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Abstract. The general relativistic definition of astrometric measurement needs an appropriate
use of the concept of reference frame, which should then be linked to the conventions of the
IAU Resolutions (Soffel et al., 2003), which fix the celestial coordinate system. A consistent
definition of the astrometric observables in the context of General Relativity is also essential to
find uniquely the stellar coordinates and proper motion, this being the main physical task of
the inverse ray tracing problem. Aim of this work is to set the level of reciprocal consistency
of two relativistic models, GREM and RAMOD (Gaia, ESA mission), in order to guarantee a
physically correct definition of light direction to a star, an essential item for deducing the star
coordinates and proper motion within the same level of measurement accuracy.

Keywords. space astrometry, relativity, reference systems, catalogs, solar system, gravitation

1. Introduction
Modern space mission like Gaia (Turon et al., 2005) requires that any astrometric

measurement has to be modelled in a way that light propagation and detection are both
conceived in a general relativistic framework. One needs, in fact, to solve the relativistic
equations of the null geodesic which describes the trajectory of a photon emitted by a
star and detected by an observer with an assigned state of motion. The whole process
takes place in a geometrical environment generated by an N-body distribution as could
be that of our Solar System.

The astrometric problem consists in the determination, from a prescribed set of ob-
servational data (hereafter observables) of the astrometric parameters of a star, namely
its coordinates, parallax, and proper motion. Essential to the solution of the inverse
ray tracing is the identification, as boundary conditions, of the local observer’s line-of-
sight defined in a suitable reference frame. However, while in classical (non relativistic)
astrometry these quantities are well defined, in General Relativity (GR) they must be
interpreted consistently with the relativistic framework of the model. Similarly, the pa-
rameters describing the attitude and the center-of-mass motion of the satellite need to
be defined consistently with the chosen relativistic model.

At present, two conceptual frameworks are foreseen for Gaia. The first model, named
GREM (Gaia Relativistic Model) and described in Klioner, 2003, has been formulated ac-
cording to a Parametrized Post Newtonian (PPN) scheme accurate to 1 micro-arcsecond.
GREM is considered as baseline for the Gaia data reduction. The second model, RAMOD
(Relativistic Astrometric MODel), is conceived to solve the inverse ray-tracing problem
in a general relativistic framework not constrained a priori by any target accuracy. At
present, the RAMOD full solution requires the integration of a set of coupled non linear
differential equations which allows to trace back the light trajectory to the initial po-
sition of the star and which naturally entangles, all together, the contributions by the
aberration and all those due to the curvature of the background geometry.
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Since both models are used for the Gaia data reduction with the purpose to create a
catalog of positions and proper motions based on measurements of absolute astrometry,
any inconsistency in the relativistic model(s) would invalidate the quality and reliability
of the estimates, indeed all the related scientific outputs. This alone is sufficient reason
for making a theoretical comparison of the existing approaches for Gaia a necessity.

In this work we present the first step of the theoretical comparison, showing how it is
possible to isolate the aberration terms from the global RAMOD construct and recasting
them in a GREM-like formula.

2. The RAMOD frames
The set-up of any astrometric model implies, primarily, the identification of the gravi-

tational sources and of the background geometry. Then one needs to label the space-time
points with a coordinate system. The above steps fix a reference frame with respect to
which one describes the light trajectory, the motion of the stars and that of the observer.

The RAMOD framework is based on the weak-field requirements for the background
geometry, which in turn has to be specialized to the particular case one wants to model.
For a Gaia-like mission, we can assume the Solar System as the only source of gravity, i.e.
a physical system gravitationally bound, in the weak field and small velocities regime.
With these assumptions the background geometry is given by the following line element
ds2 ≡ gαβ dxαdxβ = (ηαβ + hαβ + O(h2)) dxαdxβ , where O(h2) collects all non linear
terms in h, the coordinates are x0 = ct, x1 = x, x2 = y, x3 = z, the origin being fixed at
the barycenter of the Solar System, and ηαβ is the Minkowskian metric. Then, only first
order terms in the metric perturbation h are retained. These terms already include all
of the possible (v/c)n -order expansions of post-Newtonian approach (v is the velocity of
the source and c the velocity of light), but just those up to (v/c)3 are needed to reach
the micro-arcsecond accuracy required for Gaia.

The global and the local BCRS. In RAMOD a Barycentric Celestial Reference
System (BCRS) is identified requiring that a smooth family of space-like hypersurfaces
exists with equation t(x, y, z) = constant (see de Felice et al., 2004). The function t can be
taken as a time coordinate. On each of these t(x, y, z) = constant hypersurfaces one can
choose a set of Cartesian-like coordinates centered at the barycenter of the Solar System
(B) and running smoothly as parameters along space-like curves which point to distant
cosmic sources. The parameters x, y, z, together with the time coordinate t, provides
a basic coordinate representation of the space-time according to the IAU resolutions.
Any tensorial quantity will be expressed in terms of coordinate components relative to
coordinate bases induced by the BCRS.

Moreover, the RAMOD geometrical construct allows the existence, at any space-time
point, of a unitary four-vector u which is tangent to the world line of a physical observer
at rest with respect to the spatial grid of the BCRS defined as:

uα = (−g00)
−1/2

δα
0 =

(
1 +

h00

2

)
δα
0 + O

(
h2) . (2.1)

The totality of these four-vectors over the space-time forms a vector field which is pro-
portional to a time-like and asymptotically Killing vector field (de Felice et al., 2004). To
the order of accuracy required for Gaia, the rest space of u can be locally identified by a
spatial triad of unitary and orthogonal vectors lying on a surface which differs from the
t = constant one, but chosen in such a way that their spatial components point to the
local coordinate directions as chosen by the BCRS. This frame will be called local BCRS,
represented by a tetrad whose spatial axes (the triad) coincide with the local coordinate
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axes, but whose origin is the barycenter of the satellite. This triad is (Bini et al., 2003)

λα
â =h0aδα

0 +
(

1 − h00

2

)
δα
a + O

(
h2) (2.2)

for a = 1, 2, 3. In RAMOD any physical measurement refers to the local BCRS.
The proper reference frame for the satellite. The tensorial quantity which ex-

presses a proper reference frame of a given observer is a tetrad adapted to that observer,
namely a set of four unitary mutually orthogonal four-vectors {λα̂} one of which, i.e.
λ0̂ , is the observer’s four-velocity while the other λâs form a spatial triad of space-like
four-vectors. The physical measurements made by the observer (satellite) represented
by such a tetrad are obtained by projecting the appropriate tensorial quantities on the
tetrad axes. As far as RAMOD is concerned, in the case of a Gaia-like mission, an explicit
analytic expression for a tetrad adapted to the satellite four-velocity exists and can be
found in (Bini et al., 2003). The spatial axes of this tetrad, Eâ , are used to model the
attitude of the satellite.

3. RAMOD and GREM first comparison
Any comparison between RAMOD and GREM requires that both use the same met-

ric. In the Gaia context the metric perturbation terms can be chosen as h00 = 2w/c2 ,
h0i = wi/c3 , where w and wi are, respectively, the gravitational potential and the vec-
tor potential generated by all the sources inside the Solar System according the IAU
resolution B1.3 (Soffel et al., 2003).

GREM reproduces in a relativistic framework the classical approach of astrometry,
where the quantities which ultimately enter the catalogue are referred to a global inertial
reference system, taking into account, one by one and independently from each other,
effects such as aberration and parallax. The BCRS is, for this model, the equivalent of the
inertial reference system of the classical approach, while the final expression of the star
direction in the BCRS is obtained after converting the observed direction into coordinate
ones in several steps which divide the effects of the aberration, the gravitational deflec-
tion, the parallax, and proper motion (Klioner, 2003). In GREM the observed direction
to the source (s) with respect to the local inertial frame (X α ) of the observer is

si = − dX i

dX 0 . (3.1)

The coordinate direction to the light source at the satellite location xs is defined by the
four-vector pα = (1, pi), where pi = c−1dxi/dt, xi and t being the BCRS coordinates.

The observables in RAMOD, instead, are the three direction cosines which identify
the local line-of-sight to the observed object, relative to a spatial triad Eâ associated to
a given observer u′; namely:

cos ψâ =
P (u′)αβ kαEβ

â

(P (u′)αβ kαkβ )1/2 ≡ eâ , (3.2)

where the final eâ has to be intended a shorthand notation for cosψâ , kα is the four-vector
tangent to the null geodesic connecting the star to the observer, and P (u′) is the operator
which projects on the rest-space of u′; all the quantities are obviously computed at the
event of the observation. The RAMOD formulation naturally entangles in the previous
formula every GR “effect” when (as in Bini et al., 2003) the attitude frame Eâ is that
of a Gaia-like observer. Therefore, to retrieve the aberration in RAMOD, one needs to
specialize Eq. 3.2 to the case of a tetrad {λ̃α̂} adapted to the center of mass of the satellite
assumed with no attitude parameters. In this case the observation equation will give a
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relation between the “aberrated” direction represented by the cosines as measured by the
satellite and the “aberration-free” direction. The latter is given by quantity l̄α = Pα

β (u)kβ

referred to the local BCRS frame {λâ}, where l̄α was introduced in RAMOD (de Felice
et al., 2004) as the unitary four-vector which represents the local line-of-sight of the
photon as seen by u. The tetrad {λ̃â} differ from the local BCRS’s {λâ} for a boost
transformation with four-velocity uα

s of the satellite (Jantzen et al., 1992, Bini et al.,
2003) and plays the same role of the CoMRS (Center-of-Mass Reference System) defined
for Gaia (Klioner, 2004). Considering the IAU metric, we obtain (vi stands for the spatial
coordinate velocity of the satellite)

ẽâ ≈ l̄a +
1
c

[
−va +

(
δij v

i l̄j
)
l̄a

]
+

1
c2

{
wl̄a − 1

2
(
δij v

i l̄j
)
va +

[(
δij v

i l̄j
)2 − 1

2
v2

]
l̄a

}

+
1
c3

{
−2wva − 1

2
(
δij v

i l̄j
)2

va + l̄a
[
3w

(
δij v

i l̄j
)

(3.3)

+
(
δij v

i l̄j
)3 − 1

2
v2 (

δij v
i l̄j

)
+ w

(
δij v

i l̄j
)]}

+ O
(
v4/c4)

where ẽâ are the cosines related to the tetrad without the attitude parameters.
At a first glance, the last expression shows differences in terms up to the (v/c)2 order

(note in particular the term wl̄a) and of the (v/c)3 order which cannot allow to straight-
forwardly compare, as expected, the above expression to the GREM vectorial one (see
Klioner, 2003), where the aberration is expressed in terms of a vector n = pi/p, which
represents the “aberration-free” coordinate line of sight of the observed star at the posi-
tion of the satellite momentarily at rest. To compare formula 3.3 with GREM’s formula,
n and l̄α we need to reduce l̄α to its coordinate Euclidean expression. In RAMOD, as
said, l̄α represents the normalized local line-of-sight of the observed star as seen by the
local barycentric observer u. From the physical point of view n and l̄α have the same
meaning, as the observed “aberration free” direction to the star. From the definition of
ni , we recover ni = pi(1 + h00 + h0ip

i) + O(h2). On the other hand, using the definition
of l̄α in de Felice et al., 2004, and from u0 = (−g00)−1/2 and ki/k0 = c−1dxi/dt ≡ pi , it
can be easily shown that its spatial components can be approximated as

l̄i =ni

(
1 − h00

2

)
+ O

(
v4

c4

)
. (3.4)

Combining Eq. 3.3 with 3.4 and setting (δij v
inj ) ≡ v ·n to ease the notation, we obtained

ẽâ =na +
1
c

[−va + (v · n) na ] +
1
c2

{
−1

2
(v · n) va +

[
(v · n)2 − 1

2
v2

]
na

}
+ (3.5)

1
c3

{
−2wva − 1

2
(v · n)2

va + (v · n) na

[
2w + (v · n)2 − 1

2
v2

]}
+ O

(
v4

c4

)
.

In this way the right-hand side of the aberration expression of RAMOD is rewritten
with the GREM quantities at the (v/c)3 order. The final step is to find a relation be-
tween ẽâ and si . Using the definition of the projection operator and the tetrad property
(λμ̂

αλμ̂β = gαβ ), we have:

ẽâ ≡ P (u)αβ kα λ̃β
â

(P (u)αβ kαkβ )1/2 =
kα λ̃â

α

|gαβ uαkβ | = − kα λ̃â
α

gαβ λ̃α
0̂
kβ

=
kα λ̃â

α

kβ λ̃0̂
β

=
dx̃â

dx̃0̂
. (3.6)

The tetrad components of the light ray can be directly associated to CoMRS coordinates,
i.e. to a coordinate-induced tetrad (as done in Klioner, 2004), if the boosted local BCRS
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tetrad coordinates x̃α̂ are equivalent to the CoMRS ones X α . This is true if the origins
of the two reference systems coincide and only locally, since the tetrad are not in general
holonomic. So, in the case of Gaia, from 3.1 it is ẽâ = −sa . Therefore one can finally
write relation 3.5 (where n · n = 1 and v2 = δij v

ivj ≡ v · v)

sa =−na +
1
c

[n × (v × n)]a +
1
c2

{
(v · n) [n × (v × n)]a +

1
2

[v × (n × v)]a
}

+
1
c3

{[
(v · n)2 + 2w

]
[n × (v × n)]a +

1
2

(v · n) [v × (n × v)]a
}

+ O
(

v4

c4

)
(3.7)

which is the formula for the aberration in GREM.

4. Conclusions
The direction cosines being physical quantities not depending on the coordinates, are a

powerful tool to compare the astrometric relativistic models: their physical meaning allow
us to correctly interpret the astrometric parameters in terms of coordinate quantities.
This justified the conversion of the physical stellar proper direction of RAMOD into its
analogous Euclidean coordinate counterpart, which ultimately leads to the derivation
of a GREM-style aberration formula 3.7. Note, also, that the observables of RAMOD
can be matched with components of the observed si of GREM only if the origins of the
boosted local BCRS tetrad in RAMOD and of the CoMRS in GREM coincide.

Moreover, the direction cosines (i.e. the astrometric measurements strictly dependent
on the mathematical characterization of the attitude) taken as a function of the local line-
of-sight (the physical one), at the time of observation, allow to fix the boundary conditions
needed to solve the master equations and to determine uniquely the star coordinates. The
vector n, i.e. the “aberration-free” counterpart of lα in GREM, is instead used to derive
the aberration effect (in a coordinate language) and there is no need to connect it with
a RAMOD-like boundary value problem.
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