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0. Introduction

Itiswell-known that the Appell hypergeometric series Fi(a, b1, ba, ¢; 21, z2) admits
two integral representations of Euler type, one of which isasingleintegral and the
other adoubleintegral

Fl(a7 b17 b27 (oM 21, 22)

o0
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* Thefirst author died on April 15 1995
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where |z1| < 1,|22| < 1,(e,m) = a(a+1)--- (e +m — 1), and

Ci(a,c) = %, Co(b,c) = T

I'(c)
(b1)T(b2)T(c — by — b2)

In order to look into the feature of this identity between these two integrals, we
expresstheidentity as

[ Ut @va@ = Coa [ U @)ezlu),
Aoy () Azz(y)

where
a = (ag,...,0a) = (a,c— a,—by, —bp, b1 + b2 — ¢),
1100 1
1 -1 -z —2 O
=10 1 1 1 1) y=] -0 1 0 -1],
-z 0 0 1 -1

(L0($)7 SR 7L4(x)) = (Sv 1)377 (Lo(y)a e 7L4(y)) = (17 81, Sz)y,

L3(y) La4(y)
Laly) "'y

and, furthermore, Ag; () isthe 1-dimensional simplex bounded by Lo(z) = 0 and
Li(x) = 0; Agza(y) isthe 2-dimensional simplex bounded by Ly(y) = 0, L3(y) =
0 and La(y) = 0; and finally Co1,01 is a constant expressed in terms of «;. We
observe that

p234(y) = dlog

(i) there exists a regular diagonal 5 x 5 matrix H such that = H 'y = 0, in
other words, the configuration [y] of the 5 hyperplanes L;(y) = 0 in the 2-
dimensional projective space P2, which is the equivalence class of the set of
ordered 5 hyperplanes L;(y) = 0in PP? modulo the the projective transforma-
tions, is dual to the configuration [z] of the 5 points L;(z) = 0in P,

(i) for each j, the exponent of L;(z) in U%(x) and L;(y) in U~*(y) differ only
by the sign,

(iii) the multi-index of 1-form gy () (resp. 1-cycle Agi(z)) and that of p34(y)
(resp. Az3a(y)) are complementary.
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By the above observation, we can expect that the identity
[ vt@e@ =cu [ U @) 0
AJ(x> AJL (y)

holds for any multi-indices I = {ip, i1} and J = {jo, 51} (put I+ = {ip,43,i4} =
{0,...,4}\ T and J* = {42,743, 44} = {O,...,4} \ J), where

Lil (.T) B Lz'g, (y) Li4 (y)
Loty PrrW) =aloog 1y M9 Gy

and A ;(z) isthe 1-dimensional simplex bounded by L, () = 0and L;,(z) = 0,
and A ;. (y) isthe 2-dimensional simplex bounded by L;,(y) = 0, Lj,(y) = 0 and
L;,(y) = 0. Note that we need to assign a suitable branch of U*(z) on A;(x),
and that of U~ *(y) on A;.(y) in order to state (0.1) precisely. For the case
J = {0, 1}, there are the standard assignment of branch of U%(z) on A ;(x) and
that of U~%(y) on A ;1 (y), for |z1] < 1and |z2| < 1. Theseyield the identities
between the hypergeometric series and the integrals. For a general multi-index J,
we have neither standard assignments of branches nor expressionsby seriesfor the
integrals. To show (0.1), we must find systematical assignments of branches and
determine the constant C7; depending on the assignments of branches.

More generdly, it isshownin [GGrl] and [Kitl] that the hypergeometric series
of k x [ variables with parameters (as, . . ., ax, b1, . . ., by, ¢) admits k-fold and (-
fold integrals both of Euler type. We can seethat the feature of the identity between
theseintegralsis similar to (i) ~ (iii) asfollows. Put

wr(xz) = dlog

n==k+I,

k l
(ao,...,an+1) = (al,...,ak,c—Zaj,—bl,...,—bl,—c—i—z:bj) ,

anddefinea(k+1) x (n+2)-matrix z and (I +1) x (n+2)-matrix y fromthelinear
forms L;(z) and L;(y) in the k-fold and the [-fold integrals, respectively. Then the
configuration [y] of L;(y) = 0in P! isdual to the configuration [z] of L;(z) = 0
in P* i.e., there exists a regular diagona (n + 2) x (n + 2) matrix H such that
z H 'y = 0, and the identity is expressed as (0.1) for I = J = {0,1,...,k} and
It=J+r={k+1,....,n,n+1}.

In this paper, we show the identity (0.1) for general multi-indices I and J
of cardinality £ + 1. Since the correspondence of the variables in (0.1) is the
duality of the configurations as we saw, it is convenient to define functions of
the configuration [z] of hyperplanesin P* with parameter o = (ao, . .., api1) €
(C\ )"+ satisfying Z?:*(} a; = 0by modifying the left-hand sidein (0.1), where
z = (2ij)o<i<k,0<j<n+1 1S @ (k + 1) x (n + 2) complex matrix such that no
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(k + 1)-minor vanishes. We prepare two kinds of such functions F';(«, [2]) and
F;;(a,[z]) by assigning combinatorially two branches U A+ and Us- of U% on
J J

A y(z). Our main theorem stated strictly is the identity
FI—EJO(O“ [$]) = 0(107 JO)F[E—J&-(_G’ [a:]J‘),

where[z]* isthedual configuration of [z], i.e., the configuration [z] - isrepresented
by an (I + 1) x (n + 2) matrix y of rank (I + 1) suchthat z H 'y = 0, and

[0:{07217?Zk}"]oz{ov.]laajk}a Zka.?k <n;

I and J5- arethe complementsof I and Jo, respectively. The constant ¢(Io, Jo) is
expressed combinatorially in terms of «;. For Io = Jo = {0, ..., k}, thisidentity
reducesto theidentity obtained from the hypergeometric series, which will be seen
in section 5.2.

Weconstruct the (}) x ;) matricesIly (c, [z]) (resp. II; ; (e, [])) by arranging
the functions F;5 («, [z]) lexicographically for the set of multi-indices I and J
satisfying ig = jo = 0 and i, jx < n (resp. 1 < ip, jo and i, = jr = n + 1). We
call them the hypergeometric period matrices of type (k,n). We present our main
theorem as the identity between I1] («, [2]) and 1T, , (—«, [z]1).

In our proof of the main theorem, — it is essential to consider the hypergeomet-
ric period matrices — there are three keys: the wedge formulae for hypergeometric
period matrices studied in [Ter] and [Var], twisted Riemann’s period relations pre-
sented in [CM], and the invariant Gauss—M anin system on the configuration space,
essentially obtained in [Aom], or [AK, Ch 3.8]. Our proof enables us to present
constant ¢(1p, Jo) in terms of geometrical quantities, which are both intersection
numbers of forms and those of cycles.

1. Thehypergeometric period matrices

11. LetM = M(k+1,n+2)bethesetof (k+ 1) x (n-+ 2) complex matrices
such that no (£ + 1)-minor vanishes; for an element = (z;)o<i<k,0<j<n+1 €
M(k+1,n+2), put

z(J) = det(zij, )o<inck>

where J = {j0,71,---,Jk},0 < jo < j1 < -+ < jr < n + 1, denotes a multi-
index. We define M = M(k +1,n+ 2) as

n+1
Mk +1,n+2) = (BF x M(k+1,n+2)\ O{Lj = 0},
j=0

k
Lj = Lj(t,z) = Y _tiwyj,
=0
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where t = (to,t1,...,tx) iS @ homogeneous coordinate system of the complex
projective space P*. Let 11 bethe projection from M to M; thetriple (M, M, 1) is
a C> fiber bundle. We denote the fiber =1 (x) over x by T'(z) and the inclusion
map of T'(z) into M by 7,,: T'(z) — M. ThespaceT'(z) is given by

n+1

) =PF\ J{t € P} | L;(t,z) = O}.
j=0

We define the holomorphic 1-from w® on M by

n+1
w* = w*( Za]dlogL(ta; ( ZaJdloga;( )
j=0
where
n+1
a=(ag,01...,0n41), a; €C\Z, Z a; =0, (1.11)

aj = o+ Fayy,

and J runs over all subsetsof {0, 1,...,n + 1} with cardinality £ + 1; note that
w = —w®. Let £ be the kernel of the connection V¢ = d + w*A and L*(z)
the restriction of £ on T'(z); L* isalocally constant subsheaf of O, of rank 1.
Since each local branch of the multi-valued function

n+1
U =U%t,x) = HL txo‘J/D

D(z) = [J w(1) /6,
J

onasimply connected open set V of M isasolution of V~%u = 0, itisasection of
L~*onV anditsrestrictionon T'(z) isthat of L~*(xz) on YV NT'(z) for x € u(V).

12. ForO<i<n+1 put
Wy = ;(t, x) = dlog L;(t, x) Zdloga;

where J; runs over the multi-indices of cardinality k£ + 1 including theindex ¢; note
that

n+1

w(t, ) =Y otpi(t, x).

1=0
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We define holomorphic k-forms ¢; = ¢, (¢, ) on M by

(,0[(25,:6) = (T/)io - z/)21) JARERRNA (z/)ik—l - d)ik)v

where I = {ig,i1,...,%£},0 < ip < i1 < -+ < i < n+ 1 Let & bethe
C-vector space spanned by the ¢;’s, where we regard &g as C. We can easily show
that the quotient space @,/ (w* A ®,_1) is () -dimensional and that the equivalence
classes of ¢,’s and those of ¢y, . ,’s form different bases of the space, where Io’s
and I,,,1’s are multi-indices of the following type

Ip= {Oaila"'aik}a In—|—1: {ila---aikan—i_l}a
1<in < < <n.

For afixed x € M, it is known that the twisted cohomology groups with
coefficientsin £%(z) survive only at the kth degree and that H* (T (), £%(z)) is
canonically isomorphic to the pull back of ®;/(w® A &y_1) by 75, T'(z) — M,
especially, itsrank is (}}); refer to [AK] and [KN]. Note that the pull-back 7 (¢;)
of ¢; by 7, isgiven by

* _ Lio(tvx) Lik_l(tax)
74 (or) = dilog Lo A---Adlog Tt

(1.21)
1.3.  Since the direct image sheaf ., (L~%) of £L~% by the smooth map x is
locally constant, the sheaf 4, (M, p.(£L~%)) over M associated to the presheaf
Vo= H,(V,p(£L7%)) whose stalk on z is the pth twisted homology group
H,(T(x), L~%(x)) with coefficients in L~%(x), is aso locally constant. For any
x € M, itisknown that the twisted homology groups with coefficientsin £~(x)
survive only at the kth degree and that the rank of Hy(T'(z), £~ %(x)) is (}): see
[1K1], [IK2] and [KN]. Let ¢ be a fixed element of M given by real numbers
O0<Co<@<--<(pas

1 1 ... 1 0
o ¢ ... G O

c=g=| & & - & O |lecMErint2).
¢ & ... o1

For each multi-index J = {j0,71,.--,Jk},0<jo < j1 < --- < Jjr <n+1 we

will define, in section 3.2, an element v () (resp. v () of Hy,(T'(¢), L7%(¢))

asapar (A},US,) (resp. (A7,US_)) of thereal k-dimensional surface A7 in
J

J

https://doi.org/10.1023/A:1000297607512 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000297607512

HYPERGEOMETRIC FUNCTIONS AND INVARIANT GAUSS-MANIN SYSTEMS 83

T(¢) andthebranch U, of U* on A7 (resp. A7 andUS ). Theyj (a)'saswell
J J
as 7}n+1(a)’s form abasis, where the multi-indices Jo'sand J,, 1 1's are of type

JOZ {Oajla"'ajk}v Jn-l-l: {jlv"'vjk7n+1}a
1<ji < < jp <.

Thelocal triviality of Hy (M, 1. (£~%)) enablesusto define elements v («v, x)
in Hy,(T(z), £~%(x)) on ageneral = € M asthe continuation of v} () along a
path z(s) from¢ tox in M

z(s): [0,1] = M, z(0) = ¢, z(1) = z;

note that they depend on the choice of z(s).

1.4. Theduality of thespaces H*(T'(x), £*(x)) and Hy,(T (z), £L~%(z)) induces
thenatural pairing between 7%(¢;) and ff («, ), which definesthe hypergeometric
functions F;!, (o, z) and F; (o, z) on M (k + 1,n + 2)

Fij(a,z) = Fiy(a,2(s)) = (73 (1), 75 (@ @)

= ) UA§(I)T$ (er1), (1.4.2)

Whereﬁ (cr, z)’saredefined by the path (s) from ¢ to z in M and are represented
by (A% (), g§(x)). SinceyF («v, ) depend on the choice of z(s), F;5 (a, z) are
multi-valued holomorphic functions on M’; more precisely, they are holomorphic
functions on the universal covering M (k + 1,n + 1) = M of M with the base
point €.

DEFINITION 1.4.1.  The () x (%) matrices
IIg (e, ) = (Fy (e, %)) 15,0 @NC

H;+l(a7 T) = (FI;HJTLH(av x))In+1:Jn+l
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are called the hypergeometric period matrices of type (k,n) with parameter «,
where the multi-indices

Io=1{0,i1, ... ix},  Ins1={i1,...,ix,n+1},
I<nn< - < <n,

Jo={0,j1,-- -, ik}, Jnyr1={j1,--,Jk,n + 1},
1<in<--<jp<m,

are arranged lexicographically.

15.  Wedefineactionsof thegroup G = GL41(C) x (C*)" 2 on M (k+1, n+2)
and its universal covering G on M (k + 1,n + 2) asfollows

(g,7): z+— g-z-dag(ro,..., n+1),

(9(s),r(s)): 2(s) = gar(s) = g(s) - 2(s) - diag(ro(s), - - -, rn+1(s)),
where

2(s): 0,1 = M, 2(0)=¢, «(1) =g,

9(): [0,1] - GLr41(Q),  9(0) = Lpsz, g(1) =g,

r(s): [0,1] = (C*)™*2, 7(0) = (L,...,1), r(1)=r=(ro,..., ns1),

arepathsfrom¢ toz in M, from 1;,1 to g in GL;1(C), and from (1,...,1) tor
in (C*)"+1, respectively. We call the space

X=Xk1)=MEk+1n+2)/G l=n—k

the configuration space of ordered & + [ + 2 hyperplaneson P* in general position
and denote by [z] the element of X represented by € M. By the action of G, any
element x € M can be transformed into the following form

(—1)* -1 0
ot 1 2] , (15.1)
1 1 ... 1 1

z[z] isa(k x [)-matrix of which (p 4+ 1, ¢ — k) component of z[z] is

o (JNIPY g ( JE\Ik)
g;(Jk\jp>:I;<J‘1\jk>

1<p+1<k1l<q—k<l),
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where

J=4{jos- gk} ={01,... . k—Ln+1},  JV =JU{q}\ {p}

Indeed, Cramer’s formulaimpliesthat the (p, ¢) component z;, , of 2/ = z:(J) !z

is
5jp,lI7 qc J,
k—p—1z(J7VP)
l‘;,q = (_1) P IITu q ¢ J7 p< k?
Ja\i .
o, add, p=k;
by acting
. -1 -1 1
dlag<$, N >
0,k k—1k Tkk
- O ) )
X ((—1)k lLU,O,k,...,(—l) :E;C_l,k,l, 7 PR 7$;€,k>
L k+1 Lhon

on z’, we have (1.5.1). Note that each component of z[z] is invariant under the
action of G.

Thenormal form (1.5.1) impliesthat X isa (k x [)-dimensional affine manifold.
Since the subgroup G' = {(g9,7) € G | r,41 = 1} actsfreely on M and M is
included in the G'-orbit of the set of normal forms (1.5.1), we have

M(k+1n+2) ~X(ki) xG.
Noting that the universal covering M isisomorphicto X x G', we have

M/G' ~ X. (1.5.2)
LEMMA 1.5.1. Thefunctions F («, ) areinvariant under the action of G

Fij(a,gar(s)) = Fij (o, a(s)).

Proof. It issufficient to prove

F[i‘](aug " T dlag(r)) = FIiJ(OéJx)a
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for (g,) € G near to the unity. We have
D(g -« - diag(r))

= [ (det(g) - () - (rjp ... 73,))/ ()
J

= det(g)ZJaJ/(Z)D(x) H TiEJiOéJi/(k) = D(x) H r?j.

Since L;(t,gx) = L;(tg,x), the action of g inducesthemap g: T'(g-z) >t —
tg € T'(x). We have

9(AF (g 7)) = AT (x),

S gy (097 2) = 0" (U (2)),

Taa(@1(t, g x)) = g (75 (01 (t, 2))),

which imply

Lo USstam0- 20t 2
= A% (@) A% (2) (t,z)7; (@1 (¢, 7)),
Fij(,g - 7) = Fij(o,z).
Since T (x) = T(x - diag(r)), A% (z) isinvariant under the action of r. We have
K§($) (t,x - diag(r)) = K§($) (t,z),
7. (pr(t, @ - diag(r))) = 7 (pr (¢, x)),
which imply
FE(a,z - diag(r)) = Fi5(a,z). m

This lemma together with (1.5.2) shows that the functions F;5 (o, =) are defined
on X . When we regard them as multi-valued functions on the configuration space
X, we denote them by Ff,(a, [z]) and the hypergeometric period matrices by
11§ (e, [2]) and 11, 4 (ev, [z]). Refer to [MSTY] for the monodromy behavior of
the hypergeometric period matrices defined on X.
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2. Theduality of the configuration spaces

2.1. Foreveryz € M(k+1,n+ 2)thereexistsauniquez® € M(l+1,n+ 2)
modulo GL;1(C) suchthat = ‘z* = O. Moreover, we have

(« - diag(r)) ‘(«* - diag(r) *) = z 'z* = O,
r=(ro,..., 1) € (C)"2

We give a bijective map L asfollows.
DEFINITION 2.1.1. Themap L: X(k,l) — X (I, k) isdefined by

1 X(k,0) 3 [2] = [2]F = [2*] € X(I, k),
where
vz =0, zeMk+1,n+2), z*eMl+Ln+2).
Note that such z* is given by
o = (rptert, —Lip)
for
= (xr,z;1), x5 € GlLgi1(C), I=H{0,...,k}.
The straightforward cal culation shows the following lemma.

LEMMA 2.1.2. For any (k x [)-matrix z, we have

z, diag((-1)", (-1)"*,..., (-1)% (=17 'y = O,

where
(—1)* -1 0
T (—1)t . o |
1 1 .. 1 1
(21.2)
1 11 (1)
0 (-1)° (1)~
Yz = _tz
0 (-1t (-
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Recall that the base point &, € M (k + 1,n + 2) isgiven by

1 1 -~ 1 0
o ¢ - ¢ O

= G & - & 0 |leMEtrLnt2).
ST G |

We definea (k x [)-matrix as

Ce=Co_ e k=G

Ck+1—Co ¢n—Co

Ck—Chk—1 L Ce—Chk—1
Ck+1—Ck—1 Cn—Cr—1

OKi<k<j<n

LEMMA 2.1.3. Theeement{, € M(k + 1,n + 2) istransformedinto ., ¢, in
(2.1.1) by theactionsof GL,,1(R) and (Rso)"t?; theelement§; € M (I+1,n+2)
istransformedintoy, ¢, in(2.1.1) bytheactionsof GL ;1 (R) and (R>0)"*2. Hence
we have

k] = (& (2.1.2)

Proof. Use the Vandermonde determinant formula and the argument leading
the normal form (1.5.1). O

3. Themain theorem

3.1. Weintroduce some notationsin order to state our main theorem. Let E;;, be
the (7) x (};) matrix

Ej = ((_1)(l(l+l>/2)+p1+---+pz5P 1) P
where multi-indices P = {p1,...,m},1 < p1 < --- < pp < nand J =
{J1,-- 1< < < Jr <n are arranged lexicographically, J+ =

{1,...,n}\ J and dp,yL is Kronecker's symbol. Note that Ej is anti-diagonal.
For an element g = (gpq) € GL,,(C), put

/\lg = (det(gpq)peP,qu)PQ € GL(?;) ((C)a
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where the multi-indices P and () of cardinality [ are arranged lexicographically.
Note that

A(g1g2) = (AN'g1)(A'g2),  Algrt = (Algr)™?

for g1, 92 € GL,(C).
The following is our main theorem.

THEOREM 3.1.1. (Duality for hypergeometric period matrices)

11§ (a, [z]) = V() "Eg (A Tep(e)™t)

’ e . (3.1.1)
XL (—a, [2]5) (AL () ™) B,
where
V(a) _ emr\/—_loao e(n—l)ﬂ\/—_loal o eﬂ\/—_lan,l F(ao)r(al) e F(an)
[(—an+t1) ’
Ich(a) :dl® (27r _17 271— _1""727r _1> )
—a1 —ao —ay,
_ 2V —Laotar) grv—1(ao+aitaz) 2V —Lao+-+an)
Ih(a):dlw ) [ARRS )
eZﬂﬁal -1 eZWJTlaz -1 ezﬂﬂan -1

and the path from [£(1)] to [z]* defining IT,,, , (—«, [2]*) is the L-image of the
path defining 11§ («, [z]).

Remark 3.1.2. Each component of (3.1.1) says

Fy,

oJo(a’ [.’E]) = C(Io, JO)FI}J({-(_O" [a:]J‘)

for aconstant ¢(1p, Jo) € C*.
3.2. Wecongtruct v5 () € Hg(T (&), L %(éx)) for J = {jo, ..., jx}. Since

O<k<ALk
we assign arg(¢,(I)) = Ofor every I. Let A ; bethe simplex in P* defined by
0< _ij,l(tagk)/LjA (t, &) < oo, 1< ALK,
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itwill turn out inthe next sectionthat A ; andthe hyperplane L; (¢, £,) = Ointersect
for ja—1 < j < jx. Weassignargumentsof L; /L, 1’'son A;NT(&;) asfollows

kﬂ'J .7 < j07
Li(tér) SN
arg n+1(tk§k) Oa J > ks ' '
(k= Xm, j=ix
L;(,&k
argp s (3.2.2)

B { (k— X+ 1w, forpoints (—1)¥=*(L;/Ly+1) <O,
(k— X)m, for points (—1)*"*(L;/Ly41) > 0,
-1 <7 <Jx
which fix the choice of branch U, (t,&) on Ay N T'(&). We define vj () as
the pair of Ay NT'(&) and the branch Ux (t, &) of U by the above assignment.
Similarly, we define v («) as the pair of AJ NT'(¢) and the branch U _ (¢, {)

of U by the assignment of the argument of L (¢, )/ Lyn41(t, §) with thé minus
sign of (3.2.2).

3.3, Itisnot so easy to see the structure of ¥ () € Hy(T(&x), L~%(&1)) for
k # 1. Here we give the another description of ﬁ () for ageneral k. Let ¢ be
the map

ck > (8(1),...,8(k)) — (0ky...,01) € (Ck,

where o isthe jth fundamental symmetric polynomial of s(;’s, i.e.,

ZE B DI AP (hS
1ig << <k
We can regard ¢, as amap from (P1)* = ]P% 1y X X IP(lk) to P*. By using affine
coordinates s ;) = (fo/t1)(;) on P,y and (to/t, . .- ,tk_l/tk) on P*, the pull-back
of L;j(t,&k)/Ln+1(t, &) by v, is easily obtained as follows

*< L;i((to, - - -, tk), &) >

' Ln+1((t07"'7tk)7§k)

k k
= (Z(n/%)(}) | (CORIY)

=0 1=1

1 Lo, t) @), &)
i on.a (339
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Then ¢ inducesthe map from T'(£1) 1) X - .. X T'(€1) (k) t0 T'(€x)- Though the map
v isof k! : 1, the restriction of +;, on A{]O iy X e >< Agj,. 1. isbijective for
J = {jo, ..., Jr} Since each intersection A{jn—l:jn} NA 1<k <ALE)
is empty. Let us show

{Ia=19xr

v7 (@) = (o (@@ % x v (@),

i.e.,
AJ N T(fk) = Lk(A{jo,jl} X o+ X A{jm—l;jn})’ (332)
e ((Foy -5 tk)s Ek) = ths H Ui+ ((to,t1)(n),€2) | - (3.3.9)
J {J,\ I}

Because of (3.2.1), we have

k
= [J &)/ = ( [I &l j)etodin ) — D(&1)".
J

0<i<j<n+1

Recall that the argument of L;(¢,&1)/ Lu+1(t, €1) onthesimplex Ay, 4 defin-

ing the branch UX+ is given by
{J,\ 1in}
T, .7 < j)\fla
L;(t, 1) s
a'r T L AN 07 2 )
ILnat.6) A

mor0, ja-1<j <ja

By summing up the valuesfor 1 < A < k&, we have the argument of

L ( b Lj((t07tl) fl) > . Lj((to,...,tk),fk)
i Inia((to, 1)), 60) )~ Loga((to, - ), €)

on w(Bijogay X -+ X Ay, jy), which coincides with that of
Lj(t,&)/Lynya(t, &) on Ay in (322) This implies (3.3.2) and (3.3.3). Now
that the assignment in (3.2.2) is justified, we can see that A ; and the hyperplane

L;(t,&) = Ointersect for j_1 < j < jx.

4, Proof of the main theorem

4.1. The following proposition was essentially proved in [Ter]; since the choice
of our forms and cyclesis distinct from that in [Ter], aproof shall be attached.
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PROPOSITION 4.1.1. (Wedge formulae for period matrices)
/\ng (Oé, fl) = Hg (Oé, fk)a

AL g (0, €2) = I, (o 6),
in particular,
A" (e, €1) = I1g (0, &) = V (ev).
Proof. By (3.3.1), we have

i (pr((tos - -+ tk), €k))

k p
= (Z @1((750,751)@)751)) ARERERA (Z Sok((t07tl)()\)7§1)>
A1

A=1

= > 8ign(<) (pe(a) (o, t1) (1), €1) A -+ A oy ((Eos 1) (k) 1)),

cES

where &, is the symmetric group of degree k. This identity and (3.3.2), (3.3.3)
yield

/\ng (Oé, 51) = Hg (Oé, gk)
By Lemma2.1.3, and (3.2.2), we can easily obtain
Ha“(a,fn) =V(a). O

This proposition is deeply related to the isomorphisms between
N HMT(61),£2(&)) and H*(T(¢), £%(&)) and between A"Hi(T (1),
L7%(&1)) and Hy (T (&), L7%(&g)) studied in [IK1] and [IK2].

4.2. Theintegral (1.4.1) does not converge in the usual sense for a general para-
meter «.. In order that it makes sense, we introduce the notion of the regularization
of 7 (). In this section we explicitly give the regularization 57 («) of v () for
k = 1. Deform Ay, J = {jo,j1}, into AT and A as shown in the following
figure.

The assignments of arg(L;(t,&1)/ Ln+1(t,£1)) on A:} are naturally defined by
the deformations, these induce the branches U g? on A¥; note that the assignment

on A} is determined by (3.2.2) and that on A7 is determined by the minus sign
of (3.2.2). For asufficiently small positive number ¢, let C;(j1), A = 0,1, be the
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(_Ljo/le) Space

AJ
/ N \
0 - -
8—\\\\\\\\\\\\_.____; _____,——4///’/////,1/8
=
AJ
Figure4.2.1.
circles

Cy(jo): —Ljo/Lj =c€’/~ ¥, 0<s<2m,
Cy(j1): —Lj,/Lj, =< eV, 0<s<2m

We define branches Ugi on C;(jx) by the continuations of the branches Uls-
J J

(4x)
We definethe regularizations47 (c) of v7 (c) by thefollowing formal summations

1
~+ _ . «@ + «
Yy (a) - Cio — 1(OJ(JO)7 Ucf(jo)) + (Ajv Af)

1
¢y —1

(OJ(jl)a Ug}(jl))’ (422)

where ¢; = exp(2rv/—1a;).
For agenera k, we define 77 () by

Y7 (@) = (o (@@ X - X5 @ w)-

Thevalues(r{ (1), ﬁ («v)) arewell-defined under the condition (1.1.1), moreover
the Cauchy integral theorem implies that they are independent of the choice of the
small positivenumber e and that they coincidewith (r{, (¢r), fﬁ (o)) whenit exists
in the classical sense.

4.3. We compute the intersection number of ﬁ;g(a) € Hqi(T(&1),L7%(&1))

and y,  (—a) € Hi(T(&1),L£%(61)) (o = {0,i}, Jny1 = {j,n + 1}), which
is defined as the summation of the products of the topological intersection number
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of chainsand the branches U and U~ at every intersection point, refer to [KY 1]
for details. Note that, if 7 # j, then the topological chains defining &Z)(a) and

¥7,,,(—) donotintersect and that if i = ; then there is one intersection point on
the chain C}, (i), where we assumethat the small positive number ¢ for y;,  (—a)
is much smaller than that for %Z («); the following figure helps us to understand
the situation.

—Lo/ Ly, 41 Space

Figure 4.3.1.

By considering the coefficient of C'r, (i) and the signature and branches U7, 0 and
o

U;? at the intersection point, the intersection number is given by
‘]n+l
e27n/j(ag+~~~+aﬂ
5+ — 5
Fio(@): 77,4, (=) = 055 rvV—la; _ 1’

IO = {O,Z}, JTH-l = {.77” + 1}7
where ¢;; is Kronecker's symbol. The regularity of the intersection matrix
In(a) = ((715(@), 75, ,, (—0))1<ij<n

shows that the cycles ?ng(a)’s and 7, . (—a)'s form bases of Hi(T'(¢1),
L7%(&1)) and Hy(T'(€1), £%(£1)), respectively.
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The first theorem in [CM] implies that the intersection number of the 1-forms
78, (p1,) € 74, (@1/Cw®) and 7¢, (p,,,,) € T4, (P1/Cw™) is

(76, (P10)s 7, (1, 14)) = i ———

Ip= {O,Z}, Jn-l-l = {Jan + 1}

The regularity of the intersection matrix

Ien(a) = (78, (p10)s T8, (01, 41)))1<isi<n

showsthat the 1-forms ¢, (,)'sand 7¢, (., ,,)'sform bases of HYT(&1), £Y(&1))
and HY(T'(¢1), £7%(£1)), respectively.
The second theorem in [CM] implies the following proposition.

PROPOSITION 4.3.1. (Thetwisted Riemann’s period relation for £ = 1)

I, 4 (—a, [Ea]) I () 7t IO (ev, [€]) = Len(e). (4.3.1)

We give akey lemmato prove our main theorem.

LEMMA 4.3.2. Theidentity (3.1.1) holdsfor the point [z] = [¢].
Proof. We have proved [¢;]+ = [§] in Lemma 2.1.3. By taking the /-fold
wedge product of (4.3.1), we have

(A" e (@) ) (AL g (= [Ea])) (A n () )
= "(N'TIg (e [€a]) 7
The Laplace expansion formula yields that
(AT (o [Ea])

1 .
- det(Hé—(a, [fl])) Elk(/\kﬂg (Oé, [51])) tE’”€7

Proposition 4.1.1 implies our claim. O

4.4. We present the differential equation associated to 11§ («; z).

PROPOSITION 4.4.1. (The invariant Gauss-Manin system). The hypergeometric
period matrix IT§ («; z) satisfies the following differential equation

dITg (o; 2) = OF (]I (cv; ). (4.4.1)
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The connection form O [z] = (6% ;) 1,4, IS given by

9J0J0 Z OJMC“Og Tl+1\]n
Jx€Jo < >
Ja\0
+ Y «j, dlog /2~ 2o ) %Zajdloga;(J),
N/ z(Jo) (k) J
. _ (J]z\\)n) (Jn-l-l\O)
* \jr — —j.A ].H —1)]A7H7)‘+kaj legaj 0 70 —,
JoJo* " lix — Jil A $<J8A\O>$<Jg+l\]“>

07,5, = 0 otherwise,

where J runs over the multi-indices of cardinality & + 1 and J{*V/* is the multi-
index correspondingto the set (Jo \ {jix}) U {5z}, jix € Jo = {0, 1, .-k}, jr €
J5 = {jk+1,---»7n,n + 1}. The connection form ©§[z] is invariant under the
action of GL;,1(C) x (C*)""2onz € M(k+ 1,n + 2).

Proof. By using the results in [Aom] or [AK] Ch. 3.8, we can show that the
hypergeometric period matrix satisfies the system of differential equation stated
in the proposition. We have only to show that the invariance of 1§ («; z), the
invarianceisclear for 90‘ Jrun® Inorder to seetheinvariance of 65, , we eliminate
a0 from 69, by Z” 0 aj = 0 and see the coefficient of «; in the expression of

.Jo- Thenwe have

w(Jg OO 1, 2 (lo)
a; dl
Z; T O L, o)

(6]
0J0Jo -

Z o diog 28 2 T a(lo)
Ve oW, «(n)

The homogeneity of the terms in the logarithmic differentials above shows the
desired invariance. |

The connection form ©§ ] is called the Gauss-Manin connection on the configu-
ration space X (k, () for the basis ¢;,'s.

EXAMPLE 1. Type(1,2),k=1=1n=21{0,1,2,3}.

x(13)x(02)

«
60(01; 0L; ) = = dlog 2(03)z(12)
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z(12)z(03) a3 x(13)x(02)
+ dlog o023 T 2 9199 o0z (23
00(02;02; o) = % dlog %
a 2(23)2(01) a3 x(23)2:(01)
2 4109 ez T2 919 0oy
- ) — 2(02)z(13)
60(01;02; o) = apdlog m,
z(01)x(23)
00(02;01; ) = a1 dlogm.
EXAMPLE 2. Type (1,3),k = 1,1 = 2,n = 3,{0,1,2,3,4}. We give only
00(01; 01; cv)
« z(14)%2(02) (03
00(0L; 0L, o) = ?l dlog x204>2x§12;x213;
2(12)22(03)z(04)
5 diog 2(01)22(23)2(24)
a3 2(13)%2(02)2(04)
3 4109 012, (230 (32)
2(14)%2(02)2(03)
5 dlog 2(01)22(28)2(38)

4.5. A similar calculation asin the proof of Proposition 4.4.1 leads to a system of
differential equationsfor I, ;(—a,y),y € M(l +1,n + 2).

LEMMA 4.5.1. e have
dil 1 (~ay) = 6,5 WL (—as y).

The connectionform©, % [y] = (057, . ) P11, ISTIVEN DY

0\1’!/
_ y(P, +1>
GPnOéJrlanrl = Z p, dlog (;L\n+l
Pv Epn+1 (Pn—l—l >
(Pn+1>

+ 2 o, dlog—TThT
= Tt
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1

+7 (> «p) dlogy(P)
()
- % > adlog yo<\nT1rl(>) Llg, v{6%)
U p€Pni1 y(P, Y HQn+l Y(Qn+1)
(D)
T S0
Vopept y(Poi1 >l HQn+1y<Qn+l>
O\n+1 v \pu
f— \ :_M(_l)Pv—V—v-Hap leg y< n-\i-l ) (Pg—l—\].p)
Pn+1P71:-1ij-lpV |p’U - pl/| v (Pgi}n—l_l)y(Pg}»p{)
0p 10, =0 otherwise,

where P, 1 and 0,11 are multi-indices of type
Pn+l:{p07"'7pl7n+1} O<p0<<pl<n+17
Qui1=1q0,...,q,n+1} 0<q@<---<qg<n+l,

and Pgi\l”” isthe multi-index correspondingto the set (P, 1\ {p, }) U{pv},pv €

Pn+1 - {pla"'apbn + 1}7Pv € P7i_+1 = {07pl+17"'7pn} The 0n+1[ ] is
invariant under the action of GL;,1(C) x (C*)"*2; hence it induces a system
differential equations on the configuration space X (I, k).

REMARK 4.5.2. The connection form ©, %, [y] is obtained from ©F|xz] just by
replacing

a——a, k=l z—y, J—=P,
theindex 0 — theindex n + 1.

4.6. Thefollowing proposition concludes our proof of the main theorem.
PROPOSITION 4.6.1. Theright-hand side of (3.1.1) satisfiesthe system (4.4.1).
Proof. Sincewe have
d(g1ll, (=, 9)g2) = g1 dll, 1 (—,y)g2
= 910, 4yl 1 (= y)g2
= (010, 1[ylgr D) (L, 1 (—er,y)g2),
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for g1,92 € GL(7) (C), the connection form associated to the right hand side of
(3.1.1) isthe pull-back of

B (A Ien () ™10, 4 [y (A Lo (@) B

by the map L: [z] — [z]* = [y]. By virtue of Lemma 2.1.2, we have only to
substitute y(P) into z:(P+) in order to get the pull-back L* (6, % [y]) of ©, % [y]
by L. Weput P = J+ and

Poi1={p1,---spv,-..,p,n+ 1}
= {ktts o dns e dkrn+ 1 = Jg, py =g,
P =1{0,pis1,- - Pus - Pk}
=1{0,51,- -+ Jrs- -1 Jk} = Jo,  Pv = Jis
note that

pv € Ppi1 ey €Jg, pu € Py & js € Jo,

v=A—k, v=r+I,

(Poa)t = Jo, (BT =000 (Bl = R,
(Pgi\ln-i'l) — Jg+1\jn’(Pgi}pv)L — Jg)'/\\jn’
and that
dlog — 2170 _ > dlog =0
@odiog z(J g+1\J~ Za? 9 2(J (T)L+l\]n>'
We have
. o <JJA\0>
L (epn+1Pn+1): Z RN dloqw
jAEJ'L ( 0 )
z(Jo)
+ Z ajndlogw
]nEJO
1
+o > (> —a;)dlogz(Ph)
(l) P jEPL

https://doi.org/10.1023/A:1000297607512 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000297607512

100 MICHITAKE KITA AND KEIJ MATSUMOTO

= > aj, dlog 0

Ix€Jo ( +1\JN>
(JJ/\\0>

+ > aj, dlog o)

JnEJF

—%Z (Zog) dlogz(J),

J jeJ

_ Je = Ja ok~ Akt
_]_* 0 a = — —1 Jn—Hk

( Pn+1P£’1}””) s — 4l
2y (TP

xaj, dlog . —,
! 2Ty ()

(ng+1\o>x<JéA\J~>
2(Jg VI (IO

- —lj;\ :jﬁ (—1)inrAtkq, dlog
K

By taking the conjugate, we see
"Ein(N Ien(@) ) L7 (0, $1ly]) (A Len () By,

L (0p,

Pry1Pry

,) isthe (Jo, Jo)-component and L* (6 Ppu\pu) is multiplied

P”+1 n+1
( 11 (—1)”ap) II rey?
pEPn 41 pepsi}py
= (D" oy, fay, = (<1 ey, fa,
and the (Jo, Jgk\j *)-component, which are equal to those of ©F|z]. O

The Cauchy fundamental theorem together with Lemma 4.3.2 and Proposition
4.6.1 proves our main theorem.

5. Examples

5.1. We recal the definition of the hypergeometric series F'(a, b, c; z) of type
(k, 1)

m;|) [1 J l(bJ
;m|)m!

.)Zm

k
F(a,b,c;z) = Z [Tz (as;

™ (¢
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where m = (mn;;) runs over the set 7%/ and
l k
t
|mi|:Zmija |mj|:Zmija
j=1 i=1
|m| = Z mij, m! = H mij!,
1<igk, 1<l 1<igk, 1<l
k l
a=(a,...,a;) € C", b= (by,...,b) €C, c€C—Zc,
(c
z = (z;) isan element of C*! near to 0 and

m o __ mij
o= 1L =

1<i<h, 1<l

m|) =c(c+1)...(c+|m|]—1);

Notethat F'(a, b, ¢; z) isthe Gauss hypergeometric series

when (k,1) = (1,1), and that it is the Appell hypergeometric series F;

o0

(a; m1+m2) (B, m1) (B2m2) 1y
Z (’y;m1+m2)m1!m2! vy

my,mp=0

when (k, 1) = (1, 2). Itisshown in [Kit1] that under the condition that any of

k [
i, C — Zai,bi,c— ij
=1 j=1

isnot integral, F'(a, b, ¢; z) admits two integral representations of Euler type

. _ F(C) u(s. 2 k s
Flab,6%) = [ e a9
= I(c) u”(s, )l (s 511
e T TG o020 61
where s = (so,...,sp-1),5" = (s1,...,5)),

k k c—Xa;
u®(s,z) = (H 8i—1‘“> (1 - Z 3i—1>
i=1 =1
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! ! c—Xb;
() (xs)
j=1 j=1

a = (ag, ..., ant1)

[
= ) Ak, € Zau_ ,...,-bl,-C-’-ij )
=1
dsg A --- Adsg_1
(I s0) (1= T 1)’

dsi A--- Ads)
(H] 13 )(1 Z] 13)

o (s) =

Pl(s") =
k-1

AF = {SG]Rk | 80,...,8k1,1—28i>0},
1=0

[
Al = {s'elRil |3'l,...,32,1—23;->0}
j=1

and the branch u®(s,z) on A¥ and u=%(s'z) on A! are defined by assigning
arguments near to zero for all linear forms of s in u®(s, z) on A¥ and for those of
s'inu™%(s'z) on Al. Theidentity (5.1.1) implies that

F(C B b)F(b) ! a c—a
F(c—a)F(a)/o s0"(1 = o)
— Z8 _bidso
x(1 0) s0(1— so)
_ /l(l—zs ) aslb(l_sl)c—b ds?l.
- 0 1 1 1 S&(l_sa)’
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when (k,1) = (1, 1), and that

L(c—b1—b)T(b))T(b2) [* c—a
T(c—a)l(a) /o s0"(1 = %0)

by dso

X (1 — Z]_So)ibl(l — 2230)7 m

/ IN—a b1 _rb2
:/Az(l—zlsl—zzsz) “s1 sy

dsi A ds)

% 1_ S, —S, c—b1—by
ST S

when (k,1) = (1, 2).

103

5.2. Weshow theidentity (5.1.1) betweenthe k-fold integral and the/-fold integral
in the previous section by picking up the top-left component of (3.1.1) in our main
theorem. Takea (k x [)-matrix z near to z[¢x]. Our main theorem and Lemma2.1.2

says
Fit (e, [2.]) = e(Io, Do) Fy 11 (—a [y:)),
where
Iy={0,1,...,k}, Iy ={k+1,...,n,n+1},

z, andy, arein (2.1.1) and

(—ag11) - (—ap) 1
C(Io, IO) = V(Oé) IE;;\/—_l)l 2mv/—T(ao++ay)

l e27l'\/*_1ak+j -1
<1 -1
i1 2V —1(I+1—j)ak;

By using the formula

B 2ryv/—1 gv—1le

F(C)F(_C) —c e27l'\/——10 _ 17

the constant ¢(Ip, Ip) can be written as

I'ag) ... T(ay)
I'(—akt1) .- T(—anq1)

C(Io, Io) =
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« H e v/ —1(i—k+1)a H e v/ —1(1+1— ])ak+] (522)
=0 j=1
Put (So, - 75k—1) = (to/tk, - 7tk—1/tk)- Since
" (s) =75 (1) (t22),  AF = Ag(z)

andtheargument of (—1)*~%s; = L;(t,z,)/Ln41(t,z,)(0 < i < k—1) isassigned
near to (k — i) on A¥, we have

[ a2

k
= (H eW—_l(’“—iWi) - D(z,) - Fibp (o, [22)). (5.2.3)

=0
Put (s%,...,s)) == (t1/to, ..., t/to) and notethat
') =i (o) (bys), A=A (y).
Since the argument of
(—1) "t = Ligj(t,y2) / Li(t,y2)

Ly (t, yz)/Ln—I—l(ta Yz)

isassigned near to (j — 1)m andthat of 1 — s} —--- — s = Ly 41(t,y.) /Li (¢, y2)
is assigned near to I7 on A!, we have

[ e e )

I+1
= (ﬁ e_W\/—_l(j—l)ak+j> - D(y,) 'FI}IOL(_O" [y.])- (5.2.4)

i=1

Since D(z.) = D(y.) and Y75 aj = 0, we have

/Ak //Al (s', 2)¢' (s")
(o) )
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I+1
[Te™/ 10| Fr(—a, )
Jj=1 o 1o
k I+1
= 0(107 IO) H eﬂ—\/i_l(kfi)ai H eﬂ\/f_l(jfl)akurj

[(ao) ... T'(ay)
I(—agy1) .. - D(—ans1)

Hence, we conclude the argument by proving the identity (0.1) in arigorous way.
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