemma 5.3, we define

$$
\left\{\begin{array}{l}
a:=a_{1} a_{2}^{2}=2391957864073 q_{2}^{2} q_{3}^{2} \tag{5.16}\\
b:=p_{1} p_{2}\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right) e_{1} q_{2}=7565 q_{2}\left(1513-220 q_{2} q_{3}\right) \\
c:=c_{1} q_{1} q_{2}^{2} q_{3}=1749484 q_{2}^{2} q_{3} \\
d:=-\left(a_{1}-c_{1} e_{1} q_{2} q_{3}\right) c_{1} q_{3}=-44 q_{3}\left(1513-220 q_{2} q_{3}\right) \\
e:=-e_{1} q_{1} q_{2} q_{3}^{2}=-198805 q_{2} q_{3}^{2} .
\end{array}\right.
$$

Let \mathcal{Z} be the set of triples (n, m, k) of positive integers satisfying the following four conditions:
(i) $n-m+1 \not \equiv 0 \bmod 11$;
(ii) $n-k+1 \not \equiv 0 \bmod 5$;
(iii) $k m \not \equiv 0 \bmod 17$ and $k m \not \equiv 0 \bmod 89$;
(iv) $n>m+2 k-1$.

By condition (iv) above, we see that conditions (H1), (H2), (H3) in Lemma 5.3 are true. As shown in the proof of Lemma 5.3, we see that the quintuple (a, b, c, d, e) defined by (5.16) satisfies (B1)-(B9) in Theorem 4.1.

Let $(n, m, k) \in \mathcal{Z}$, and let $\mathcal{D}_{(a, b, c, d, e)}^{(n, m, k)}$ be the smooth projective model of the affine curve defined by

$$
\mathcal{D}_{(a, b, c, d, e)}^{(n, m, k)}: z^{2}=a x^{2 n+2}+\left(b x^{2 m}+c\right)\left(d x^{2 k}+e\right) .
$$

Then it follows from Theorem 4.1 that $\mathcal{D}_{(a, b, c, c, d)}^{(n, m, k)}$ is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction.

In Table 1, we list the curves $\mathcal{D}_{(a, b, c, d, e)}^{(n, m, k)}$ for a few special values of (a, b, c, d, e), where (n, m, k) is an arbitrary triple in 之.

Remark 5.7. We contend that for a positive integer $n \geq 3$, there exists a pair (m, k) of positive integers such that the triple (n, m, k) belongs to the set \mathcal{Z} in Example 5.6. Indeed, if $n \not \equiv 0 \bmod 11$ and $n \not \equiv 0 \bmod 5$, then letting $k=m=1$, one can verify that the triple (n, m, k) satisfies conditions (i)-(iv) of the set \mathcal{Z}. Hence (n, m, k) belongs to \mathcal{Z}. It remains to consider the case when $n \equiv 0 \bmod 11$ or $n \equiv 0 \bmod 5$. Assume first that $n \equiv 0 \bmod 11$. We see that $n \geq 11$. Let k be a positive integer such that $1 \leq k \leq 4$ and $k \not \equiv n+1 \bmod 5$, and let $m=2$. We see that

$$
m+2 k-1=2+2 k-1=2 k+1 \leq 9<n .
$$

Table 1. Certain hyperelliptic curves $\mathcal{D}_{(a, b, c, d, e)}^{(n, m, k)}$ with $(n, m, k) \in \mathcal{Z}$ violating the Hasse principle.

q_{2}	q_{3}	$\mathcal{D}_{(a, b, c, c, d, e)}^{(n, m)}$
1	1	$\begin{aligned} z^{2}= & 2391957864073 x^{2 n+2} \\ & \quad-\left(9781545 x^{2 m}+1749484\right)\left(56892 x^{2 k}+198805\right) \end{aligned}$
1	47	$\begin{aligned} z^{2}= & 5283834921737257 x^{2 n+2} \\ & -\left(66776255 x^{2 m}-82225748\right)\left(18254236 x^{2 k}-439160245\right) \end{aligned}$
53	1	$\begin{aligned} z^{2}= & 6719009640181057 x^{2 n+2} \\ & -\left(4068388915 x^{2 m}-4914300556\right)\left(446468 x^{2 k}-10536665\right) \end{aligned}$

Hence the triple (n, m, k) satisfies condition (iv) of the set \mathcal{Z}. One can show that (n, m, k) satisfies conditions (i)-(iii) of \mathcal{Z}, and thus $(n, m, k) \in \mathcal{Z}$.

Assume now that $n \equiv 0 \bmod 5$ and $n \neq 0 \bmod 11$. We see that $n \geq 5$. Letting $m=1$ and $k=2$, we deduce that

$$
m+2 k-1=4<n .
$$

Thus the triple (n, m, k) satisfies condition (iv) of \mathcal{Z}. It is not difficult to see that (n, m, k) satisfies conditions (i)-(iii) of \mathcal{Z}, and thus $(n, m, k) \in \mathcal{Z}$.

Remark 5.8. Remark 5.7 says that for a given positive integer $n \geq 3$ there is a pair (m, k) of positive integers such that the triple (n, m, k) belongs to \mathcal{Z}. Hence the genus of the curves in Example 5.6 ranges over the set of positive integers greater than 2. Thus Example 5.6 produces families of hyperelliptic curves of arbitrary genus greater than 2 that are counterexamples to the Hasse principle explained by the Brauer-Manin obstruction.

Acknowledgements

I would like to thank Romyar Sharifi for useful comments on Lemma 4.1.1 in my PhD Thesis, which is a special case of Theorem 2.1. I am grateful to the referee for a very careful reading and making many extremely useful comments and suggestions that greatly improved the paper. I also thank the referee for pointing out some errors in an earlier version of this paper.

References

[1] H. Cohen, Number Theory, Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics, 239 (Springer, New York, 2007).
[2] J. -L. Colliot-Thélène, D. F. Coray and J. -J. Sansuc, 'Descente et principe de Hasse pour certaines variétés rationnalles', J. reine angew. Math 320 (1980), 150-191.
[3] D. Coray and C. Manoil, 'On large Picard groups and the Hasse principle for curves and $K 3$ surfaces', Acta. Arith. 76 (1996), 165-189.
[4] N. N. Dong Quan, 'The Hasse principle for certain hyperelliptic curves and forms', Q. J. Math. 64 (2013), 253-268.
[5] N. N. Dong Quan, 'Algebraic families of hyperelliptic curves violating the Hasse principle', 2013. Available at http://www.math.ubc.ca/~dongquan/JTNB-algebraic-families.pdf.
[6] N. N. Dong Quan, 'Nonexistence of rational points on certain varieties', PhD Thesis, University of Arizona, 2012.
[7] H. Iwaniec, 'Primes represented by quadratic polynomials in two variables', Acta Arith. 24 (1974), 435-459.
[8] J. Jahnel, 'Brauer groups, Tamagawa measures, and rational points on algebraic varieties', Habilitationsschrift, Georg-August-Universität Göttingen, 2008.
[9] C. E. Lind, 'Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins', Thesis, University of Uppasala, 1940.
[10] Yu. I. Manin, 'Le groupe de Brauer-Grothendieck en géométrie Diophantienne', Actes, Congres. Intern. Math. 1 (1970), 401-411.
[11] H. Reichardt, 'Einige im Kleinen überall lösbre, im Grossen unlösbare diophantische Gleichungen', J. reine angew. Math. 184 (1942), 12-18.
[12] A. N. Skorobogatov, Torsors and Rational Points, Cambridge Tracts in Mathematics, 144 (Cambridge University Press, Cambridge, 2001).
[13] B. Viray, 'Failure of the Hasse principle for Châtelet surfaces in characteristic 2', J. Théor. Nombres Bordeaux 24 (2012), 231-236.

NGUYEN NGOC DONG QUAN, Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada e-mail: dongquan.ngoc.nguyen@gmail.com

[^0]: The author was supported by a postdoctoral fellowship at the Department of Mathematics, University of British Columbia, during the preparation of this paper.
 (C) 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

