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Abstract

In this paper a general concept of regularity for rings is defined. It is shown that every regularity
determines in a natural way a subradical and a radical for rings. A wide class of regularities is
constructed: the class of polynomial regularities. All well-known regularities, such as the Perlis-
Jacobson regularity, the von Neumann regularity and many others, belong to this class. Special
attention is paid to regularities which are elementary in the sense that the so-called unic and nullic
polynomial regularities can be thought of as intersections of the elementary ones.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 21.

1. Introduction

In ring theory many so-called regularities appear. The oldest one seems to be the
von Neumann regularity. Von Neumann (1936) defined a ring R (with identity)
to be regular if for each element r of R there exists an element s of R such that
r = rsr. Brown and McCoy (1950) generalized to rings without identity, and they
succeeded in proving that every ring contains a greatest regular ideal. In the mean-
time Perlis (1942) had introduced the concept of quasi-regularity for algebras with
identity. He defined an algebra A with identity to be quasi-regular if for every
element r of A there exists an element s of R such that r+s+rs = 0. Jacobson (1945)
generalized this concept to arbitrary rings without identity and he showed that
every ring R contains a greatest quasi-regular ideal, called later on the Jacobson
radical of R. In Section 2.5 many more examples of 'classical' regularities are
given. In 1950 Brown and McCoy attempted to define a general concept of
regularity for rings. At that time their theory was general enough. All regularities
introduced up to then were regularities in the sense of it. However, in 1971 a wide
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class of regularities was introduced by McKnight and others, called (/», ̂ -regulari-
ties, and it was noted by Goulding and Ortiz (1971) that some of these (p,q)-
regularities fail to satisfy the set of axioms of the theory of Brown and McCoy.

After these introductory historical remarks we now come to a brief description
of the substance of this paper. In Chapter 2 we introduce a general concept of
regularities for rings. It is shown that each regularity determines a subradical and
a radical for rings. Eventually the subradical and the radical determined by a
regularity may coincide; a condition under which this happens is given. Further-
more, an appropriate notion of equivalence for regularities is defined. At the end
of Chapter 2 we list all well-known regularities and we establish that each of them
is a regularity in the sense of our theory. In Chapter 3 the so-called polynomial
regularities are introduced, and it appears that all well-known regularities are
polynomial regularities. It is shown that under certain conditions a polynomial
regularity may be regarded as the intersection of some 'elementary' regularities
and a monomial regularity. Finally, the elementary and monomial regularities are
investigated.

2. A general type of regularity for rings

2.1. Definitions

Let there be assigned to each ring R a mappingFR: R-+S(R, +) , where S(R, + )
denotes the set consisting of all subgroups of the additive group (R, +) of R. The
class 3F, consisting of all mappings FR, will be called a regularity for rings if the
following three conditions are satisfied:

(Cl) if a: R-+S is a ring epimorphism and re R, then Fs(<xr) = <xFR(r);

(C2) if A is an ideal of R and as A, then FA(a)<=FR(a);

(C3) ifr,seRandseFR(r), then FR(r + s)<=FR(r).

If 3F is a regularity, an element r of R will be called FR-regular if reFR(r). R will
be called F-regular if each element of R is FR-regular. The class of all F-regular
rings will be denoted by F. An ideal A of R will be called F^-regular if each element
of A is FR-regular, and F-regular if each element of A is F^-regular, that is if A eF.
From (C2) it follows that each F-regular ideal of R is FR-regular.

2.2. The radical and the subradical determined by a regularity

Throughout this section the symbol & will be used for an arbitrary, but fixed
regularity for rings.

LEMMA 1. If r,seR, then FR(r+s)^FR(r)+(sy, where (s} denotes the ideal of R
generated be the element s.
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PROOF. Define S = /?/<» and let a denote the canonical ring epimorphism of R
onto S. Then <x(r+s) = ocr. Hence Fs[x(r+s)] = Fs(a.r). Using (Cl) we obtain
aFR(r+s) = aFR(r), whence FR(r+s)<^ FR(r)+(s}, proving the lemma.

LEMMA 2. Let A be an FR-regular ideal and b an FR-regular element of R. Then,
if aeA, a+b is FR-regular.

PROOF. Putting c = a+b, we have c—aeFR(c-a), since b is FR-regular. Applying
Lemma 1 we obtain that c—aeFR(c)+A, whence ceFR(c)+A. Thus we may write
c = —d+a', with deFR(c) and a' e A. Since A is FR-regular we have c + deFR(c + d)
Using (C3) we find FR(c+d)<=-FR(c), since deFR(c). Therefore c+deFR(c),
whence ceFR(c), which was to be proved.

COROLLARY 1. / / the ideals A and B of R are FR-regular, then so is A+B.

THEOREM 1. Every ring R contains a greatest FR-regular ideal. This ideal will be
denoted by F(R) and called the F-subradical of R.

PROOF. The set of all F^-regular ideals of R is directed as a consequence of
Corollary 1 and F(R) is their set-theoretic union.

THEOREM 2. Every ring R contains a greatest F-regular ideal. This ideal will be
denoted by F(R) and called the F-radical of R. One has F(R)c:F(R).

PROOF. For the first part of the theorem it suffices to show that the sum C = A + B
of two F-regular ideals A and B of R is F-regular as well. But this follows by noting
that A and B are Fc-regular, according to (C2), and by applying Corollary 1. The
inclusion F(R)<^F(R) is immediate since every F-regular ideal is F^-regular.

REMARKS. The use of the words 'radical' and 'subradical' suggest that the func-
tions F and F have radical-like properties. This is the case indeed. To clarify this
we insert some radical theoretical material. Let p be a function assigning to every
ring R an ideal p(R) of R. Then p is called a subradical if the following three
conditions are satisfied:

(A) if a: R->S is a ring homomorphism, then <x(p(/?))cp(pc{R));

(B) if A is an ideal of R such that p(A) = A, then A^p(R);

(C) p(R/p(R)) = 0 for every ring R.

If, moreover, the function p is idempotent, that is satisfies

(D) p(p(R)) = p(R) for every ring R,
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then p is called a radical. For any subradical p the class p, consisting of all rings R
such that p(R) = R, is a radical class in the well-known Kurosh-Amitsur sense,
whereas the corresponding radical p coincides with p if and only if p is a radical.
In general one has p(R)<^p(R) for each ring R. It may easily be verified that for
any regularity #" the induced function F is a subradical. Having done this, it is
obvious that F is the radical determined by the subradical F in the just described
way.

2.3. Coincidence of the radical and the subradical

We proceed by giving a condition under which the radical F and the subradical
F coincide. Before doing so, let us give a simple example to show that the inclusion
F(R)<=F(R) may be proper.

EXAMPLE 1. For each ring R and for each element r of R define FR(r) = R1.
One may easily verify that the conditions (Cl), (C2) and (C3) are satisfied. So
{FR\R is a ring} is a regularity. Clearly we have for any ring R that F(R) = R2.
Consequently, R is F-regular if and only if R2 = R. Therefore, F(R) is the greatest
idempotent ideal of R. By taking for R the ring 2Z of the even integers we obtain
F(R) = 4Z and F(R) = 0.

The radical F is called hereditary if each ideal of an F-regular ring is F-regular.
This is the case if and only if F(A) = Ar\F(R) holds for every ideal A of every ring
R, according to a well-known radical theoretical result (Divinsky (1965)). The
subradical F will be called hereditary if F(A) = Ar\F(R) holds for every ideal A
of every ring R. Now we may state

THEOREM 3. The following three statements are equivalent:

(1) the subradicalF is hereditary;

(2) the radical F is hereditary and coincides with F;

(3) if A is an ideal of R such that AcF(R), then F{A) = A.

PROOF. The implications (1) =>(3) and (2) =>(1) are trivial. So we only need to
show that (3) implies (2). To do so, let R be any ring. Then F(F(R)) = F(R), since
F(R)<^F(R), showing that F(R) is F-regular. By Theorem 2 this implies that
F(R)<=F(R). The converse inclusion holds as well. Therefore, F(R) = F(R). Hence,
F coincides with F. Now suppose that R is F-regular and that A is an ideal of R.
Then F(R) = R. Hence A<=^F(R). Using (3) it follows that F(A) = A. So A is F-
regular. Thus F is hereditary. This proves the theorem.
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2.4. Equivalence of regularities

Two regularities !F and 'S will be called equal if FR{r) = GR(r) holds for every
element r of every ring R. Since different regularities may determine the same
radical or the same subradical we are led to the following:

DEFINITION 1. Two regularities !F and <§ will be called strongly equivalent if r eFR(r)
holds if and only if re GR(r) for every element r of every ring R; equivalent if SF and
<8 determine the same subradical; and weakly equivalent if they determine the same
radical.

Obviously equality of 3F and 0 implies strong equivalence, strong equivalence
implies equivalence and equivalence implies weak equivalence. The converse
implications do not hold, as can be shown by meansof appropriatecounterexamples.
The proof of the next theorem is straightforward and will therefore be left out.

THEOREM 4. Let !F be a regularity. Define GR(r) = FR(—r) for every element
r of every ring R. Then IS = {GR\Ris a ring} is a regularity. Moreover, IF and <8 are
equivalent.

2.5. A survey of well-known regularities

In the ring theoretical literature many so-called regularities appear. In this
section we shall list those regularities which are known to us. One may easily
verify that each of them satisfies the conditions (Cl), (C2) and (C3), that is each
of these regularities is a regularity in the general sense of Section 2.1. We shall not
carry out this verification however; in the next chapter we introduce a class of
regularities of a particular type, the so-called polynomial regularities. It will appear
then that all well-known regularities are polynomial regularities.

1. FR(r) = Rr. This is the .©-regularity, more precisely left D-regularity, in-
troduced by Divinsky (1958), See also Baer (1943) and Roos (1976).

2. FR{r) = rRr. This is the well-known regularity of von Neumann (1936). See
also Brown and McCoy (1950).

3. F{r) = RrR. This is the A-regularity, introduced by de la Rosa (1970). See also
Roos (1976).

4. FR(r) — R{\ +r). An element r of R is FR-regular in this sense if r+s+sr = 0
for some element s of R. Hence F-regularity coincides with left quasi-regularity
as defined by Perlis (1942) and Jacobson (1945).

5. FR(r) = Rr(\+r). In this case F-regularity coincides with the left pseudo-
regularity defined by Divinsky (1955).

6. FR(r) = Rr2. /"-regular rings in this sense are the so-called strongly regular
rings as introduced by Arens and Kaplansky (1948). This regularity is studied by
Kando (1952), Lajos and Szasz (1970) and Sogawa (1971).
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7. FR(r) = RrRrR. Now ^-regularity coincides with /-regularity as defined by
Blair (1955).

8. FR(r) = Rr+RrR. This regularity is introduced by Szasz (1973). See also Roos
(1974).

9. FR(r) = R(l+r) + R(l+r)R. In this case the F-regular rings constitute the
radical class of Brown and McCoy (1947,1948).

10. FR(r) = Rr+rR+RrR. This regularity is studied by Szasz (1974).
11. FR(r) = p(r) Rq(r), where/? and q are arbitrary, but fixed integral polynomials.

This regularity is treated by Goulding and Ortiz (1971), Musser (1971), Ortiz (1971)
and McKnight and Musser (1972).

3. Polynomial regularities

In this chapter we develop a method to produce regularities. The regularities
which arise by using this method will be called polynomial regularities. Each of
the well-known regularities listed in Section 2.5 will prove to be a polynomial
regularity.

3.1. /'-regularities

We start this section by stating the main theorem, namely:

THEOREM 5. Let fuf2, • ••>/„ be a set of at least two integral polynomials. For each
ring R define the mapping FR as follows:

FR(r)=ft(r)Rf2(r)R...Rfn(r),

for every element r of R. Then & = {FR\R is a ring} is a regularity.

For the proof of Theorem 5 we need three lemmas.

LEMMA 3. Let R be a ring, S a subring and r an element of R such that
and 5r<= S. IffeZ[x] and seS, then f(r+s) = f(r)+s' for some element s' of S.

PROOF. Let / be the polynomial a0+ax x + . . . + an x" (at e Z, 0 < i< n). Then

flr + s) = ao + a1(r+s)+...+an(r+sf

The remaining terms in the latter expression are integral multiples of finite products
of r and s. Each of these terms contains the element s as a factor. Since seS and 5
is closed under left and right multiplication by r, it follows that each of these terms
belongs to S. Also a, seS, whence the lemma follows.
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LEMMA 4. Let & and <S be regularities such that FR{r) and GR(r) are ideals of R,
for every element r of every ring R. IffeZ[x], then

HR(r) = FR(r)f(r)GR(r)
determines a regularity.

PROOF. One may easily verify that 3V = {HR\R is a ring} satisfies (Cl) and (C2),
by using the fact that !F and <& do so. We only show that 3/f satisfies (C3). Let
seHR(r). Since FR(r) and GR(r) are ideals we have HR(r)<=FR(r) and HR(r)<= GR(r),
whence seFR(r) and seGR(r). Consequently

FR(r+s)^FR(r) and

So we may write

HR(r+s) = FR(r+s)f(r+s) GR(r+s)<=FR(r)f(r+s) GR(r).

By Lemma 3 it follows that f(r+s)ef(r)+HR(r). Hence we have

FR(r)f(r+s) GR(r)<=FR(r) [f(r) + HR(r)] GR{r).

Using the definition of HR(r) and the fact that HR(r) is an ideal of R, it now easily
follows that the right-hand member of this inclusion is contained in HR(r), whence
HR(r+s)<=HR(r), which was to be proved.

By noting that FR(r) = R determines a regularity we obtain

COROLLARY 2. LetfeZ[x]. Then FR(r) = Rf(r)R determines a regularity.

LEMMA 5. Let IF be a regularity such that FR{r) is an ideal of R, for every element
r of every ring R. Iff,geZ[x], then

HR(r)=f(r)FR(r)g(r)

determines a regularity.
The proof of Lemma 5 is quite similar to that of Lemma 4; therefore we omit

it. Furthermore, it will be clear that it is now easy to prove Theorem 5 by using
induction on n and by applying the Lemmas 4 and 5 repeatedly. This is left to the
reader.

DEFINITION 2. Each regularity which is of the type described in Theorem 5,
will be called a polynomial regularity, or shortly a /^-regularity.

REMARK 1. Returning to the list of well-known regularities in Section 2.5, one
sees that eight of them are /^-regularities, namely the first seven ones and the last
one. The remaining three seem to arise by forming sums of ^-regularities in an
appropriate manner. For this reason the next section is devoted to the investigation
of what we shall call the 'summability' of regularities.
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3.2. P'-reguIarities

DEFINITION 3. Let {&U)\ieI} denote a family of regularities. If

16/

determines a regularity, this family will be called summable and S? - {SR\R is a
ring} will be called the sum of the regularities ^ r ( 0 (ie/).

Not every family of regularities is summable. The crucial point is condition
(C3). The class Sf = {SR\R is a ring}, as defined above, satisfies (Cl) and (C2),
but may fail to satisfy (C3). Our main result in this connection is

THEOREM 6. Any family of p-regularities !F(C> (iel) with the property that SR(r), as
defined in Definition 3, is an ideal of R for every element r of every ring R, is summable.

PROOF. AS we noted before it suffices to prove that ¥ satisfies (C3). Therefore,
let seSR(r). Then we need to show that SR(r+s)cSR(r). We shall do this by
showing that FR'Xr+s)<=SR(r) holds for every element / of /. Take /fixed. Since
&lt) is a /7-regularity, there exist integral polynomials fuf2, ...,/„ such that
FR

l\r) =fl{r)Rf2{r)R ...Rfn(r). Hence we have

FR
l\r+s) = f1(r + s)Rf2(r+s)R... Rfn(r+s).

Using Lemma 3 we obtain that fi(r+s)efi(r)+SR(r) for each i, l< /<« . By
substituting this, it readily follows that F^Xr+s^F^'X^+S^r), whence
FR°(r+s)<^SR(r), which was to be shown.

COROLLARY 3. Any p-regularity $F gives rise to another regularity, namely the
regularity &' determined by F'R(r) = (.FR(r)y. The regularity !F' will be said to be
generated by the p-regularity SF.

DEFINITION 4. A regularity which is the sum of a summable family of /?-regu-
larities will be called an sp-regularity. An ^-regularity which is generated by a
p-regularity will be said to be a p'-regularity.

REMARK 2. Regularities 8, 9 and 10 in the list of well-known regularities are
jp-regularities. Regularities 8 and 9 are //-regularities. They are generated by
regularities 1 and 4 respectively.

3.3. Intersection theorems

We shall say that the integral polynomial g is unic if g(0) = 1, and nullic ifg = xkf
for some natural number k (^ 1) and some unic polynomial /. A /^-regularity will
be called unic if all the polynomials concerned are unic, and nullic if at least one
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of them is nullic and the remaining are unic. In the same way one may define unic
and nullic ^-regularities. From now on we shall restrict our investigations to
p- and //-regularities which are either unic or nullic. Note that each of the well-
known regularities is unic or nullic.

For the sake of brevity we introduce the following notations. Let 2F be the
/^-regularity determined by FR(r) = gt(r) Rg2(r) R... Rgn(r). Then we shall denote
& by {g^Rg2R...Rg^ and the F-subradical of any ring S by (gt Sg2S... Sgn).
Similarly, the //-regularity 3F' generated by 3F will be denoted by {<#! Rg2 R... Rgn}}
and the F'-subradical of any ring S by ((gt Sg2 S... Sgn}).

If each of the polynomials gt is unic or nullic, then we may write gt = x*' fh

with fcj^O and / ( unic, 1< i^n, and we are able to prove

THEOREM 7. For any ring R the following holds:

(l)(glRg2R... Rgn) = (gl R)n(Rg2

(2) « g , Rg2R... Rg«»

For the proof the following lemma is needed.

LEMMA 6. Let g = xkf (k>0,f unic), R any ring and reR. Then we have

(1) re Rg(r) if and only if Rr" = Rg(r) and reRrk;

(2) r e <Rg(r)} if and only if <Rrk} = </fc(r)> and r e </?/•*>;

(3) r e Rg(r) R if and only if Rrk R = Rg(r) R and r e Rrk R.

PROOF. The 'if part of each of the statements in the lemma is obvious. Thus we
only need to prove the 'only if parts. This can be done as follows:

(1) If k > 0, then reRg(r) implies that Rr^ Rg(r)<^Rrk<= Rr, whence Rrk = Rg(r)
and reRrk. If k = 0, we have g= l+a1x+... + antf

l for suitable integers a{.
Suppose that reRg(r). Then, if seR, we may write:

s = s(l +at r+... +anr")-s(a1 r+... +anr
n)eRg(r) + Rrc=Rg(r),

whence it follows that R = Rg(r), which was to be proved.
(2) If k>0, then re(Rg(r)> implies that <i?r>c<JRg(r)>c<JRr*>(=<;j?r>) whence

<£/•*> = <Rg(r)) and re(Rr">. If k = 0, firstly let s,teR, while re(Rg(r)>. Then
we may write:

st = sg(r) t - ^ r + . . . + an r") t e Rg(r) R + RrR <= R(Rg(r)} R c Rg(r) R,
from which it follows that Rg(r)R = R2. Now let ueR. Then again we have that
ueRg(r)+Rr. But Rg(r)+R2 = Rg(r)+Rg(r)R = (Rg(r)}. Hence ue(Rg(r)}.
Consequently, R = <i?g(r)>, which was to be proved.

(3) This statement follows from Statement (2), as one easily may verify.
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PROOF OF THEOREM 7. In each of the two statements in the theorem the inclusion
' C is obvious. The converse inclusions may be proved as follows.

(1): Let r belong to the right-hand member of the equality. Then we have
r eg^r) R,re Rgi(r) R(2^i^n-l),re Rgn(r) and r e r*» Rrki R... Rrk». Now Lemma
6 yields that rk*R = gl(r)R, Rrk'R = Rgl{r)R(2^i^n-\) and Rrk- = Rgn(r).
By simply substituting these equalities we obtain:

r*. Rr"> R... Rrkn = gl(r) Rg2(r) R... Rgn(r).

Hence regl(r)Rg2(r)R... Rgn(r). By Theorem 1 this implies that the desired
inclusion holds.

(2): Let reR. Then

<Si to XgiW R.. Rgn(r)> = <g1(r) R> g2(r) R...Rgn. x(r) <Rgn(r)}.

Having noticed this, the proof becomes quite similar to that of part (1); it will
therefore be omitted.

For any integral polynomial g, let us call the regularities {Rg}, {gR}, {(.Rg}},
{<#/?>} a n d {RgR} the elementary regularities determined by g. Then we may say,
according to Theorem 7, that every unic /^-regularity (^'-regularity) is the inter-
section of some elementary unic ^-regularities (p'-regularities) and a unic m-
regularity (m'-regularity), and every nullic ^-regularity (p'-regularity) is the inter-
section of some elementary /^-regularities (//-regularities), each of them being
either unic or nullic, and a nullic m-regularity (w'-regularity). Here the m stands
for 'monomial' in stead of 'polynomial'.

3.4. Elementary regularities

In this section we trace all equivalences in the set of elementary regularities
determined by the polynomials xkf, with k = 0,1,2,... and/a fixed unic polynomial.

3.4.1. The unic case: k=0

THEOREM 8. For every ring R we have
(1) (Rf) = (fR);
(2) «*/» = «/*»;
(3) (RfR) = «Rf»nR2.

PROOF. We shall prove each of the three statements in the theorem in detail.
(1) Let re(Rf). Then r = sf(r) for some element s of R. We shall show that

r = / ( r ) j . This will imply that ref(r)R, whence (Rf)c(fR) follows by Theorem 1.
The converse inclusion can be proved in the same way. Thus, putting
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u = sf(r)—f(r)s, Statement (1) will follow if we are able to show that u = 0. To do
so, firstly note that uf(r) = (r-f(r)s)f(r) = rf(r)-f(r)sf(r) = rf(r)-f(r)r = 0. Using
this, we obtain that u2 = u(r—f(r)s) = ur, whence um-u = u-rm holds for each
natural number m.

Consequently, /(M) M = uf(r). Hence it follows that f(u) u = 0. At the other side,
we have as an obvious consequence of the definition of u that u belongs to (Rf).
Hence ueRf(u), whence u = tf(u) for some element t of R. Therefore, we may write
u2 = tf(u)-u = t-f(u)u = t-0 = 0. Hence tf = 0 holds for each natural number
m, with m ^ 2. Since f(u) w = 0 and / is unic, this implies that u = 0. This proves
Statement (1).

(2) Let re«/?/». Then re</?/(r)>, whence r = sf(r) + t for some elements s
of R and t of Rf(r)R. We shall show that r = /(r)s+1' for some element;'of Rf(r) R.
This will imply that re(f(r)R}, whence the inclusion « j R / » c « / ^ » will follow
by Theorem 1. Since the opposite inclusion can be proved in the same way, this
will suffice for the proof of Statement (2). To begin with, let us observe that
r-f(r)seRf(r)R if and only if sf(r)-f(r)seRf(r)R. Therefore, putting
v = sf(r)—f(r)s, we only need to show that veRf(r)R. Now re(Rf(r)} implies that
R = <i?/(r)>, by Lemma 6(2). So it follows that

R2 = <Rf(r)}R = (Rf(r)+Rf(r)R)R = Rf(r)R.

But it is an obvious consequence of the definition of the element v that veR2.
Thus we may conclude that v e Rf{r) R, whence the statement follows.

(3) The inclusion ' <=' in Statement (3) is obvious. To prove the converse inclu-
sion, suppose that re«/?/»ni?2. Then (*) r e <JR/(r)> and (**) reR2. By Lemma
6(2), (*) implies that R - Rf(r)+Rf(r)R. Substituting this in (**) we obtain that
re(Rf(r)+Rf(r)R)R = Rf(r)R. By Theorem 1 this suffices for the proof of the
inclusion '=>'.

3.4.2. The nullic case: ) t = l

THEOREM 9. For every ring R we have:

(2) (RxfR) = «Rxf})n(RxR) =

The method of the proof of Theorem 9 is almost the same as that of Theorem 8(3);
therefore it will be left out. One should note that Theorem 9 does not contain the
statements (Rxf) = (xfR) and «.Rxf}) = ((xfR}). The reason is that these equalities
do not hold in general. It can also be shown that we do not always have

«** /» = « * / » n « l k » .

For examples the reader may be referred to Roos (1975).
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3.4.3. The nullic case: /fc>2

THEOREM 10. For every ring R we have:
(1) (Rxkf) = (Rf)n(Rx2);
(2) «i?x7» = «Rf»n«Rx2»;
(3) (RxkfR) = «Rxkf».

PROOF. We shall give proofs of Statements (1) and (3). The proof of Statement
(2) is similar to that of (1); it will be left to the reader.

(1) The method of the proof of Theorem 8(3) may be used to show that
(Rxkf) = (Rf)n(Rxk). Hence it suffices to show that (Rxk) = (Rx2). The inclusion
' C is obvious. To prove the converse inclusion, let re(Rx2). Then also r2e(Rx2).
Hence r2eRr*, whence Rr2c Rr*c Rr

3. Consequently, Rr2 = Rr3. From this one
easily deduces that Rr2 = Rrk. Since reRr2 it follows that reRrk, whence the
inclusion '=>' follows from Theorem 1.

(3) The inclusion '<=' is trivial. Let re«Rxkf». Then reRxkf(r) + Rrkf(r)R.
This implies that reRrR, since k ^2. But

RrRc R(Rrkf(r) + Rrkf(r) R)R<= Rrkf(r) R,

whence r e Rrkf(r) R, proving the statement.

By right—left dualizing Statement (3) we obtain that (RxkfR) = «**/#»•
Hence we have ((Rxkf}) = «x*//?». It is much less obvious that the regularities
{Rxkf} and {xkfR} are equivalent. In view of Theorems 8(1) and 10(1) this will be
the case if (Rx2) = (x2 R). In this connection the following lemma is of great interest.

LEMMA 7. Let re(Rx2) and r = sr2, with seR. Then r = rsr = r2 s. Consequently

PROOF. Define u = r—rsr. One may easily verify that u2 = 0. Since ue(Rx2),
we have ueRu2. Hence u = 0. So r = rsr. In just the same way one proves that
rsr = r2s. Hence rer2R. By Theorem 1 it follows from this that (Rx2)<=(x2 R.)
The converse inclusion may be proved similarly. Hence (Rx2) = (x2 R).

3.4.4. The lattice of elementary regularities

Let !F and & denote any two regularities. Define 3F<<$ if and only if
F(R)<=-G(R) holds for every ring R. Obviously, the relation -< is reflexive and
transitive. Moreover, #" and 'S are equivalent if and only if SF-K.'S and <S<.9;.
Hence, -< determines a partial ordering of the family whose elements are the classes
of mutually equivalent regularities. Identifying equivalent regularities, we thus
may say that -< is a partial ordering of the family consisting of all regularities. Now
let/ be any unic integral polynomial. Then < yields a partial ordering of the set of
all elementary regularities determined by the polynomials xkf, k = 0,1,2,....
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Using the equivalences derived in the previous sections, one may draw the corres-
ponding diagram. This is done in Fig. 1.

From the regularities appearing in this diagram only the following four determine
hereditary subradicals: {Rf}, {</?/>}, {Rx2f} and {Rx2fR}. For each of the remaining
six regularities the radical and the subradical do not coincide. These results can be
obtained with the help of Theorem 3. For the proofs we refer to Roos (1965).

{Rx/R}

{Rx2fR}

{Rx*f}

FIG. 1. The diagram of elementary regularities.

3.5. Monomial regularities

In this section it will be shown that there exist, up to equivalence, eleven nullic
m-regularities and five nullic /M'-regularities, three of which are at the same time
a nullic m-regularity.

3.5.1. Nullic m'-regularities

Throughout this section & will denote any nullic w'-regularity. By definition,
is of the form {<**' Rx**R... -&**»>}, with kt +k2 +... +kn^ 1.

THEOREM \\.Ifk{^2 for some i, 1 <i<n, then F(R) = (Rx2R) for each ring R.

PROOF. If \<i<n, then the inclusion '<=' is trivial. If i = n, then we have

16
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F(R)<=«Rx2». F r o m Theorem 10(3) it follows tha t «Rx2}) = (Rx2 R) by substi-
t u t i n g / = 1. ThereforeF(R)<= (Rx2 R). Similarly if i = 1. So it remains to show that
the opposite inclusion holds. To do so, define m = kl+k2 + ...+kn+n — 1. Then
(RxmR) = (Rxk'x-xk2-x...x-xk»R)<=F(R). Using that m>2 one may easily
deduce from Theorem 10 that (Rx2 R) = (RxmR). Hence the theorem is proved.

THEOREM 12. If kt< 1 for every i, l^i^n, and E f k ,^2 , then we have for each
ring R: F(R) = (RxRxR).

PROOF. If kt = kn = 0, then the inclusion '<=' is obvious. If kx = 0 and kn = \,
then we have that F(R)<^ ((RxRxy). So the inclusion '<=' will hold if

(<.RxRx»<=(RxRxR).

That this is the case can be shown as follows. Let re((RxRx}). Then re(RrRr}.
But (RrRr} = Rr(Rr+RrR), as easily may be verified. Hence it follows that
r e R • Rr(Rr + RrR) • (Rr + RrR) c RrRrR, whence ((RxRx}) <= (RxRxR).

Note that in fact ({RxRx}) = (RxRxR).
In just the same way one proves that also ((xRxR)) = (RxRxR) and

«x i fx» = (RxRxR),from which onemaydeduce the inclusion'^ 'in thecasesytj = 1,
kn = 0 and kl = kn = 1. So it remains to prove the opposite inclusion. Suppose
that re(RxRxR). Then re RrRrR. Hence RrR<= RrRrR, whence we have
RrR = RrRrR. Consequently RrR = RrR^R)""1. But

RrR(rRf-1 <= Rrkt Rrki R... Rrk« /?c<r*. Rrki R... Rrk»}.

So it follows that re<r*>Rrk*R... Rrk»}, completing the proof.

THEOREM 13. IfY^i^i = 1' tnen we have for each ring R:

(4) (RxR) =

PROOF. The proof of Statements (1), (2) and (3) uses the same arguments as
the proof of Theorem 12; we therefore omit it. Statement (4) follows from
Theorem 9(2) by merely substituting / = 1.

3.5.2. Nullic w-regularities

Throughout this section 3F will denote any nullic w-regularity. Thus !F is of
the form {**• /?*** R... Rx**}, with kl +k2 + ...+kn^ 1.
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THEOREM 14. // kx > 2 or kn > 2, then F(R) = (Rx2) for each ring R.

PROOF. One may easily deduce from Lemma 8 that (xp Rx9) = (Rx2) for any
two non-negative integers p and q, with p^-2 or q^-2. Having done this, the
inclusion '<=' becomes obvious, and the opposite inclusion can be proved by
takingp = kt and q = k2+k3+ ... +kn+n-2.

For our convenience we define the non-negative integer k = max{fcj|l <i<n}.

THEOREM 15. If k^2, then for each ring R the following holds:

(1) F(R) = (Rx2 Rx) ifki=O and kn=\;
(2)F(R) = (xRx2 R) ifkt = l and kn = 0;

= (Rx2)ifk1=kn=l.

PROOF. Firstly we show that F(R) = (x"> Rx2 Rx**). Let re(x*> Rx2 Rx*-). Then
we have rer*> Rr2 Rrk" and r e (Rx2 R). From Theorem 11 we deduce that

(Rx*i R.^Rx*"-' R) = (Rx2 R).

So it follows that reRrkiR.. . Rrk«-iR. This clearly implies that

whence we are allowed to conclude that r e r*< Rrki R... Rrk», since rerkiRr... Rrk".
Hence F(R)^>(xk' Rx2 Rxk"). The opposite inclusion being trivial, we even have
equality. Now the Statements (1) and (2) easily follow, and Statement (3) becomes
clear on account of the following lemma.

LEMMA 8. For each ring R: (xRx2 Rx) = (Rx2).

PROOF. The inclusion '=>' may be deduced from Lemma 7. The proof of the
converse inclusion is as follows. Let r e (xRx2 Rx\. Then r = rsr for some element
s of R. Define t = r—sr2. By a simple calculation one may verify that t2 = 0.
Clearly t e (xRx2 Rx). Hence tetRt2 Rt, whence t = 0. Consequently, r = sr2 and
thus we conclude that reRr2. This proves the lemma.

THEOREM 16. If k = 1, then for each ring R the following holds:

(1) F(R) = (RxRx) ifk^O and kn=l;
(2) F(R) = (xRxR) if kt = 1 and kn = 0;

= (xRx)ifki=kn=l.

The proof of this theorem does not use new arguments and will therefore be left
out. The same holds for the next theorem.
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THEOREM 17. If k = 0, then for each ring R the following holds:

(1) F(R) = (Rx) ifk1=O andkn = \;

(2) F(R) = (xR) ifkt =

[16]

FIG. 2. The diagram of nullic m- and /n'-regularities.

3.5.3. The diagram of nullic m- and m'-regularities

Since we have determined, up to equivalence, all nullic m- and all nullic /n'-
regularities, we now are able to draw Fig. 2. This diagram shows how these
regularities are ordered according to the partial ordering defined in Section 3.4.4.
With the help of Theorem 3 it is easy to show that those of the regularities
!P appearing in the diagram determine a hereditary subradical for which

For each of the remaining regularities it is possible to show that the induced
radical and subradical do not coincide, by means of appropriate counterexamples.
For the details the reader may be referred to Roos (1975).
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