8
Probing strongly coupled plasma

As discussed in Sections 2.3 and 2.4, two of the most informative probes of strongly
coupled plasma that are available in heavy ion collisions are the rare highly ener-
getic partons and quarkonium mesons produced in these collisions. In this chapter
and in Chapter 9, we review results obtained by employing the AdS/CFT corre-
spondence that are shedding light on these classes of phenomena. In Sections 8.1
and 8.2, we describe how a test quark of mass M moving through the strongly
coupled NV = 4 SYM plasma loses energy and picks up transverse momentum.
In Section 8.3 we consider how the strongly coupled plasma responds to the hard
parton plowing through it; that is, we describe the excitations of the medium which
result. In Section 8.4, we discuss calculations of the stopping distance of a light
quark moving through the strongly coupled plasma. Throughout Sections 8.1, 8.2,
8.3 and 8.4 we assume that all aspects of the phenomena associated with an ener-
getic parton moving through the plasma are strongly coupled. In Section 8.5, we
present an alternative approach in which we assume that QCD is weakly coupled
at the energy and momentum scales that characterize gluons radiated from the
energetic parton, while the medium through which the energetic parton and the
radiated gluons propagate is strongly coupled. In this case, one uses the AdS/CFT
correspondence only in the calculation of those properties of the strongly coupled
plasma that arise in the calculation of radiative parton energy loss and transverse
momentum broadening. In Section 8.6, we describe a calculation of synchrotron
radiation in strongly coupled ' = 4 SYM theory that allows the construction of a
narrowly collimated beam of gluons (and adjoint scalars) which we can then watch
as it is quenched by the strongly coupled plasma. This opens a new path toward
analyzing jet quenching.

In Section 8.7, we review those insights into the physics of quarkonium mesons
in heavy ion collisions that have been obtained via AdS/CFT calculations of
the temperature-dependent screening of the potential between a heavy quark
and antiquark. To go farther, we need to introduce a holographic description of
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262 Probing strongly coupled plasma

quarkonium-like mesons themselves. In Chapter 9, we first present this construc-
tion and then describe the insights that it has yielded. In addition to shedding
light upon the physics of quarkonia in hot matter that we have introduced in Sec-
tion 2.4, as we describe in Section 9.6.2 these calculations have also resulted
in the discovery of a new process by which a hard parton propagating through
a strongly coupled plasma can lose energy: Cherenkov radiation of quarkonium
mesons.

8.1 Parton energy loss via a drag on heavy quarks

When a heavy quark moves through the strongly coupled plasma of a conformal
theory, it feels a drag force and consequently loses energy [452, 394]. We shall
review the original calculation of this drag force in ' = 4 SYM theory [452, 394];
it has subsequently been done in many other gauge theories with dual gravitational
descriptions [453, 224, 225, 610, 645, 772, 395, 418, 468, 144, 161]. In calcula-
tions of the drag on heavy quarks, one determines the energy per unit time needed
to maintain the forced motion of the quark in the plasma. In these calculations one
regards the quark as an external source moving at fixed velocity, v, and one per-
forms thermal averages over the medium. This picture can be justified if the mass
of the quark is assumed to be much larger than the typical momentum scale of the
medium (temperature), and if the motion of the quark is studied in a time window
that is large compared with the relaxation scale of the medium but short compared
to the time it takes the quark to change its trajectory. In this limit the heavy quark
is described by a Wilson line along the worldline of the quark.

The dual description of the Wilson line is given by a classical string hanging
down from the quark on the boundary of AdS. Since we are considering a single
quark, the other end of the string hangs down into the bulk of the AdS space. We
consider the stationary situation, in which the quark has been moving at a fixed
velocity for a long time, meaning that the shape of the string trailing down and
behind it is no longer changing with time. For concreteness, we will assume that
the quark moves in the x; direction, and we choose to parametrize the string world
sheet by T = ¢ and o = z. By symmetry, we can set two of the perpendicular coor-
dinates, x; and x3 to a constant. The problem of finding the string profile reduces,
then, to finding a function

xi(t,0), (8.1)

that fulfills the string equations of motion. The string solution must also satisfy the
boundary condition

x1(t,z —> 0) =wvr. (8.2)
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8.1 Parton energy loss via a drag on heavy quarks 263

Since we are interested in the stationary situation, the string solution takes the form
xi(t,z) = vt +¢(2), (8.3)

with ¢(z — 0) = 0. We work in an N' = 4 plasma, whose dual gravitational
description is the AdS black hole with the metric G, given in (5.34). The induced
metric on the string worldsheet g,p = G, 0, x"dgx" is then given by

2

R o
ds2 = Z—2<— (fx) —v?)d7* + (m +¢ 2(2)) do*

+v¢'(2v (drdo + dodr)) , (8.4)

where, as before, f(z) = 1 — z*/z{ and ¢'(z) denotes differentiation with respect
to z.
The Nambu—Goto action for this string reads

R? / dz\/f(z) — 02 + f(2)207(2)
Tl =

S=-

=7 [ dzL, 8.5
2ma f@ / (8)
with 7 the total time traveled by the quark. Extremizing this action yields the
equations of motion that must be satisfied by ¢(z). The action (8.5) has a constant
of motion given by the canonical momentum

2 3/2 1
o L _ R f(@)778(@) 8.6)

T 9x] 2o’ Z? Vi@ =02+ f(2)22(2) ’
which coincides with the longitudinal momentum flux in the z direction. In terms
of I1 ;, the equation of motion for ¢ obtained from (8.5) takes the form

Y % 1>2 74 f(z) —v?
) = I1 . 8.7
£ (2) ( R2 ¢ f(Z)2 f(2) - (273_;/1_[21)224 (8.7)

The value of H; can be fixed by inspection of this equation, as follows: both the
numerator and the denominator of (8.7) are positive at the boundary z = 0 and
negative at the horizon z = zg; since ¢’(z) is real, both the numerator and the
denominator must change sign at the same z; this is only the case if

R2
v, (8.8)

n! =+
2ma’zg

with y = 1/+/1 — v? the Lorentz y factor. Thus, stationary solutions can only
be found for these values of the momentum flux. (Or, for H; = 0, for which
& =constant. This solution has real action only for v = 0.)
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264 Probing strongly coupled plasma

Figure 8.1 String solutions of Eq. (8.8). The physical (unphysical) solution in
which momentum flows into (out of) the horizon and the string trails behind
(curves ahead) of the quark at the boundary is plotted in the left (right) panel.
Figure from Ref. [452].

The two solutions (8.8) correspond to different choices of boundary conditions
at the horizon. Following Refs. [452, 394], we choose the solution for which
the momentum flux along the string world sheet flows from the boundary into the
horizon, corresponding to the physical case in which the energy provided by the
external agent that is pulling the quark through the plasma at constant speed is
dissipated into the medium. This solution to (8.7) is given by

() = _ v (arctanh (i) — arctan (i)) . (8.9)
2 20 20

As illustrated in Fig. 8.1, this solution describes a string that trails behind the
moving quark as it hangs down from it into the bulk spacetime.

The momentum flux flowing down from the boundary, along the string world
sheet (8.9), and towards the horizon determines the amount of momentum lost
by the quark in its propagation through the plasma. In terms of the field theory
variables,

d_p - JTTZ\/X

dr ¢ 2

Y. (8.10)

Note, however, that in the stationary situation we have described, there is by con-
struction no change in the actual momentum of the quark at the boundary; instead,
in order to keep the quark moving with constant speed v against the force (8.10)
there must be some external agent pushing the quark through the strongly coupled
plasma. This force can be viewed as due to a constant electric field acting on the
string endpoint, with the magnitude of the field given by

xT2V/A
2

The physical set-up described by the string (8.9) is thus that of forced motion of the
quark through the plasma at constant speed in the presence of a constant electric
field. The external force on the quark balances the backward drag force (8.10) on

E = Yu. (8.11)
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the quark exerted by the medium through which it is moving. To make it explicit
that the medium exerts a drag force, we can rewrite (8.10) as

b _ (8.12)

with p = My the relativistic expression of the momentum of the quark and M
the mass of the heavy particle. The drag coefficient is then

_ T/ AT?

Np = M

(8.13)

For test quarks with M — o0, as in the derivation above, this result is valid for
motion with arbitrarily relativistic speeds v. It is remarkable that the energy loss
of a heavy quark moving through the quark—gluon plasma with constant speed is
described so simply, as due to a drag force. In contrast, in either a weakly coupled
plasma [628] or a strongly coupled plasma that is not conformal [585], dp/dt is
not proportional to p even at low velocities.

We shall see in Section 8.2 that a heavy quark moving through the strongly
coupled plasma of A/ = 4 SYM theory experiences transverse and longitudinal
momentum broadening, in addition to losing energy via the drag that we have ana-
lyzed above. We shall review the implications of the understanding of how the
presence of the strongly coupled plasma affects the motion of heavy quarks for
heavy ion collision phenomenology at the end of Section 8.2.

8.1.1 Regime of validity of the drag calculation

In the derivation of the drag force above, we considered a test quark with M — oo.
The result is, however, valid for quarks with finite mass M, as long as M is not too
small. As we now show, the criterion that must be satisfied by M depends on the
velocity of the quark v. The closer v is to 1, the larger M must be in order for
the energy loss of the quark to be correctly described via the drag force calculated
above. In deriving the regime of validity of the drag calculation, we shall assume
for simplicity that we are interested in large enough y = 1/4/1 — v?2 that the M
above which the calculation is valid satisfies M > ﬁT. We will understand the
need for this condition in Chapter 9.

The introduction of quarks with finite mass M in the fundamental representation
of the gauge group corresponds in the dual gravitational description to the intro-
duction of D7-branes [513], as we have reviewed in Section 5.5 and as we will
further pursue in Chapter 9. The D7-brane extends from the boundary at z = 0
down to some z,, related to the mass of the quarks it describes by
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v

2z

M = (8.14)
a result that we shall explain in Section 9.1. The physical reason that the calculation
of the drag force breaks down if M is too small or v is too large is that if the
electric field £ required to keep the quark moving at constant speed v gets too
large, one gets copious production of pairs of quarks and antiquarks with mass
M, and the picture of dragging a single heavy quark through the medium breaks
down completely [253]. The parametric dependence of the critical field £ at which
pair production becomes copious can be estimated by inspection of how the Dirac—
Born-Infeld action for the D7-brane depends on £, namely

2o’ 2
SDB[ ~ 1— R2 ng . (815)

The critical maximum field strength that the D7-brane can support is the &. at
which this action vanishes. This yields a criterion for the validity of the drag
calculation, namely that £ must be less than of order

B 2w M?
N/
This maximum value of the electric field implies a maximum value of y up to

which the drag calculation can be applied for quarks with some finite mass M.
From Eq. (8.11) and Eq. (8.16), this criterion is

2M \*
Y < <m) . (8.17)

We shall assume that M >> +/AT, meaning that in (8.17) we can take yv =~ y. And,
the estimate is only parametric, so the factor of two is not to be taken seriously.
Thus, the result to take away is that the drag calculation is valid as long as

- <£)2 (8.18)
Y~\vr) '

The argument in terms of pair production for the limit (8.18) on the quark veloc-
ity gives a nice physical understanding for its origin, but this limit arises in a
variety of other ways. For example, at (8.18) the velocity of the quark v becomes
equal to the local speed of light in the bulk at z = z,, where the trailing string
joins onto the quark on the D7-brane. For example, at (8.18) the screening length
L (described below in Section 8.7) at which the potential between a quark and
antiquark is screened becomes as short as the Compton wavelength of a quark
of mass M, meaning that the calculation of Section 8.7 is also valid only in the
regime (8.18) [584].

& (8.16)
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Yet further understanding of the meaning of the limit (8.18) can be gained by
asking the question of what happens if the electric field is turned off, and the quark
moving with speed v begins to decelerate due to the drag force on it. We would
like to be able, at least initially, to calculate the energy loss of this now decelerating
quark by assuming that this energy loss is due to the drag force, which from (8.10)
means

B\ T gt = I PY (8.19)

At | e 2 2 M’ ’
However, once the quark is decelerating it is natural to expect that, due to its decel-
eration, it radiates and loses energy via this radiation also. The energy lost by a
quark in strongly coupled N’ = 4 SYM theory moving in vacuum along a trajec-
tory with arbitrary acceleration has been calculated by Mikhailov [618].! For the
case of a linear trajectory with deceleration a, his result takes the form

dE _Qaz o_ Vil (dp)z.

dr 2m M2 \dr

2 2 M? (8.20)

vacuum radiation

At least initially, dp/dt will be that due to the drag force, namely (8.10). We now
see that the condition that d E /dt due to the vacuum radiation (8.20) caused by the
drag-induced deceleration (8.10) be less than d E /dt due to the drag itself (8.19)
simplifies considerably and becomes

2M \?

the same criterion that we have seen before. This gives further physical intuition
into the criterion for the validity of the drag calculation and at the same time
demonstrates that this calculation cannot be used in the regime in which energy
loss due to deceleration-induced radiation becomes dominant.

Motivated by the above considerations, the authors of Ref. [346] considered the
(academic) case of a test quark moving in a circle of radius L with constant angular
frequency w. They showed that in this circumstance, d E /dt is given by (8.19), as if
due to drag with no radiation, as long as w® < (7 T)?y?>, with y the Lorentz factor
for velocity v = Lw. But, for w* > (7w T)?y?, the energy loss of the quark moving
in a circle through the plasma is precisely what it would be in vacuum according
to Mikhailov’s result, which becomes

dE N/
— — vy
2

A
4 _ £a2y4

7 (8.22)

vacuum radiation

1 Mikhailov’s general result for an accelerating quark in NV = 4 SYM theory at T = 0 is equivalent to Liénard’s
classical result for electromagnetic radiation from an accelerating charge upon replacing the QED coupling

constant 2¢2 /3 by /2./(27). Finite mass corrections to Mikhailov’s result have been explored in Ref. [280].
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for circular motion. Note that the radiative energy loss (8.22) is greater than that
due to drag, (8.19), for

o> (T)*y?, (8.23)

so the result of the calculation is that energy loss is dominated by that due to
acceleration-induced radiation or that due to drag wherever each is larger. (Where
they are comparable in magnitude, the actual energy loss is somewhat less than
their sum [346].) This calculation shows that the calculational method that yields
the result that a quark moving in a straight line with constant speed v in the regime
(8.21) loses energy via drag can yield other results in other circumstances (see
[280, 283, 282] for further examples). In the case of circular motion, the crite-
rion for the validity of the calculational method is again (8.21), but there is a wide
range of parameters for which this criterion and (8.23) are both satisfied [346]. This
means that, for a quark in circular motion, the calculation is reliable in a regime
where energy loss is as if due to radiation in vacuum. As we shall see in Section 8.6,
this opens the possibility to using this calculation as a device with which to make
a beam of strongly coupled gluons and adjoint scalars, whose quenching in the
strongly coupled plasma can then be analyzed.

8.2 Momentum broadening of a heavy quark

In the same regime in which a heavy quark moving through the strongly coupled
plasma of N' = 4 SYM theory loses energy via drag, as described in Sec-
tion 8.1, it is also possible to use gauge/gravity duality to calculate the transverse
(and, in fact, longitudinal) momentum broadening induced by motion through the
plasma [252, 396, 253, 254]. We shall review these calculations in this section.
They have been further analyzed [328, 311, 378], and extended to study the effects
of nonconformality [585, 675, 419] and acceleration [808, 227].

For non-relativistic heavy quarks, the result (8.12) is not surprising. The dynam-
ics of this particle is that of Brownian motion which can be described by the
effective equation of motion

dp _
7 = TP FEW), (8.24)

where £(¢) is a random force that encodes the interaction of the medium with the
heavy probe and that causes the momentum broadening that we describe in this
section. For heavy quarks, we have seen in (8.13) that np is suppressed by mass.
This reflects the obvious fact that the larger the mass of the quark the harder it
is to change the momentum of the particle. Thus, for a heavy quark the typical
time for such a change, 1/1p, is long compared to any microscopic time scale of
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the medium 7,,4. This fact allows us to characterize the force distribution by the
two-point correlators

(ErEr () = krd(t — 1),
(ELEL M) =K 8 — 1), (8.25)

where the subscripts L and T refer to the forces longitudinal and transverse to the
direction of the particle’s motion. Here, we are also assuming an isotropic plasma
which leads to (&, (¢)) = (§7(¢)) = 0. In general, the force correlator would have
a nontrivial dependence on the time difference (different from §(¢ — ¢’)). How-
ever, since the dynamics of the heavy quark happens on time scales that are much
larger than 7,4, We can approximate all medium correlations as happening instan-
taneously. It is then easy to see that the coefficient k7 (x) corresponds to the mean
squared transverse (longitudinal) momentum transferred to the heavy quark per
unit time. For example, the transverse momentum broadening is given by

(p) =2 / didt’ (§r (1) rér (1)) = 21 T, (8.26)

where 7 is the total time duration (which should be smaller than 1/7p) and where
the 2 is the number of transverse dimensions. It is clear from the correlator that «7
is a property of the medium, independent of any details of the heavy quark probe.
Our goal in this section is to calculate k7 and k.. We shall do so first at low velocity,
and then throughout the velocity regime in which the calculation of the drag force
is valid.

Before we begin, we must show that in the limit we are considering the noise
distribution is well characterized by its second moment. Odd number correlators
vanish because of symmetry, so the first higher moment to consider is the fourth
moment of the distribution of the transverse momentum picked up by the heavy
quark moving through the plasma

()= / dndndndty (§r (1)Er ()6 (1)Er (1)) - (8.27)
The four-point correlator may be decomposed as

(Er (1)Er (0)ér (13)E7(1a)) = (&7 (1) (1) E7 (13)E7 (1)) (8.28)
+ (&r (1)ér (1)) (67 (83)E7 (14))
+ (§r(1)ér (3)) (Er (02)E7 (14))

+ (Er (1)ér (1a)) Er(02)E7(53))
(8.29)
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which is the definition of the connected correlator. Owing to time translational
invariance, the connected correlator is a function

(Er (t)ér ()67 (13)6r (1)), = f(la — 1,13 — 11, 1 — 11) . (8.30)

As before, the correlator has a characteristic scale of the order of the medium scale.
As a consequence, since the expectation value due to the connected part has only
one free integral, we find

Tm
bt) = (3 @ + OC2) T2, (8.31)
where the dominant term comes from the disconnected parts in Eq. (8.28). Since
we are interested in times parametrically long compared to T4, We can neglect the
connected part of the correlator.

8.2.1 k7 and k in the p — 0 limit

The dynamical equations (8.24) together with (8.25) constitute the Langevin
description of heavy quarks in a medium. In the p — 0 limit, there is no distinction
between transverse and longitudinal, meaning that both the fluctuations in (8.25)
must be described by the same correlator with k;, = k7 = «. The Langevin equa-
tions (8.24) and (8.25) describe the time evolution of the probability distribution
for the momentum of an ensemble of heavy quarks in a medium. A standard anal-
ysis shows that, independent of the initial probability distribution, after sufficient
time any solution to the Langevin equation yields the probability distribution

Lnp\"? 21
PPp,t > 00) = (;7 exp {—p 7} , (8.32)

which coincides with the equilibrium (i.e. Boltzmann) momentum distribution for
the heavy quark provided that

i K
C2MT

D (8.33)

This expression is known as the Einstein relation. Thus, the Langevin dynam-
ics of non-relativistic heavy quarks is completely determined by the momentum
broadening «, and the heavy quarks equilibrate at asymptotic times.

The Einstein relation (8.33) together with the computation of np in (8.13) for
strongly coupled N' = 4 SYM theory allow us to infer the value of « for this
strongly coupled conformal plasma, namely

Kk = wV/AT?. (8.34)
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The dynamical equation (8.12) that we used in the previous section does not include
the noise term simply because in that section we were describing the change in the
mean heavy quark momentum only.

8.2.2 Direct calculation of the noise term

We would like to have a direct computation of the noise term in the description of a
heavy quark in a strongly coupled gauge theory plasma. There are two motivations
for this: (1) to explicitly check that the Einstein relation (8.33) is fulfilled and (2)
to compute the momentum broadening for moving heavy quarks, which are not in
equilibrium with the plasma and to which the Einstein relation therefore does not
apply. This computation is somewhat technical; the reader interested only in the
results for k7 and k; for a moving heavy quark may skip to Section 8.2.3.

We need to express the momentum broadening in terms which are easily com-
puted within the gauge/gravity correspondence. To do so, we prepare a state of
the quark at an initial time #y which is moving at given velocity v in the plasma.
In quantum mechanics, the state is characterized by a density matrix, which is a
certain distribution of pure states

plto) =Y wn)In) (n (8.35)

where the sum is performed over a complete set of states and the weight w(n) is the
ensemble. For a thermal distribution, the states are eigenstates of the Hamiltonian
and w(n) = exp{—E,/T}.

In the problem we are interested in, the density matrix includes not only the
quark degrees of freedom but also the gauge degrees of freedom. However, we start
our discussion using a one-particle system. In this case, the distribution function of
the particle is defined from the density matrix as

foex'st0) =Y wn) (x| n) (n] x') , (8.36)

where, as usual, (x| n) is the wave function of the particle in the state |n). It is
also common to call f(x, x") the density matrix. It is conventional to introduce the
mean and relative coordinates and express the density matrix as

FXoria) = f (X + % X — %; zo) , (8.37)

where X = (x +x’)/2 and r = x — x’. It is then easy to see that the mean position
and mean momentum of the single particle with a given density matrix are given by
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(x) = tr {p(t0) x} = / dxx fxx; 1o) = / AXXf(X, 0 10),

(p) = tr {p(t0) p) = / dx S (0 = ) flox, x5

x'=x

S / dX, F (X, F: ) heo . (8.38)

meaning that r is the conjugate variable to the momentum and the mean squared
momentum of the distribution is

(p?) = —/anf FX,r )l » (8.39)

the result from this analysis of the one-particle system that we shall need below.

Returning now to the problem of interest to us, we must consider an ensemble
containing the heavy quark and also the gauge field degrees of freedom. Since
we assume the mass of the quark to be much larger than the temperature, we can
describe the pure states of the system as

|A') = Q! (x)|A), (8.40)

where | A) is a state of the gauge fields only, |A”) denotes a state of the heavy quark
plus the gauge fields, and Q7 (x) is the creation operator (in the Schrodinger pic-
ture) of a heavy quark with color a at position x. Corrections to this expression are
(exponentially) suppressed by 7'/ M. The Heisenberg representation of the operator
0 (x) satisfies the equation of motion

(iu-D—M)Q =0, (8.41)

where u is the four-velocity of the quark and D is the covariant derivative with
respect to the gauge fields of the medium. This equation realizes the physi-
cal intuition that the heavy quark trajectory is not modified by the interaction
with the medium, which leads only to a modification of the quark’s phase. (The
expression (8.41) can also be derived from the Dirac equation by performing a
Foldy—Wouthuysen transformation, which in the heavy quark rest frame is given
by Q =exp{y - D/2M}r, where y = 1/+/1 — v?%.)

The full density matrix of the system, p, describes an ensemble of all the degrees
of freedom of the system. Since we are only interested in the effects of the medium
on the momentum of the heavy quark probe, we can define a one-body den-
sity matrix from the full density matrix by integrating over the gauge degrees of
freedom

FOria) = (05 (X =55 ) Un@s (X +5))

—Tr [,0 o (X _ %) Uy O (X + %)] , (8.42)
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where the trace is taken over a complete set of states
> / dx Q) (x)|A) (Al Qu(x). (8.43)
A,a

Note that the inclusion of the operators in the trace in (8.42) plays the same role as
the projectors |x) in (8.36). The gauge link U, in (8.42) joins the points X + r/2
and X — r/2 to ensure gauge invariance. In the long time limit, the precise path is
not important, and we will assume that U, is a straight link. To simplify our pre-
sentation, we shall explicitly treat only transverse momentum broadening, which
means taking the separation r to be in a direction perpendicular to the direction of
motion of the heavy quark, r = |r_|.

At a later time ¢, after the heavy quark has propagated through the plasma for a
time ¢ — ty, the one-body density matrix has evolved from (8.42) to

: . r .
fX,rp;0)=Tr [p e =10 g (X - %) p—iH(i—10)

eiH(tfl‘Q) Uab e*iH(t*tO)
. r .
elH([*tO) Qb (X + 71-) e*lH(lfto)] , (844)

where we have introduced evolution operators to express the result in the Heisen-
berg picture. We then introduce a complete set of states, obtaining

fX,rt) = /dxldxz Z Payar[X1, X2 Ay, Az
Ap,42,A3,A4
i r
(A2] Qi (300} (X = 57:1) 143)
(A3 Uap(1) |Asg)

(Adl 0y (X + 5551) Q1,0 141) | (8.45)

where we have defined

Paras[X1. X3 Ay, Ax] = (A4] O, (x1) p Q) (X2) |A2) . (8.46)

The expression (8.45) can be expressed as a path integral. Note that the expres-
sion in the second line of (8.45) is an anti-time-ordered correlator; thus, its path
integral representation involves a time reversal of the usual path integral. Instead
of introducing two separate path integrals corresponding to the second and fourth
lines of (8.45), we introduce the time contour shown in Fig. 8.2 and use this con-
tour to define a single path integral. In this contour the —ie€ shift is inherited from
the standard ie prescription in field theory. The fields A; and A, are the values at
the endpoints of the contour. The one-body density matrix then reads
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Xy = (o, o) t. X=(tx, +v At)
° )
@
Xp=(t, — i€, v, — ive) v, X=( —ie, xy +v At —ive)

Figure 8.2 Time contour C in the complex time plane for the path integral (8.47).
Here, At =t — 1y and the i€ prescription in time is translated to the longitudinal
coordinate x since the quark trajectory is x = vt¢. The two-point functions com-
puted from the partition function (8.47) are evaluated at two arbitrary points #¢
and t/C on the contour. Figure from Ref. [253].

f(X,r; 1) = Z /XmdXZ/['DA] DO DQe i [od*x{Lyy+QT(iu-D-M)Q}

Al,A
palaz[xlv Xo; A1, A2l U (t)

Qu, (X2, 19 — i€) Q) <X - %, t— ie)
0, (X 2 z) 0! (x1, 1) - (8.47)

By generalizing the static heavy quark computations in Ref. [611] to nonzero
velocity, standard techniques for fermionic path integrals can be used to do the
path integrals over the heavy quark fields in (8.47). To do so, we must compute
the Green’s function of the quark fields for a fixed configuration of gauge fields,
namely

iG(2,1) = (Tc Qu, (X2, 1ac) O, (X1, 110)) (8.48)

where 7¢ is the time along the contour and 7¢ denotes the contour ordered product.
Since the quark Lagrangian has only one dynamical spacetime variable, the Green’s
function satisfies

(iu-D—M)iG2, 1) =i8(xp — x1)dc(tre — ic) , (8.49)

which has the solution

. iMu-(Xo— dtC
iG(2,1) = etiMeXa=XD) / 7906—11(:) 5&(Xa — Xy, ()
C

[ dt; ,
X [P exp (—z f 7 utA,(Xy, (tc)))} , (8.50)
fic

azai

where X ﬁfl (te) = X ’1‘ + u"(tc — ti¢)/y is the heavy quark worldline that passes
through X;. Carrying out this integration over the quark field and working to
leading order in 7/ M (which means neglecting the fermionic determinant) yields

r, r,

Al,Az] We [— ——]])A, 8.51)

f(X,rL;t)=<tr[p[X+%, > 5

2
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(ty, X, +1i/2, ) (t.x| +r)/2, 2, + vAl)
S
(t, —ie,x) —r /2, x, — 1v€) (t,x, —r/2, x,+ vAt — ive)

Figure 8.3 Graphical representation of Eq. (8.51). The Wilson line indicated by
the black line is denoted We([ry /2, —r, /2]. This Wilson line is traced with the
initial density matrix, pg ,,. The horizontal axis is along the time direction and
the vertical axis is along one of the transverse coordinates, x| . At = t —#(. Figure
from Ref. [253].

where the subscript A indicates averaging with respect to the gauge fields, and
where the Wilson line W¢ [r1 /2, —r /2] is defined in Fig. 8.3. We have used the
fact that the Green’s function of Eq. (8.41) is the (contour ordered) Wilson line.

Next, we perform a Taylor expansion of the time-evolved density matrix (8.51)
about r; = 0, obtaining

fXoriin = f(X.0:0)+
2 2
r] 0 r; r;
—(tr| —5p| X+ —,X——; A, A | W [0
2<r[3r1p[ +2, 5 A 2] c[]]>A+
2
r
Sk At{ir[p [X, X; Ay, Aol We [O)4 +0GD) . (8.52)

The second term in this expression involves only derivatives of the initial density
matrix; thus, as in (8.39) it is the mean transverse momentum squared of the initial
distribution (which may be supposed to be small). In the last term, which scales
with the elapsed time Af, we have defined

1

1 8 Weldy]
4 {trpWelO]) 4

Kr At = —_—
8y(tc) 8y (tc)

/dtcdt/c <tr,o[X, X: Ay, As] > , (8.53)
c A

where 7¢ denotes time along the contour depicted in Fig. 8.2, and «y At is the
mean transverse momentum squared picked up by the heavy quark during the time
At. We have expressed the transverse derivatives of the Wilson line as functional
derivatives with respect to the path of the Wilson line. The path §y denotes a small
transverse fluctuation §y(¢) away from the path X; = vt.

The contour §y may be split into two pieces, dy; and 8y, which run along
the time-ordered and anti-time-ordered part of the path. Thus, the fluctuation
calculation defines four correlation functions
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2

iGl](t,t/):m <1”,00 %)4 s (8.54)
2

iGZZ(t, t/) = m <tr,00 %>A . (855)
2

N e ooy O
2

Ot = G 7 o ), O

Note that the first two correlators correspond to time-ordered and anti-time-ordered
correlators, while the last two are unordered. We can then divide the integration
over t¢ and f¢ in (8.53) into four parts corresponding to the cases where each of 7¢
and #¢ is on the upper or lower half of the contour in Fig. 8.2. In the large At limit
we can then use time translational invariance to cast (8.53) as

1 .
Kkt = lim Z dte™! [iG11(t,0) +iGn(,0)+iG2(t,0) +iGoi(£,0)] .

w—0
(8.58)
This admittedly rather formal expression for k7 is as far as we can go in general.
In Section 8.2.3 we evaluate k7 (and k) in the strongly coupled plasma of N' = 4
SYM theory.

Although our purpose in deriving the expression (8.58) is to use it to analyze
the case v # 0, it can be further simplified in the case that v = 0. On the time
scales under consideration, the static quark is in equilibrium with the plasma, and
the Kubo—Martin—Schwinger relation which takes the form

i [G11(®) + Go() + Gra(@) + G ()] = —4 coth (%) IMGr(w) (8.59)
once € has been allowed to vanish applies [571]. Here, G ¢ is the retarded correlator.
Thus, we find

. 2T
kr(v =0) = lim (——) ImGr(w). (8.60)
w—0 w

If v # 0, however, we must evaluate the four correlators in the expression (8.58).

8.2.3 «r and k. for a moving heavy quark

We see from the expression (8.53) that the transverse momentum broadening coef-
ficient k7 is extracted by analyzing small fluctuations in the path of the Wilson line
depicted in Fig. 8.3. In the strongly coupled plasma of N’ = 4 SYM theory, we
can use gauge/gravity duality to evaluate 7 starting from (8.53). In the dual grav-
itational description, the small fluctuations in the path of the Wilson line amount
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to perturbing the location on the boundary at which the classical string (whose
unperturbed shape is given by (8.9)) terminates according to

(x1(2,2),0,0) — (x1(t,2), ¥(t,2),0) . (8.61)

The perturbations of the Wilson line at the boundary yield fluctuations on the string
world sheet dragging behind the quark. Because we wish to calculate k7, in (8.61)
we have only introduced perturbations transverse to the direction of motion of the
quark. We shall quote the result for «;, at the end; calculating it requires extending
(8.61) to include perturbations to the function x; (¢, z).

In order to analyze fluctuations of the string worldsheet, we begin by casting the
metric induced on the string worldsheet in the absence of any perturbations

R2
ds?. = —
ws 72

£ 27,2
(— (f(x) —v?)de*+ %d# - vzzf%) (dtdo + dodrt)

(8.62)
in a simpler form. In (8.62), we have defined f @=1-2z% (zgyz). The induced
metric (8.62) is diagonalized by the change of worldsheet coordinates

~ t 20 Z Z
t=—+4+ <arctan (—) — arctanh (—)
JY 2y 20 20
Z Z
—/y arctan (f_)/) + ./yarctanh (f_y)) ,
20 20

z2=vz, (8.63)
in terms of which the induced metric takes the simple form
dsy, = If—j (—f (2)di* + IA d22) . (8.64)
2 f@

Note that this has the same form as the induced metric for the worldsheet hang-
ing below a motionless quark, upon making the replacement (7,%) — (¢, z). In
particular, the metric (8.64) has a horizon at Z = zo, which means that the met-
ric describing the worldsheet of the string trailing behind the moving quark has a
worldsheet horizon at z = zyws = zo/,/¥ . For v — 0, the location of the worldsheet
horizon drops down toward the spacetime horizon at z = z¢. But, for v — 1, the
worldsheet horizon moves closer and closer to the boundary at z = 0, i.e. towards
the ultraviolet. As at any horizon, the singularity at z = zy; (i.e. at Z = z) in (8.64)
is just a coordinate singularity. In the present case, this is manifest since (8.64)
was obtained from (8.62) which is regular at z = z, by a coordinate transforma-
tion (8.63). Nevertheless, the worldsheet horizon has clear physical significance: at
Z = Zws the local speed of light at this depth in the bulk matches the speed v with
which the quark at the boundary is moving. Furthermore, and of direct relevance
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to us here, because of the worldsheet horizon at z = z,, fluctuations of the string
worldsheet at z > z,, below — to the infrared of — the worldsheet horizon, are
causally disconnected from fluctuations at z < zys above the worldsheet horizon
and in particular are causally disconnected from the boundary at z = 0.

The remarkable consequence of the picture that emerges from the above analysis
of the unperturbed string worldsheet trailing behind the quark at the boundary mov-
ing with speed v is that the momentum fluctuations of this quark can be thought
of as due to the Hawking radiation on the string worldsheet, originating from the
worldsheet horizon at z = z [396, 253]. It is as if the force fluctuations that the
quark in the boundary gauge theory feels are due to the fluctuations of the string
worldsheet to which it is attached, with these fluctuations arising due to the Hawk-
ing radiation originating from the worldsheet horizon. It will therefore prove useful
to calculate the Hawking temperature of the worldsheet horizon, which we denote
Tys. As detailed in Appendix B this can be done in the standard fashion, upon using
a further coordinate transformation to write the metric (8.64) in the vicinity of the
worldsheet horizon in the form ds2_ = —b?p?di* +dp? for some constant b, where
the worldsheet horizon is at p = 0. Then, it is a standard argument that in order to
avoid having a conical singularity at p = 0 in the Euclidean version of this metric,
namely ds2, = b>p*dd* + dp?, bd must be periodic with period 27. The period-
icity of the variable 0, namely 2 /b, is 1/T. Since at the boundary, where z = 0,
Eq. (8.63) becomes 7 = t/ /7 this argument yields

Tys = —, (8.65)

a result that we shall use below.

We have gained significant physical intuition by analyzing the unperturbed string
world sheet, but in order to obtain a quantitative result for 7 we must introduce the
transverse fluctuations y(¢, z) defined in (8.61) explicitly. We write the Nambu-—
Goto action for the string worldsheet with y(z,z) # 0, and expand it to second
order in y, obtaining the zeroth order action (8.5) plus a second order contribution

2) . )/R2 /dfd%l ).)2 . ~ ,2>
st = | S (5 - o). (8.66)

where " and ' represent differentiation with respect to 7 and Z respectively. This
action is conveniently expressed as

yR?> [ didz 1 ;
S‘ﬁ’[y]:_zm/ / 7 5«/—hh b3, y0pY, (8.67)

with A, the induced metric on the unperturbed worldsheet that we have analyzed
above. The existence of the worldsheet horizon means that we are only interested
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in solutions to the equations of motion for the transverse fluctuations y obtained
from (8.67) that satisfy infalling boundary conditions at the worldsheet horizon.
This constraint in turn implies a relation among the correlators analogous to those
in (8.58) that describe the transverse fluctuations of the worldsheet, and in fact the
relation turns out to be analogous to the Kubo—Martin—Schwinger relation (8.59)
among the gauge theory correlators [253]. Consequently, for a quark moving with
velocity v the transverse momentum broadening coefficient x7(v) is given by the
same expression (8.60) that is valid at v = 0 with T replaced by the worldsheet
temperature 7y, of (8.65) [396, 253]. That is,

Kr(v) = lim (— 2 T IméR(w)> : (8.68)
w—0 w

where G denotes the retarded correlator at the worldsheet horizon. The fact that

in the strongly coupled theory there is a KMS-like relation at v # O after all is a

non-trivial consequence of the development of the worldsheet horizon.

The computation of the retarded correlator follows the general procedure of
Ref. [747] described in Section 5.3. Since the action (8.66) is a function of 7 which
is given by ¢/, /y at the boundary, the retarded correlator is a function of & = ,/y®
(with w the frequency of oscillations at the boundary). To avoid this complication,
and in particular in order to be able to apply the general results for Im G that we
derived in Section 6.2, it is convenient to define

=i, (8.69)

so that 7 = ¢ at the boundary. We now wish to apply the general expressions (A.10),
(6.17) and (6.18). In order to do so, we identify the world sheet metric h? and the
field y in the action (8.67) with the metric g™ and the field ¢ in the action (6.16),
meaning that in our problem the function g in (6.16) takes the specific form

1 yRP1 Vi
q(z)  2ma’z2 27z’
Furthermore, for the two-dimensional worldsheet metric we have —h = h;h,,,
meaning that from the general result (6.25) we find

(8.70)

ImG 1 A
~ pim 1mGR@) - yf(nT)z, 8.71)
w—0 w q(Zws) 21
and thus
kr = JAynT?, (8.72)

which is our final result for the transverse momentum broadening coefficient.
The analysis of longitudinal fluctuations and the extraction of «; proceed analo-
gously to the analysis we have just presented, except that in (8.61) we introduce a
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perturbation to the function x; instead of a transverse perturbation y. At quadratic
order, there is no coupling between the transverse and longitudinal perturbations.
Remarkably, the action for longitudinal fluctuations of the string is the same as that
for transverse fluctuations, Eq. (8.66) up to a constant:

SPx] = 28 [x1, (8.73)

with y the Lorentz factor. Following the analogous derivation through, we con-
clude that

kL =y =y PN T? (8.74)

This result shows that k; depends very strongly on the velocity of the heavy quark.
Indeed, k; grows faster with increasing velocity than the energy squared of the
heavy quark, y2>M?. Thus, the longitudinal momentum acquired by a quark mov-
ing through a region of strongly coupled A/ = 4 SYM plasma of finite extent does
not become a negligible fraction of the energy of the quark in the high energy limit.
This is very different from the behavior of a quark moving through a weakly cou-
pled QCD plasma, in which the longitudinal momentum transferred to the quark
can be neglected in the high energy limit. However, we should keep in mind that,
due to the bound (8.18), for a given value of the mass M and the coupling v/ the
calculation of «; (and of ) is only valid for finite energy quarks, with y limited
by (8.18).

The fact that x; grows faster with y than y?>M? would seem to indicate that
once the heavy quark has traveled through the medium for a distance L so long
that k; L > y>M?, meaning

M 2

the calculation in this section must break down since the fluctuations in the longi-
tudinal momentum of the quark have become greater than the momentum itself. In
fact, this criterion never comes into play because the calculation always “breaks
down”, in a trivial sense, earlier. The heavy quark feels a drag force given by
(8.12), meaning that after it has traveled a distance L = 1/np, its momentum
has been degraded by a factor of order 1. This means that calculating the longitu-
dinal fluctuations as if the y of the quark is constant, and comparing «; L to the
initial momentum of the quark, only makes sense for L < 1/np, which according
to (8.13) means that L must satisfy

LaT < —— (8.76)

T Jx'
We have already seen that the entire calculation is valid only as long as the criterion
(8.18) is satisfied, which is to say (M/T) > /yA. This means that at the L at
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which the criterion (8.76) ends the calculation, «; L is smaller than y>M? by at
least a factor of order +/A, and the regime (8.75) is never reached.

We see from the expressions (8.72) and (8.74) for k7 and . derived by explicit
analysis of the fluctuations that in the v — 0 limit we have k7 = x; = « with
k given by (8.34), as we obtained previously from the drag coefficient 1 via the
use of the Einstein relation (8.33). This is an example of the fluctuation—dissipation
theorem.

In the gauge theory, momentum broadening is due to the fluctuating force exerted
on the heavy quark by the fluctuating plasma through which it is moving. In the
dual gravitational description, the quark at the boundary feels a fluctuating force
due to the fluctuations of the world sheet that describes the profile of the string to
which the quark is attached. These fluctuations have their origin in the Hawking
radiation of fluctuations of the string worldsheet originating from the worldsheet
horizon. The explicit computation of this worldsheet Hawking radiation for a quark
at rest was performed in Refs. [311, 751], and these results nicely reproduce those
we have obtained within the Langevin formalism. This computation was extended
to quarks moving at nonzero velocity in Refs. [378, 254].

8.2.4 Heavy quarks in hot QCD and in heavy ion collisions

So far, we have discussed a general framework for calculating the transverse and
longitudinal momentum broadening x7 and «, that enter the Langevin equations
(8.24) and (8.25) for non-relativistic heavy quarks. We have then given explicit
results for strongly coupled NV = 4 SYM theory. We now discuss how these results
relate to, and help us to understand, what we know about hot QCD and about the
phenomenology of heavy ion collisions. We consider the case in which the relative
velocity of the heavy quark and the hot fluid is small, meaning that k7 = k;, = k. In
this regime, the heavy quark is carried along by the moving fluid, diffusing within
it with a diffusion constant that is given by
272

D="" (8.77)
K

meaning that the result (8.34) translates into the statement that a heavy quark in the
strongly coupled N' = 4 SYM theory plasma obeys a Langevin equation with

RV I S 1 578)
TOOSYMT S 2xT T 27T \ asymNe '

The diffusion constant D parametrizes how strongly the heavy quark couples to
the medium. At weak coupling, smaller D corresponds to stronger coupling and
shorter mean free path. However, D is well defined even if it is so small that it
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does not even make sense to define a mean free path for the heavy quark, as is the
case in the plasma of strongly coupled N/ = 4 SYM theory in which D is given
by (8.78) with A large. Recall that in this case we have calculated «, and hence
D, in the earlier parts of this section without ever defining the notion of a mean
free path.

In a QCD plasma that is hot enough that it is sufficiently weakly coupled that
lowest order perturbation theory can be used as a guide, we also have reliable
information about the diffusion constant. In this regime, D is large and the diffusing
heavy quark has a long mean free path. Leading order perturbative calculations
for a weakly coupled QCD plasma [628] can be summarized by an approximate
expression

14 (033’
Dweakly coupled QCD ™~ 27T_T ( a, ) ) (879)
in which we have neglected an additional logarithmic dependence on «;. How-
ever, the perturbative expansion converges quite poorly meaning that this result
only becomes quantitatively reliable at values of «, that are much smaller than
0.33 [237, 238]. Nevertheless, we note that if we simply compare (8.78) and (8.79)
with N. = 3 and asym = oy = 0.33 (or 0.5) the diffusion constant in a strongly
coupled NV = 4 SYM plasma is smaller than that in a weakly coupled QCD plasma
by a factor of about 12 (or 7). It is reasonable to guess that the diffusion constant
for a heavy quark in the strongly coupled QCD plasma produced in heavy ion col-
lisions lies between these two estimates. Indeed, early estimates of nonperturbative
contributions to D in the strongly coupled QCD plasma suggested that at a tem-
perature 7 = 200 MeV it should have a D that is smaller than the weakly coupled
result by a factor of three or four [784]. Before we turn to a discussion of what can
be inferred from experiments to date, we shall discuss in turn two possible paths
toward improved theoretical predictions. Neither (8.78) nor (8.79) can be applied
quantitatively to the strongly coupled plasma produced in heavy ion collisions even
though each is reliable in a certain domain — in one case in the strongly coupled
plasma of a non-Abelian gauge theory that is not QCD and in the other case in the
weakly coupled QCD plasma at temperatures that are orders of magnitude higher
than those accessed in experiment.

We first ask whether it is possible to sharpen inferences concerning the value of
D in the strongly coupled plasma of QCD that can be drawn from the result (8.78).
Can we do better than just comparing N” = 4 SYM theory and QCD at asyy = @ ?
We need to ask how D would change if we could deform A/ = 4 SYM theory so
as to turn it into QCD. This is not a question to which the answer is known, but
we can make several observations. First, in a large class of conformal theories, at
a given value of 7', N, and A both the drag coefficient np and « (and therefore
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1/ D) scale with the square root of the entropy density [584]. (The argument is the
same as that for the jet quenching parameter ¢, and we shall describe it briefly in
Section 8.5.) The number of degrees of freedom in QCD is smaller than that in
N = 4 SYM theory by a factor of 47.5/120 for N. = 3, suggesting that x and np
should be smaller in QCD by a factor of 4/47.5/120 = 0.63, making D larger by
a factor of 4/120/47.5 = 1.59. Note that np and 1/D scale in the same way even
though they are proportional to 72 and T respectively, meaning that scaling these
quantities between two theories with different numbers of degrees of freedom is
not equivalent to scaling the temperature. Second, ' = 4 SYM theory is of course
conformal, while QCD is not. Analysis of one toy model in which nonconformal-
ity can be introduced by hand suggests that turning on nonconformality to a degree
suggested by lattice calculations of QCD thermodynamics reduces D somewhat,
by a few tens of percent or perhaps at most by a factor of two [585]. Turning on
nonconformality in N/ = 2* theory also reduces D [468]. In a different model,
however, reducing the number of degrees of freedom as in QCD and simultane-
ously turning on nonconformality (again to a degree benchmarked against lattice
calculations of (¢ — 3P)/T*) increases D by a factor of two to five [419]. We
conclude that, at present, D in a strongly coupled QCD plasma cannot be inferred
reliably from these arguments, with the reduction in degrees of freedom increasing
D relative to (8.78) while the nonconformality may push in the opposite direction
or may increase D further. We can summarize the current uncertainty by estimat-
ing that D in the strongly coupled plasma of QCD is larger than that in (8.78) by a
factor that lies between one and five.

The other possible route to improved theoretical predictions of D in the strongly
coupled plasma of QCD is lattice quantum field theory. This route is not straight-
forward since diffusion is a real time process meaning that D cannot be written
directly in terms of derivatives of the thermodynamic partition function. As we
have already seen in our discussion of the lattice determination of spectral functions
via the maximum entropy method in Chapter 3, constraining real time correlators
using lattice calculations done at finitely many points in imaginary time necessar-
ily involves making additional assumptions. In the particular case of the diffusion
constant D, however, it is possible to make progress [240]. In the large quark mass
limit, heavy quark effective theory can be used to relate D to a certain Euclidean
correlation function involving color—electric fields that can be related by analytic
continuation to the random force two-point correlators (£(¢) £(t")) = «8(t — t')
appearing in (8.25). Furthermore, unlike in the case of the transport quantities that
we have discussed in Section 6.3, in this case there is no transport peak in the
relevant spectral function. Quite unlike the case illustrated in Fig. 6.1, here the rel-
evant spectral function is featureless at small frequency at weak coupling [240].
This indicates that at least in principle it should be possible to constrain D reliably
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from Euclidean lattice calculations. A first, exploratory, study based on this method
is underway [357], to date only in the SU(3) gluon plasma (QCD without quarks)
and to date with the continuum limit and the infinite volume limit not yet taken.
Although exploratory, these calculations are already unambiguous in showing that
Dqcp is significantly smaller than Dyeakty coupled @cp 10 (8.79), as can be antici-
pated from the general consideration that smaller D corresponds to smaller mean
free paths. The calculations suggest that [357]

3-5

_, 8.80
2nT ( )

Diagice Qcp ™~

for QCD without quarks in a temperature range between 1.57, and 37, and taking
into account only statistical uncertainties. The systematic uncertainties in this esti-
mate remain to be quantified. It is nevertheless intriguing to see the estimate (8.80)
obtained from pioneering lattice calculations landing in the same range as the esti-
mate we came to in the previous paragraph by considering the (also pioneering)
attempts to investigate how the estimate (8.78) for D would change if we could
deform NV = 4 SYM theory so as to turn it into QCD.

In heavy ion collisions, information about the motion of heavy quarks in the
plasma is experimentally accessible via measurements of the semi-leptonic or
hadronic decay products of heavy-flavored hadrons. In general, two classes of
observables can be expected to provide experimental constraints on the Langevin
dynamics of heavy quarks. First, heavy quarks lose energy by drag, as discussed
in Section 8.1. Therefore, the characterization of heavy quark energy loss via
the nuclear modification factor of the observed decay products of heavy-flavored
hadrons can constrain the drag coefficient np and, via (8.33) and (8.77) in the case
where the heavy quark velocity is not large, the diffusion coefficient D. Second,
if D is small enough that on the time scales available in a heavy ion collision the
motion of the heavy quarks is diffusive (i.e. if the heavy quark mean free path is not
so long that the heavy quarks scatter only a few times) then by the time the plasma
hadronizes the heavy quarks will have been picked up (or slowed down) and car-
ried along by the collective flow of the strongly coupled liquid in which they find
themselves. That is, if D is small enough the heavy quarks diffusing in the mov-
ing fluid will end up with the same mean velocity as the fluid itself. This results
in a non-vanishing elliptic flow v, for heavy quarks with transverse momenta of
order their mass or smaller. While there are parton energy loss processes that do
not involve Langevin dynamics (see for instance the radiative parton energy loss
discussed in Section 2.3), the observation of sizable elliptic flow in the decay prod-
ucts of heavy-flavored hadrons [18] provides strong support for the picture that
the dynamics of non-relativistic heavy quarks produced in heavy ion collisions is
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described by a Langevin equation with a small enough D that the diffusing heavy
quarks end up being carried along by the moving fluid.

The qualitative considerations above indicate that measurements of R4 and
v, for the decay products of heavy-flavored hadrons can be used to constrain the
heavy quark diffusion constant D. Many authors are developing models based upon
Langevin dynamics to describe the motion of heavy quarks within the hot expand-
ing fluid produced in heavy ion collisions [628, 785, 464, 784, 32, 138, 410, 706,
656, 658, 41]. Many of these analyses include comparisons to data on isolated elec-
trons, which are most probably produced in the decays of mesons containing either
¢ or b quarks but with which there is no way to separate these two contributions.
The more refined measurements needed to separately identify the decay products
of hadrons containing ¢ and b quarks are the object of intense experimental effort
at the time of writing. There are also significant theoretical uncertainties related to
determining the range of validity of a Langevin analysis. For example, to focus on
heavy quarks whose relative velocity through the hot strongly coupled fluid was
sufficiently small one seeks to study the decay products of heavy-flavored hadrons
at sufficiently small transverse momentum, but a quantitative criterion for what
“sufficiently small” means is missing. Without discussing these model-dependent
uncertainties in more detail, we emphasize here that data from heavy ion colli-
sions show two robust qualitative features: the observed elliptic flow of the decay
products of heavy-flavored hadrons and the heavy quark energy loss measured via
the nuclear modification factor of the same decay products are comparable to the
elliptic flow and nuclear modification factor of light-flavored hadrons. Both these
classes of observations provide strong qualitative support to a picture in which
heavy quarks lose energy efficiently and end up following the flow field of the
strongly coupled plasma. This explains why even given all the uncertainties that
make a quantitative determination difficult at present, the comparisons between
models of Langevin dynamics and heavy ion collision data all typically favor small
values of the diffusion constant D. For example, two studies that compare Langevin
dynamics to RHIC data yield [32]

2—6
D N —— 8.81
QGP@RHIC ~¥ S (8.81)
and [784]
3—-5
D N —. 8.82
QGP@RHIC ~ S (8.82)

These phenomenologically determined values of the diffusion constant are remark-
ably similar to the estimate that the diffusion constant in the quark—gluon plasma of
QCD is one to five times greater than the result obtained in (8.78) for the plasma of
strongly coupled N' = 4 SYM theory and to the estimate (8.80) obtained in lattice
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calculations. So, although there is plenty of room for improvement on all fronts, at
present this story hangs together rather well indeed.

8.3 Disturbance of the plasma induced by an energetic heavy quark

In Sections 8.1 and 8.2 we have analyzed the effects of the strongly coupled plasma
of N'= 4 SYM theory on an energetic heavy quark moving through it, focusing on
how the heavy quark loses energy in Section 8.1 and on the momentum broadening
that it experiences in Section 8.2. In this section, we turn the tables and analyze the
effects of the energetic heavy quark on the medium through which it is propagat-
ing [713,763,245,719,727,708, 244, 246, 709, 363, 811, 399, 810, 288, 403, 408,
400, 289, 655, 652, 401, 648, 657, 649, 423, 147, 148, 650, 410, 651, 149]. From
the point of view of QCD calculations and heavy ion collision phenomenology,
the problem of understanding the response of the medium to an energetic probe
is quite complicated. An energetic particle passing through the medium can excite
the medium on many different wavelengths. Furthermore, even if the medium had
thermalized prior to its interaction with the probe, the disturbance caused by the
probe must drive the medium out of equilibrium, at least close to the probe. And,
non-equilibrium processes are difficult to treat, especially at strong coupling.

Furthermore, in general the formulation of how an energetic heavy quark
interacts with the medium requires detailed information about the microscropic
dynamics that couples the hard probe and the medium, meaning that in almost
all analyses quantum field theory and hydrodynamics must be supplemented by
model-dependent assumptions. There is but one known example where a field
theoretically consistent formulation of heavy quark energy loss in a strongly cou-
pled plasma determines fully and without additional model-dependence how this
hard probe excites the medium. This is the holographic formulation of heavy
quark energy loss via drag that we have discussed in detail in Section 8.1.
That the gauge/gravity correspondence provides such a unique arena for study-
ing plasma excitations induced by hard probes justifies the detailed discussion of
these excitations that we shall present in this section.

At various points in the following, we shall compare plasma disturbances cal-
culated via gauge/gravity duality to hydrodynamic excitations. The latter can be
formulated in a simple model in which the energetic heavy quark is modeled as
a simple line source in the hydrodynamic equations of motion for the fluid. The
model-dependence of this fluid dynamic picture of probe-medium interactions
resides in the details of the source term entering the hydrodynamic equations and,
of course, in the assumption that the hard probe excites only hydrodynamic per-
turbations. There are, however, several reasons for starting our discussion with
this simple model in Section 8.3.1. First, historically, the analysis of jet—-medium
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interactions started with the discussion of such hydrodynamical models. Moreover,
as we have seen throughout this book, the strongly coupled N' = 4 SYM plasma
is an almost perfect fluid. This makes it natural to discuss within a hydrodynamic
picture the perturbations induced by heavy quarks in the strongly coupled N = 4
SYM plasma. In particular, as we shall see in the following, a hydrodynamic model
of jet—medium interactions provides a simple setting in which to disentangle dif-
ferent classes of hydrodynamic perturbations in the fluid. For a hard probe that
propagates along a straight-line trajectory with a velocity v larger than the sound
velocity in the plasma, one expects the excitation of two kinds of hydrodynamic
perturbations. First, there should be sound waves that form a Mach cone, namely a
sound front moving away from the trajectory of the energetic particle at the Mach

angle

cos Oy = % (8.83)
In addition, however, it is reasonable to expect that even a pointlike source in the
hydrodynamic equations should perturb the fluid through which the heavy quark
has moved, stirring it up and/or setting it into motion following behind the quark
that disturbed it. Certainly a macroscopic object moving through a fluid leaves a
wake behind, and to some degree so too should a pointlike heavy quark. As we
shall discuss, both a Mach cone and a wake can be accommodated in the hydro-
dynamical modeling of jet-medium interactions, but hydrodynamic considerations
alone do not determine their relative importance. And, their relative importance
will prove important in assessing the possibility that heavy quark energy loss in
heavy ion collisions may result in observable Mach-cone-like patterns in the final
state hadrons. We shall see that both a Mach cone and a wake are found in the holo-
graphic computation of the response of the A’ = 4 SYM plasma to a heavy quark
probe that we present in Section 8.3.2, and in this context their relative importance
is fully determined. Keeping this destination in mind, the detailed discussion in
Section 8.3.1 of the hydrodynamic framework within which these phenomena in
fluid physics can be pictured easily will be very useful.

8.3.1 Hydrodynamic preliminaries

It is natural to attempt to describe the disturbance of the medium using hydro-
dynamics, with the energetic particle treated as a source for the hydrodynamic
equations. This approach is based on two assumptions. First, one must assume that
the medium itself can be described hydrodynamically. Second, one has to assume
that the non-equilibrium disturbance in the vicinity of the energetic particle relaxes
to some locally equilibrated (but still excited) state after the energetic particle has
passed on a timescale that is short compared to the lifetime of the hydrodynamic
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medium itself. The first assumption is clearly supported by data from heavy ion
collisions at RHIC and the LHC, as discussed in Section 2.2. The second assump-
tion is stronger, and less well justified. Even though, as we saw in Section 2.2, there
is evidence from the data that in heavy ion collisions a hydrodynamic medium in
local thermal equilibrium forms rapidly, after only a short initial thermalization
time, it is not clear a priori that the relaxation time for the disturbance caused by
an energetic quark plowing through this medium is comparably short, particularly
since the density of the medium drops with time. Finally, even if a hydrodynamic
approach to the dynamics of these disturbances is valid, the details of the functional
form of this hydrodynamic source are unknown, since the relaxation process is not
under theoretical control.

Keeping the above difficulties in mind, it is still possible to use the symmetries
of the problem and some physical considerations to make some progress toward
understanding the source for the hydrodynamic equations corresponding to the
disturbance caused by an energetic quark. If the propagating parton is sufficiently
energetic, we may assume that it moves at a fixed velocity; this ansatz forces the
source to be a function of x — vf, with the parton moving in the x-direction. We
may also assume that the source has cylindrical symmetry around the parton direc-
tion. We may also constrain the source by the amount of energy and momentum
that is fed into the plasma, which for the case of the plasma of strongly coupled
N = 4SYM theory we calculated in Section 8.1. In an infinite medium, at late
enough times, all the energy lost by the probe must thermalize and be incorporated
into heating and/or hydrodynamic motion. (This may not be a good approxima-
tion for a very energetic parton propagating through weakly coupled plasma of
finite extent since, as we have discussed in Section 2.3, in this setting the parton
loses energy by the radiation of gluons whose energy and momentum are large
relative to the temperature of the medium, which may escape from the medium
without being thermalized.) Although the caveats above caution against attempt-
ing to draw quantitative conclusions without further physical inputs, the success of
the hydrodynamical description of the medium itself support the conclusion that
there must be some hydrodynamic response to the passage of the energetic particle
through it.

From the point of view of hydrodynamics, the disturbance of the medium
induced by the passage of an energetic probe must be described by adding some
source to the conservation equation:

9, T (x) = J"(x) . (8.84)

As we have stressed above, we do not know the functional form of the source,
since it not only involves the way in which energy is lost by the energetic par-
ticle but also how this energy is thermalized and how it is incorporated into the
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medium. The source will in general depend not only on the position of the quark
but also on its velocity. In this subsection, we will use general considerations valid
in any hydrodynamic medium to constrain the functional form of the source. From
Eq. (8.84) it is clear that the amount of energy—momentum deposited in the plasma
is given by.
dP’
dt

We note as an aside that if the source moves supersonically, one component of its
energy loss is due to the emission of sound waves. This is conventionally known as
sonic drag, and is a part of the energy loss computed in Section 8.1.

We now attempt to characterize the hydrodynamic modes that can be excited in
the plasma due to the deposition of the energy (8.85). We will assume, for simplic-
ity, that the perturbation on the background plasma is small. We will also assume
than the background plasma is static. The modification of the stress tensor

= /d3xJ”(x) : (8.85)

ST =T — Tbl;‘c)kground (8.86)

satisfies a linear equation.

Since in the hydrodynamic limit the stress tensor is characterized by the local
energy density, €, and the three components of the fluid spatial velocity, u', there
are only four independent fields, which can be chosen to be

E=6TY and St =T . (8.87)

Using the hydrodynamic form of the stress tensor, (2.13), all other stress tensor
components can be expressed as a function of these variables. Since we have
assumed that these perturbations are small, all the stress tensor components can
be expanded to first order in the four independent fields (8.87).

In Fourier space, keeping the shear viscosity correction, the linearized form of
Egs. (8.84) for the mode with a wave vector q that has the magnitude g = |q| take
the form

&E+iqS, =J°,

4
3SL +ic2qE + - q°SL = 1.,
3e0+ po
St + —1—¢°S; =Jr. (8.88)
€0 T Po

where S = S1.q/q9 +S7.J = Jrq/q + Jr, L and T refer to longitudinal and trans-
verse relative to the hydrodynamical wave-vector q and &g, po, ¢; = +/dp/de and
n are the energy density, pressure, speed of sound and shear viscosity of the unper-
turbed background plasma. We observe that the longitudinal and transverse modes
are independent. This decomposition is possible since the homogeneous equations
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have a SO(2) symmetry corresponding to rotation around the wave-vector q. The
spin zero (longitudinal) and spin one (transverse) modes correspond to the sound
and diffusion mode respectively. (The spin two mode is a subleading perturbation
in the gradient expansion, since its leading contribution is proportional to veloc-
ity gradients.) After combining the first two equations of Egs. (8.88) and doing a
Fourier transformation, we find

4
(a)2 —cszq2 +i=

(iw S qz) Sy =—Jr. (8.89)
€+ Po

The sound mode (S ) satisfies a wave equation and propagates with the speed of
sound while the diffusion mode (S7), which does not propagate, describes the dif-
fusion of transverse momentum as opposed to wave propagation. We also note
that only the sound mode results in fluctuations of the energy density, while the
diffusion mode involves only momentum densities (the S of Eq. (8.87)). In the
linear approximation that we are using, the excitation of the diffusion mode pro-
duces fluid motion but does not affect the energy density. This result can be further
illustrated by expressing the energy fluctuations in terms of the velocity fields

00 _ l 2
8T _88+2(8+P) bv) " +---. (8.90)

The second term in this expression corresponds to the kinetic energy contribution
of the fluid motion which takes a non-relativistic form due to the small perturbation
approximation. This expression is quadratic in the velocity fluctuation, and thus is
not described in the linearized approximation. The sound mode corresponds to both
compression/rarefaction of the fluid and motion of the fluid; sound waves result in
fluctuations of the energy density as a consequence of the associated compression
and rarefaction. But, the diffusion mode corresponds to fluid motion only and, to
this order, does not affect the energy density.

Solving the linearized hydrodynamic equations (8.88) yields hydrodynamic

fields given by
3. 70 2 70
E(t,%) :/d—‘” @4 1ale 10l = TGT ersiex (g g1
2 2n)} w? —c2q? +ilq*w
d d3 2 ]0 iwJ ) )
sL(r,x)=/—w 99_GIaJ TI0ML _ ortiax, (8.92)
2w 27)3 q 0? — c2q® +iTq%w

do d’q —Jr .
Srix = | 22 —iortigx, 8.93
r(t %) /27r Qn) iw— D2’ (8.93)
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where the sound attenuation length and the diffusion constant are

4

ry=-—"1_ (8.94)
3e0+ po

p=_"1_ (8.95)
&0 + Po

We note in passing that the integral of the longitudinal momentum density over all
space vanishes.

The hydrodynamic solutions (8.91), (8.92) and (8.93) are only of formal value
without any information about the source. And, as we have stressed above, a lot of
nonlinear, non-equilibrium physics goes into determining the source as a function
of the coordinates. Still, we can make some further progress. If we assume that the
energetic quark moves at a constant velocity v for a long time (as would be the case
if the quark is either ultra-relativistic or very heavy) then we expect

JM(w, k) =2n8(w —v-q)Jl(q) . (8.96)

where the factor §(w — v - ) comes from Fourier transforming §(x — vt). We
also note that far away from the source, and at sufficiently small ¢ that we can
neglect any energy scales characteristic of the medium and any internal structure
of the particle moving through the medium, the only possible vectors from which
to construct the source are v and q. In this regime, we may decompose the source as

70(q) = eo(q),
Jo (@ =vgolq) +qgi(q) . (8.97)

Then, inspection of the solutions (8.91), (8.92) and (8.93) together with the obser-
vation that a particle moving with a velocity close to the speed of light loses similar
amounts of energy and momentum, shows that, at least for an ultra-relativistic
probe, non-vanishing values of ey(q) must be linked to non-vanishing values of
go(q). We call this case Scenario 1. However, if the interaction of the probe with
the plasma is such that both gy and e, are zero (or parametrically small compared
to g1), from Eqs. (8.85) and (8.97) and since q g;(q) is a total derivative, one may
mistakenly conclude that the energetic probe has created a disturbance carrying
zero energy and momentum. In this scenario, which we shall call Scenario 2, the
energy and momentum loss are actually quadratic in the fluctuations. These two
scenarios lead to disturbances with different characteristics. In Scenario 2, only the
sound mode is excited while in Scenario 1, both the sound and diffusion mode are
excited. The correct answer for a given energetic probe may lie in between these
two extreme cases.

The phenomenological implications of this analysis depend critically on the
degree to which the diffusion mode is excited. This mode leads to an excess of
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momentum density along the direction of the source which does not propagate out
of the region of deposition, but only diffuses away. Therefore, the diffusion mode
excited by an energetic quark moving through the plasma corresponds to a wake
of moving fluid, trailing behind the quark and moving in the same direction as the
quark. In a heavy ion collision, therefore, the diffusion wake excited by the away-
side energetic quark will become hadrons at A¢ ~ 7, whereas the Mach cone will
become a cone of hadrons with moment at some angle away from A¢ = m. If most
of the energy dumped into the medium goes into the diffusion wake, even if a Mach
cone were produced it would be overwhelmed in the final state, and invisible in the
data. Only in the case in which the diffusion mode is absent (or sufficiently small)
is the formation of a Mach cone potentially visible as a non-trivial correlation in
the data, i.e. in the momenta of the hadrons in the final state.

8.3.2 AdS computation

In Section 8.1 we have computed the amount of energy lost by a heavy quark as it
plows through the strongly coupled ' = 4 SYM theory plasma. Here, we com-
pute the fate of this energy. Remarkably, every one of the difficulties associated
with answering this question in QCD or attempting to do so in a hydrodynamic cal-
culation without microscopic inputs can be addressed for the case of an energetic
heavy quark propagating through the strongly coupled plasma of N' = 4 SYM the-
ory. As in Sections 8.1 and 8.2, we shall assume that the relevant physics is strongly
coupled at all length scales, treating the problem entirely within strongly coupled
N = 4 SYM theory. In this calculation, the AdS/CFT correspondence is used to
determine the stress tensor of the medium, excited by the passing energetic quark,
at all length scales. This dynamical computation will allow us to quantify to what
extent hydrodynamics can be used to describe the response of the strongly coupled
plasma of this theory to the disturbance produced by the energetic quark, as well as
to study the relaxation of the initially far-from-equilibrium disturbance. This cal-
culation applies to quarks with mass M whose velocity respects the bound (8.18).
We note here that the calculation whose results we shall describe in Section 8.6
of the waves of energy produced in the strongly coupled plasma of N' = 4 SYM
theory by the motion of a quark through it along a circular trajectory is done using
similar techniques to those that we shall present in full here, here in the simpler
setting of a quark moving through the plasma along a straight line.

In order to address the fate of the energy lost by a heavy quark plowing through
the strongly coupled plasma of ' = 4 SYM theory, we must determine the stress
tensor of the gauge theory fluid at the boundary that corresponds to the string
(8.9) trailing behind the quark in the bulk. In the dual gravitational theory, this
string modifies the metric of the (4 + 1)-dimensional geometry. That is, it produces
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gravitational waves. The str