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THE HOMOLOGY OF SINGULAR POLY GON SPACES

YASUHIKO KAMIYAMA

ABSTRACT.  Let My, be the variety of spatial polygons P = (ag,ap, ..., a,) whose
sides are vectors a; € R® of length || = 1 (1 < i < n), up to motion in R3. It is
known that for odd n, My, is a smooth manifold, while for even n, M,, has cone-like
singular points. For odd n, the rational homology of M, was determined by Kirwan and
Klyachko [6], [9]. The purpose of this paper is to determine the rational homology of
My, for even n. For even n, let My, be the manifold obtained from M, by the resolution
of the singularities. Then we also determine the integral homology of M.

1. Introduction. Let M, be the variety of spatial polygons P = (a1, az,...,an)
whose sides are vectors g € R3 of length || = 1(1 < i < n). Two polygons are
identified if they differ only by motionsin R2. The sum of the vectors is assumed to be
Zero:

(1.1 ata+---+a,=0.

It is known that M,, admits a Kahler structure such that the complex dimension of M, is
n— 3. For odd n, M, hasno singular points. For evenn, P = (a;,ay, ...,a,) isasingular
point iff all thea;(1 <i < n)lieonalinein R3 through O[2], [5], [6], [9]. Such singular
points are cone-like singularities and have neighborhoods C(S'3 xg S'3), where C
denotes the cone and S' acts on both copies of S™~2 by complex multiplication [6], [9].

For odd n, H,(M;; Q), the rational homology of M,, was determined by Kirwan and
Klyachko [6], [9]. Their strategies are different, but both use theorems in symplectic
geometry. Unfortunately, their methods cannot apply to M, for even n, because of the
singular points of M.

Thus the purposes of this paper are (a) and (b) below. For the rest of this paper, we
always assumen to be even, and sometimes set n = 2m.

(@ Wedetermine H.(Mn; Q). Actually we can also determine Hg(Mn; Z) (9 > n—2).

(b) Let M, be the manifold obtained from M, by the resolution of the singularities.
That is, for every singular point of M, replace C(S2 x g S7%) by D2 xg S"2. Then
we determine H.(My; Z).

Our results are as follows. For H,(My; Q), we begin by proving the following:

THEOREM A. Thegroups Hq(Mn; Z) (0 > n— 2) are given by:
(i) Hz+1(Mn;Z) = 0(i > m—1).

Received by the editors March 17, 1997.
AMS subject classification: 14D20, 57N65.
(© Canadian Mathematical Society 1998.

581

https://doi.org/10.4153/CJM-1998-032-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-032-6

582 YASUHIKO KAMIYAMA

(il) Ha(Mn;2) 2 Z% (i > m=D)with Ay = (5 ) + (1) + -+ + (LAmL), where

2m—3—i
n=2m, (g) denotes the binomial coefficient, and Z*# denotesthe Ay-fold direct
sumof Z.

Next we determine the groups Hq(Mn; Q) (1 < g < n— 4), which are isomorphic to
HYMp; Q). In order to state the result, we define algebras U, V and a map of algebras
w:U — V asfollows. Let U be the algebraover Q generated by a4, ..., on—1 and f, of
degree two, subject to the relations ociz = —foiforl<i<n-—1:

1.2) U=Q[e,...,an-1,f]/(a? = —fay), dega; = degf = 2.
Next we set
1.3) S= {(61,...,6,1,1);& =4+1(1<i §n—l),el+62+-~~+en,1+1:0}_

Thus Sconsists of (7 *)-elements. (Recall that n = 2m.) For each (e1,...,en-1) € S

.....

degree two. Then we set

(1.4) V= @ Q[e(fl ..... fnfl)]'

(€11--v€n-1)ES

Finally we define a map of algebras pu: U — V. In order to do so, it sufficesto give
p(eq) (1 <i <n—1)and u(f).
(i) For1<i<m-—1 weset

o) = — > e, 1)-
{(e1,-ven-1)€Sei=—1}

(i) Form<i <2m-—1, wesset

(o) = — 2 et 1)-
{(e1,en-1)ESE=+1}
(iii) We set
w®) = > e
(€2,-m€n-2)€S
Now HY9(Mp; Q) (1 < g < n— 4) aregiven by the following:
THEOREM B. Themap i: U — V is a morphism of algebras and one has
H?(Mn; Q) = Ker(u: U? — V) (2<2i <n—4),
HZ*1(M,; Q) = Coker(u: U — V?) (1 < 2i +1 < n—4),
where U% denotes the subspace of U consisting of elements of degree g.

Theorems A and B give Hq(Mn; Q) (9 # n—3). Hn—3(My; Q) isdetermined if we give
x(Mp), the Euler characteristic of M. We set n = 2m.
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THEOREM C[2]. x(Maom) = —22™2 + (me)

REMARK 1.5. In[2], x(M2n) isdetermined by establishing and then solving arecur-
rence formula for Man,. As this method needs some effort, we give a more direct proof
of Theorem C in this paper.

ExAMPLE 1.6. Therational Poincaré polynomials of M4, Mg and Mg are given by:
Po(Ms,t) = 1+ 2
Po(Me,t) = 1+1t2+563 + 6t* +t°.
Po(Ms,t) = 1+ 2 + 2863 + 8t* + 14t° + 20t° + 83 + t1°.

Note that My = S

As an example, we will show how to determine Po(Ms, t) in Example 1.6. First we
know Hq(Msg; Q) (g > 6) by Theorem A. Next we can determine H4(Mg; Q) (q < 4)
by Theorem B. For example, the fact that H*(Mg; Q) = Q2 is proved as follows. By
Theorem B, we have that H*(Mg; Q) = Ker(u: U* — V4. By (1.2), abasis of U% is
{aiog (1 <i<j<7of (L <i<7),f2}, and hencedimgU* = 29. By (1.4), a
basis of V*is {€ i (e1,...,€7) € S}, and hence dimg V4 = 35. Now, since pu()
(1 <i < 7)and pu(f) are described by the above basis of V4, we can write ;: U* — V4
asa35 x 29 matrix. Thenit is elementary to prove that Ker(u: U* — V#) = Q8. Finally
we can determine H%(Mg; Q) by Theorem C.

REMARK 1.7. In [6], [9], H.«(Mp; Q) is determined for odd n. In particular these
groups obey Poincaré duality, and Hq(Mn; Q) = O for odd g. But for even n, Example 1.6
shows that we cannot expect Poincaré duality to hold for M;,. Moreover in general, we
cannot expect that Hy(Mp; Q) = O for odd g.

Finally we give H, (My; Z).

THEOREM D. H.(My; Z) is a free Z-module and Po(Mn, t), the rational Poincaré
polynomial of My, is given by

Po(Mn, t) = 1+m2+...+{1+(n—1)+ (n;l> Tt (min(ijqn_—l3—i)>}t2i

+... 4+t 6

Thus M, obeys Poincaré duality as expected.

This paper is organized as follows. In Section 2, we give strategies to prove Theo-
rems A and B. Theorems A, B, C and D are provedin Sections 3, 4, 5 and 6 respectively.

Before we leave this section, we note that we can identify M,, with the moduli space
of semistable configurations with respect to the action of PSL(2, C). And the latter arise
naturally in the theory of vector bundles and torsion free sheaves[8], [9]. Thusour main
theorems give information on this theory.

In the paper [4], we will prove some new results on the topology of M, for odd n.
For example, we determine 7q(Mn) (g < n — 3), then we describe M, in the oriented
cobordism ring.
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1
2. Strategiesfor proofsof TheoremsA and B. Wesete = (O € R%. Recall that

0
M is defined from the space of spatial polygons by the action of the groups of motions
in R3. Thusfor P = (ag, a,...,an) € M,, we can always assume that a, = e. More
precisely, we define C,, by

(2.1) Co={P=(ana,...,a01) € ()" Har+ay+---+a,1+e=0}.

Regard S' as the subgroup of SO(3) consisting of elements which fix e. Then St acts
naturally on C,,, and it is clear that

(2.2 Mn = C,/S"

P=(ay,ay,...,8,-1) € C,isasingular pointiff 3 = e (1 <i < n—1). By the same
argument as in the case of M, [5], [8], we can prove that the singular points of C,, have
neighborhoods C(S™2 x §'-3).

Note that the S'-action on C, is semifreg, i.e., the set of the singular pointsis exactly
the set of the fixed points, and except at the singular points, St acts freely.

Letin: Cy — ()™ betheinclusion (cf. (2.1)). We prove Theorems A and B by the
following steps.

Step1. First we prove the following proposition.

PROPOSITION 2.3.  (in).:Hq(Cn; Z) — Hq(($)™*;Z) are isomorphisms for q <
n—2.

Step2. Let C,, bethe space obtained from Cy, by removing Int C(S™-3 x S*-3), the

interior of C(S'~2 x S'-3), for every singular point. Since C, has (2mm—1) singular points,
we have
(2.4) Co=ChU ( U cS 3 x 5”*3)),
%)
wherewe set n = 2m.
Let,: C, — C, betheinclusion:
(2.5) Co— Cp s ()

Thenweprovethat (in-in).: Hg(C n; Z) — Hq(($)"; Z) areisomorphismsfor g < n—4.

Ster3. By using the Serre spectral sequenceof thefibration C_n —C, n/St— CP>,
we calculate Hy(C/S% Z) (9 < n — 4) from Step 2.

STEP4. By using the isomorphisms
(2.6) Hq(Mn, {singular points}; Z) = H2-6-9(C,, /s 2),

we determine Hq(Mn; Z) (Q > n — 2) from Step 3, which is Theorem A.
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Next we state the strategies for the proof of Theorem B. Note that if we attach
C(S"3 xg S"3) to every boundary component of C, /S', then we obtain My:

2.7) Mp = Co/StU ( U C(S™2 xg sﬁ))
(@)
(cf. (2.4)).

Sterp5. From the proof of Step 3, we prove that the ring structure of H*(C_ n/Sh Q)
(* < n — 4) is isomorphic to that of U. Then we identify the ring structure of
H*(U(zm) 93 xg 973 Q) (* < n— 4) with that of V in asuitable manner.

_STeEP 6. Consider the cohomology Mayer-Vietoris sequence of the pair
{C n/Sl, U(Zn[:]_) C(Sq_3 Xg 31_3)} (Cf (27)) Letjn: U(ankl) Sia Xgl 3 Cn/Sl be
the inclusion. Then we prove that ( jn)*: HI(C /St Q) — HI(U ) 3 xg §3,Q)
(< n—4)isequal to u: U% — V9in Section 1, where U% and V¥ denote the subspaces
of U and V consisting of elements of degree q. Thus Theorem B follows.

3. Proof of Theorem A. Weprove Theorem A by following Steps 14 in Section 2.

Step 1. For Step 1, we need to prove Proposition 2.3. We prove this proposition
by the idea of [3]. Recall that we have the inclusion i: C, — ()" We write its
complement as A,. Thus

3.1 An={(@1,...,a01) € ()" @+ +a 1 +e# 0},
We defineafunction f,: A, — R by
(3.2 fa(@s,...,8n-1) = —|a +- - +an1+ €

Concerning f,, we can prove the following Propositions 3.3 and 3.4 in the same way as
in [3]. Since the calculations are easy, we omit the details.

PROPOSITION 3.3.  (&1,...,8:-1) € Ayisacritical pointof fy iffg = re(1 <i <
n—1).

We try to determine the index of H(f,), the Hessian of f,,, at every critical point. We
say a critical point (ag,...,a,—1) is of type (k,I) if e appears k-times and —e appears
I-timesin (ag,...,an-1), suchthatk+| = n— 1. Notethat k — | + 1 =4 0 by (3.1). Then
we have the following:

ProPOSITION 3.4.  Theindex of H(f,) at the critical point of type (k, 1) is given by

7] k>
2(k+1) k<Il—1

Wenotethatk — 1 +1 £ 0.

Now we complete the proof of Proposition 2.3. By Proposition 3.4, we see that the
index of H(f,) at every critical point is less than or equal to n — 2. Thus A, has the
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homotopy type of an (n — 2)-dimensional CW complex. By Poincaré-L efschetz duality

Ho(()",Crii Z) = H2279(Ay; Z), we have Hq((S)™,CriZ) = 0(q < n—1).

Hence Proposition 2.3 follows. n
This completes Step 1.

Step2. We provethefollowing:

PrROPOSITION 3.5.
() Ha(ComiZ) =2 (0 <i < m—2) with Ay = (*77Y).
(i) Hzs1(ComZ) = 0(0 <i <m—23).

PROOF. By Proposition 2.3, (in)«:Hq(Cn;Z) — Hq(()"*;Z) are isomorph-
isms for ¢ < n — 2. By applying the Mayer-Vietoris argument to the pair
(Cn,U(er) C(S"2 x §79)), (n)s: Hq(Cn; Z) — Hqg(Cn; Z) are isomorphisms for q <
N—4. Thus (in - in)«: Hg(C n; Z) — H o(($)"; Z) areisomorphismsfor g < n—4. Thus
Proposition 3.5 follows. ]

This completes Step 2.

Step 3.  We provethe following:

PROPOSITION 3.6.
(i) szg%T)/sl;Z) ¥ ZMO<i<m-2withAy = 5+ () +-
+ .
-h.

(i) Haa(Com/Sh2Z)=0(0<i <m-3).

PROOF. Consider the Serre spectral sequenceof thefibration C, n— C, n/ St — CP>,
By Proposition 3.5, for dimensional reasonswe have E5' ¢ ES! (s+t < 2m— 4). Hence
Proposition 3.6 follows. ]

This completes Step 3.

Step 4. SinceM, = C,/StU (U(zm) C(S3 xg §79)) (cf. (2.7)), we have the
following isomorphisms:

Hq(Mn, {singular points} ; Z) 2 Hq(Ms/ {singular points} ; Z)
C/$/0C0/$:2)
Cn/S,0(Cn/SY; z)

6-q(C /Sh2),

:/\/\/\

Wherea(C_ n/S') denotesthe boundary of Cn /S, and the fourth isomorphismis Poincaré-
Lefschetz duality.

Now Theorem A follows from Proposition 3.6. L]
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4. Proof of Theorem B. We prove Theorem B by Steps 5 and 6 in Section 2.

Step 5. (A) First we give an i_dentification of H*(U(zngl) 3 xg 930Q) (x <
n — 4) with V. Recall that M, = C,/S' U <U(Z"m”) C(S2 xg §79)) (cf. (2.7)), and
every C(S"2 x g S"2) correspondsto asingular point of M,,. A singular point of M, is
represented by some P = (ag,a,...,a,1) € ()" suchthat 3y = eanda; +--- +
an—1 +e = 0(cf. Section 2). Set

4.71) a=¢e(1<i<n-1).

Thene; = £1. Notethata; +--- +a, 1 +e= 0impliese; +--- +en 1+ 1= 0.

Thusevery boundary component of C, /St (which ishomeomorphicto S™3 x g S'-%)
islabeled by (e1, ..., en1) suchthates +- - - +en_1+1 = 0. Since HA(S 3 x g §3; Q)

Thenitisclear that H*(U(z"mﬂ) S 3xg 93 Q) (x < n—4)isisomorphicto V, where
V is defined in Section 1. _

(B) Next we give an identification of H*(C,/S", Q) (x < n— 4) with U. First we
construct the generators of Ho(C,/St, Q), which we denote by {hy, ..., hn_1,y}.

(i) Constructionof {hy,...,hn_1}. 3

The proof of Proposition 3.5 shows that (in - 1n).:H2(C n; Q) — Ha(($)" % Q) is
an isomorphism. Denote the standard generators of Ha(($)"*; Q) by {o1,...,0n1}.
(More precisely, let ¢ € Hy(S; Q) be the canonical generator. Seto; = 1 x --- x 1 x
o x1x---x 1, wherethei-th elementis¢.) Then set

.2) by = (P ((in - )-) (0,

where pp: C, n— C, n/St isthe projection (cf. (4.4)).

(i) Construction of y. _

Consider the boundary component of C , / St, which correspondsto (1, ...,1,—1,...,
—1),i.e,(e1,...,en1)suchthate; = +1 (1L <i <m—1)and¢g = -1 (M <i <2m-—1).
SinceH,(S3 xg 9'73; Q) = H,(CP™2; Q), we denote the generator of the left side by

Let ki 3 xg 872 — C,/S be the inclusion, where S"3 x4 S denotes the

boundary component which correspondsto (1,...,1,—1,...,—1). Set
4.3 y = ki(X)
(cf. (4.4)).

Co == G o (@
(4.4 oo |
F3xgg3 X C,/8

Now it is easy to show that {hy, ..., h,_1,y} isabasis of Hy(C,/S% Q). By taking the
dual basis, we get abasis of H?(C,/S!; Q), which we denote by {a, ..., on-1,f}.

https://doi.org/10.4153/CJM-1998-032-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-032-6

588 YASUHIKO KAMIYAMA

Recall that the proof of Proposition 3.5 produces a St-equivariant map ip - wn: C, h—
(™1 which is (n — 4)-connected. Therefore, the homomorphism

(4.5) Ha (™% Q) ™ Hy (Coi Q) 2 H'(Cr/Sh Q)

isanisomorphismfor x < n—4, where HY, denotes equivariant cohomology. Recall that
Hg (($)™*; Q) was determined by Kirwan [7]. In our choiceof generators ey, .. ., a1
and f, the structure of Hg (($)"*; Q) together with (4.5) tell usthat H*(C /S Q) (x <
n—4)isgenerated by oy, ..., an-1 and f with the relations ociz =—fo(1<i<n-=-1).
HenceH*(C /S, Q) (* < n— 4) isisomorphic to U.

This completes Step 5.

STEP 6. Consider the Mayer-Vietoris sequence of the pair {C_n /S,
U(Zwl) C(S«| 3 Xgl g 3)} (Cf (2 7)) Let]n U(Zwl) Sk 3 Xgl g 3y Cn/Sl betheinclu-
sion. Weneed to know (j,)*: HI(C,, /S Q) — Hq(U(znntl) S3x4 93 Q) (g < n-4).

By Step 5, we can regard (jn)* as (jn)*: U — V. In order to describe this homomor-
phism, it sufficesto determine (jn)*(ci) (1 <i < n—1)and (jn)*(f). Werecall that S=
{(e1,...,en-1);ei =1 (1 <i<n—1),e +ex+---+ep1+1 =0} (cf. (1.3)). Note
that Theorem B follows from the next result:

PROPOSITION 4.6.

(i) For1 <i<m-—1,(jn)"(a) = —Z{(1....cn eSa=—1} Setmen 1)-
(i) Form<i<2m—1, (jo)"(cti) = —Z{(),...cn )eSei=+1} Kerrmin1)-
(iiN) (jn)"(f) = Z(er,...en 1S Cetynen-v)-

PROOF. Instead of proving these formulae, we prove similar formulag in ($)"2.
More precisely, let St act on ()" ! inthe sameway ason C,,. P = (ag, @, ...,an1) €
(™ tisafixed pointiff & = +e (1 <i < n—1). Weremoveasmall open disc around
every fixed point, and denotethis spaceby D,,. Then we havethe following commutative
diagram:

C_n Initn (SZ)nfl
4.7 \ Vs
D,
where all arrows are the inclusions.

By the definition of o (1 < i < n—-1), f € H2(CnZS1 Q) and g, .,y €
Hz(a(C /S$9:Q), wherea(C /S') denotes the boundary of C,,/S', it sufficesto prove
Proposition 4.6(i)—(iii) in Dn/Sl That is, we defineof (1 < i < n—-1), f €
H2(Dy /S Q) and e(m”(nf) € H2(0(Dn/SY; Q) inthe sameway asfor i, f, &, ..., y)-
Then we can prove that o, f’ e(q ..... en 1) satisfy Proposition 4.6(i)—(iii), where in this
case, we shall substitute the mcluson jn:0(Cn/SY) — Cn/Stin Proposition 4.6 with
the inclusion j/;: o(Dn /S) — D, /S (Note that every boundary component of D, is
homeomorphic to CP?™2,)
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We summarizethe constructionsof of, f', €, ., asfollows(cf. Step5 (A) and (B)).

(A) €., € H*(3(Dn/S"; Q) isdefined to be the generator of H(CP*™ % Q).

(B) of,..., a4, f' € H*}(Dn/Sh Q) are defined to be the duals of {(p}).(01), .-,
(P)«(on-1),Y'}, where pj: Dy, — Dy/S' denotes the projection (which corresponds
to the projection pn:Cn — Cn/S' in Step 5 (B)(i)). We shall regard 0; (1 < i <
n— 1), which are defined in Step 5 (B)(i), as elements of Hy(Dy,; Q), since Ho(Dy; Q) =
Ho(($H)™ 4 Q).
_ Y is defined in the same way asin (4.3), i.e, Y = (K).(X), where k: CP?™2
Dn/S' denotestheinclusion of the boundary component which correspondsto (1, ..., 1,

—1,...,—1),and X' € Hx(CP?™?; Q) denotes the generator (cf. (4.7)).

Dn

lp’n
(4.8) aDn/S) < Dy/s

AN e’
CPZm—Z
Denotethe dual of €/, . v € H2(9(Dn/SY); Q) by Vy,..r ) € H2(8(Dn/SY; Q).

We denote the sequence (4,...,1,—1,...,—1), which was used in Step 5 (B)(ii), by
(eg, e 6?1—1)-

Recall that we have an inclusion j/,: d(Dy, /St < Dy, /St (cf. (4.8)). Now the follow-

.....

andy'.

LEMMA 4.9.

() Mermen ) =Y+ 2 8{(Ph)<(09)},
1<s<n-1
wheress— | ~% = —€
s 0 es=¢el
Now by taking the dual of Lemma 4.9 we have Proposition 4.6.

This completesthe proof of Theorem B. ]

5. Proof of Theorem C. By Theorem A, we know Hq(Mp; Q) (g > n— 2). Hence
in order to determine x(M,), it sufficesto determine Xq<n—_3(—1)4 dimHY(M,; Q).

Recall that we have an inclusion in: C,, — (S)"1. Hence we also have an inclusion
Mp — (F)"1 /S We assumethe truth of the following Propositions 5.1 and 5.2 for the
moment. Asin the proof of Proposition 2.3in Section 3 Step 1, weset A, = ()" 1 —C,.

ProPOSITION 5.1.  For g < 2m— 3, we have

H(Aam/ S5 Q)
o~ QAzi with Ay = 22m-1__ (Zwl) q= 2i+1(1§i < m—2)

m

0 g=210<i<m-2Dorqg=1,
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where H; denotes cohomology with compact supports.
ProPOSITION 5.2, H,(($)V/S Q) is given by
~ by i i
Ao ()N /st g{Qq g=2+1(1<i<N-=-1)
q(( "/ Q) 0 otherwise,

where g
o) = /N—1>+2/N9;2> +22/Nj13> ++2_q_<q7>
2

Sl \ &

ProOF OF THEOREM C.  Recall thelong exact sequenceof cohomol ogy with compact

supports of the pair ((§)*™*/S!, Man):
- — Hi(Aem /S Q) — HI((S)™™ /S5 Q) — HY(Mam; Q)
— HI" (Aom /S5 Q) —
Since HZ™2(Azm/ S Q) = 0 by Proposition 5.1, exactness shows that

> (DUimHY(Mam; Q) = > (—1)TdimHI((S)*™ /S Q)

g<2m-3 g<2m-3

- 3 (—1)9dimHI(Axm/S5 Q).

gq<2m-3

(5.3)

By Proposition 5.2, we have

> (=)TdimHY(S)™ /S5 Q)

q<2m-3
— 1_b%rrkl_b§nkl_“. . ZW%
m—
(5. 4) 1— {(an—Z) + 2(2m— ) 22W3< }

—{(7) 20 -+ 2

(R e+ a2,

m-2 m-2 m-2

While by Proposition 5.1, we have

S (1) dimHIAam/S5 Q) = —(m—2) {22“ _ <2m_ 1) } .

q<2m-3 m

Hence by (5.3), we have

S (09 dimHI(Man; Q) — (54)+ (m—2) {221 — (2M 1
(5 5) q<2m-3 \ m

2 \'m
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On the other hand, we have

(5.6)
. L m2 /Zm—l /2m—1 /2m_1
q>§_z(—1)qd|qu(M2m,Q)—g{\ 0 >+\ A >+...+\ i >}
ms, M(2m—1
-3 (")
by Theorem A.
Now we have

x(Mzm) = (5.5) +(5.6)
— a2 /2m>.
m

This completes the proof of Theorem C assuming the truth of Propositions 5.1
and5.2. [

PROOF OF PROPOSITION 5.1.  Asin the case of C,,, the St-action on Ao, is semifree
(cf. Section 2), and the fixed point set X is

s={(a, -, a)e@) " ha=2e(l<i<n-—1,a+ - +a, 1+e#£0},
which consists of (22™* — (*7"1))-points. Set
Bom = Aom — 2.

Recall that Ay hasthe homotopy type of a2(m—1)-dimensional CW complex (cf. Propo-
sition 3.4). Hence the Mayer-Vietoris argument gives the following information on
H9(B2m; Q) (0 = 2m— 1):

(5.7
Hq(BZm; Q)
~ { Q% with Ay = 22™1 — (*11)  q=4m—3
0 2m—-1<qg<4m—-4orq>4m— 2.

Next, by the Serre spectral sequence of the fiber bundle St — Bom — Bom/ S, we
have the following information on H4(B,m /S Q) (g > 2m— 1) from (5.7):
(5.8)
Hq(BZm/Sl; Q)
~ [ QM with Ay = 22m1 — (*") g =2i(m<i<2m—2)
0 g>2m—1landq#2i(m<i<2m-2).

Since Bpm/St is smooth, we have by Poincaré duality HJ(Bom/ShQ) =
Ham-3—q(B2m/ S Q). Hence we have the following information on H(Bzm/ S Q) (g <
2m— 2) from (5.8):

(5.9)

HiBn /S5 Q) = | X7 With A =22 = (5 ) q =211 0<i <m>-2)

m

0 g=21(0<i<m-1).
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Now by using the long exact sequence of cohomology with compact supports of the
pair (Aom/Sh )

-+ — H(Bam/ S Q) — H(Aam/ S Q) — HY(Z; Q) — HI™*(Bam/SH Q) — -+,
we can prove Proposition 5.1.

This completes the proof of Proposition 5.1. ]

PROOF OF PROPOSITION 5.2.  We prove Proposition 5.2 by induction on N. For P =

(a1, ay, . '1' ,an) € (P)N/S, we can assumethat a2 > 0 and a = O, where we set

ap
a; = (a}) . More precisely, set

ai
al
S = {a: (az) eSz;aZZO,ae’:O}.

ad

SetT =S x ()N andlet S act in the obvious way on the subspaces {e} x ()1
and {—e} x ()N of T, where eis defined in Section 2. Write this equivalencerelation
onT by ~. Thenitisclear that ()N /S = T/ ~.

Decompose T/ ~ asL* UL, where

a
LY = {(aﬁ) XaX--xXan1€T/~al >0 2<i §N—1)}.
al
(L~ is defined similarly.) Since L* N L~ is homeomorphic to (?)N-1, and L* is homo-
topically equivalent to ()N~ /S, we can calculate H. ()N /S Q) from the Mayer-
Vietoris sequence of the pair {L*, L~} by induction on N.
This completesthe proof of Propostion 5.2, and hence also that of TheoremC. =

6. Proof of Theorem D. Recall that

(6.1) Mzm = Cn/StU( U C(S™2 xg §9))
%)
by (2.7), while by the definition of Mam We have
(6.2) Mom = Cn/S'U( U D" 2 xg §3).
%)

First we prove the following:

PROPOSITION 6.3.  For g < 2m— 4, we have

Hq(MZm;Z)
~ [ZPwith Ay = (P + (P +--+ (P g=21(0<i<m-2)
0 g=2+10<i<m-3).
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PROOF. By using the Serre spectral sequenceof thefiber bundle ™3 — M3 x g
™3 — CP™2, we can easily provethat i.: Hy(S"™ 3 xg ™3, Z) — Ho(D*™ 2 xg
$m-3: 7) areisomorphismsfor q < 2m—4, wherei: M3 x g ™3 < D2 x o M3
denotesthe inclusion. B

Consider the Mayer-Vietoris sequenceof the pair {C om/ S, Ugnay D22 x o ™3
(cf. (6.2)). The above assertion concerning i, showsthat the sequences

0—Hy( U S™3xg M3%2)
(mel)
— Hq(Con/S52) & He( U D™ 2 xg ™%Z) — Ho(Mam; Z) — 0

Gy

are split short exact sequencesfor g < 2m — 4. Hence Hq(I\7I2m; Z) & Hq(C_zm/Sl; Z)
(g<2m—4).
Now Proposition 6.3 follows from Proposition 3.6. ]
By Proposition 6.3 together with the Poincaré duality and the universal coefficient
theorem, we can determine Hq(I\7I2m; Z) (q > 2m— 2). We can also prove the fact that
H2m_3(l\7I2m; Z) istorsion-free. Hence in order to complete the proof of Theorem D, we
need to prove the following:

LEMMA 6.4. Hom3(Mom; Q) = 0.
PROOF. By (6.1), we have x(Mam) = X(Cam/SY + (*™1). By (6.2), we have
X(Mzm) = X(C2m/SY) + (7 1)(m— 1). Hence by using Theorem C, we have

(6.5) X(Mam) = —22™2 + m(zmnj 1) :

On the other hand, our information on Hq(I\7I2m; Z) (g # 2m— 3) tellsusthat
> (=1 dimHg(Mam; Q)
q
m2(/2m-1 /2m—1> /2m—1>H . ~
=2 + SERTE N — dimHam-3(Mam; Q)
1) \ ool
=224 m<2mm_ 1) — dimHam_3(Mam; Q).
Hence we have Ham_3(Mam; Q) = 0 by (6.5).
This completesthe proof of Lemma 6.4, and hence also that of Theorem D. ]
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