
ORBITS 

James Binney 
Department of Theoretical Physics 
Keble Road 
Oxford Ο Χ Ι 3NP 
England 

A B S T R A C T . Orbits that respect at least three isolating integrals of motion have 
very special structures in phase space. The main characteristics of this structure 
are reviewed, and the concrete examples that are provided by orbits in Stäckel po-
tentials, are discussed. Many orbits in general potentials admit three approximate 
isolating integrals and closely resemble orbits in Stäckel potentials. If the potential 
is that of an elliptical galaxy with negligible figure rotation, the overall orbital stuc-
ture of the potential differs from that of a Stäckel potential only by the presence 
of a few unimportant families of resonant orbits. However, this elegant picture is 
shattered by the introduction of non-negligible figure rotation: though substantial 
regions of phase space may still be occupied by orbits that individually resemble 
orbits in Stäckel potentials, the overall orbital structure is radically changed by 
figure rotation, and in a rotating potential significant portions of phase space are 
given over to chaotic orbits, quite unlike orbits in Stäckel potentials. 

1. INTRODUCTION 

The emergence a decade ago of the view that elliptical galaxies are normally triaxial 
bodies, obliged us to discover what kinds of orbits are possible in a given triaxial po-
tential. In this review I shall concéntrate exclusively on this question, neglecting for 
example the extensive work of Richstone and his collaborators (see Richstone 1984), 
of Kent (1983) and others on the orbital structures of axisymmetric potentials. 

The last decade has yielded a good basic understanding of orbits in potentials 
with figures fixed in inertial space, and this understanding has formed the basis 
of much recent work on galaxy models. Most of this review is taken up with a 
summary of the key results obtained in this area. Many of the concepts that arise 
from this work, especially the concept of orbital tori, are widely applicable in stellar 
dynamics. However, we should not lose sight of the likelihood that many orbits in 
elliptical galaxies are significantly influenced by rotation of the potential's figure, 
and therefore that we shall not be able to construct fully satisfactory galaxy models 
until we have cracked the much harder problem of motion in a potential with non-
negligible figure rotation. I shall mention some pioneering work on this complex 
problem at the end of the review, but the space allocated to this topic in no way 
reflects its likely importance. 
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230 J. BINNEY 

Galaxies are three-dimensional, but two-dimensional orbits are much easier 
to study (not least because the power of Poincaré's surfaces of section). In the 
interests of brevity, results that are equally valid for two- and three-dimensional 
orbits, will be described in terms of η dimensions. 

2. REGULAR ORBITS 

Simple numerical experiments show that few, if any, orbits in galaxy-like potentials 
explore the whole "energy" hypersurface JJ(x,v) = E. The dimensionality of 
the phase-space subset to which a given orbit is confined can be elucidated by 
studying the range of velocity vectors ν with which an orbiting particle passes 
by a particular place x . On an irregular orbit, the range of velocities ν at χ is 
at least one-dimensional. The orbit is said to be regular if this range consists of a 
small number, typically 2-6, of isolated possibilities. In the case of two-dimensional 
orbits, it is immediately apparent from a simple tracing of the orbit, whether the 
orbit is regular or irregular; irregular orbits look messy [see, for example, Fig. 3 of 
Binney (1982)]. 

Since the value of ν at a given point χ on an τι-dimensional regular orbit is 
determined up to a few-fold degeneracy, the 2n phase-space coordinates ( x , v ) of 
points on the orbit must be constrained by η relations of the form Η Ξ /χ (χ, ν ) = 
i 1 Ξ i ? , . . . , i n (x , ν ) = i n , where the isolating integrals Ik are smooth single-valued 
functions of the phase-space coordinates. Conversely, along an irregular orbit, fewer 
functional relationships constrain the coordinates ( x , v ) ; One usually has Η — E 
and one or more inequalities i'k < Ik < ik-

The phase-space structure of regular orbits is strongly constrained by the 
nature of Hamilton's equations of motion. From the mere existence of the η isolating 
integrals J i , . . . , J n , one may demonstrate the following (Arnold 1978): 

(i) In 2n-dimensional phase space the orbit lies on an η-dimensional surface which 
is topologically equivalent to an rc-torus. In other words, a continuous one-
to-one map exists of the orbital surface onto the unit cube of ra-dimensional 
Euclidean space with opposite faces identified. 

(ii) The action integrals J1 = ( 2 π ) _ 1 § ν · dx around a given orbital torus are 
equal for any two closed paths η on the torus that can be continuously de-
formed into one another by motions confined to the torus. 

(iii) It is possible to incorporate n of these action integrals into a system of angle-
action coordinates (0 ,J) for that part of the phase space in which the Ik 
are integrals. In this portion of phase space, the action integrals label the 
orbital tori, while position on any torus is specified by the n angle variables 
ö i , . . . The coordinate system (0, J) is canonical. In particular, a small 
element of phase-space volume is d n x d n v dn0dn J and Hamilton's equations 
0 — [θ, H], J — [J,-H] apply- The Hamiltonian H, being constant on orbital 
tori, is a function H(J) of the actions only. Hence Hamilton's equations 
0 = ω(3) ΞΞ (dH/dJ) integrate immediately to 0(t) = 0(0) + ut. 

The Cartesian coordinates ( x , v ) are periodic functions of the Ok with period 2π; 
x(0 + 27rm, J) = x(0, J) for any integer vector m . Hence we may expand χ 
as a Fourier series χ = £^ X m (J) exp[¿m · 0]. Substituting for 0(¿), we ob-
tain the position χ of an orbiting particle as a quasi-periodic function of time: 
X W = E m X m ( J ) exp[tm · u>t], where X m ΞΞ X m exp[¿m · 0(0)]. Thus the Fourier 
decomposition χ (ω) of the position vector χ(¿) along a regular orbit consists of a 
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series of discrete lines. The frequencies m · ω at which these lines occur are inte-
ger combinations of three fundamental frequencies and by deducing the integer 
vector m associated with each line, one can reconstruct the angle representation 
x(0) from the time evolution x(t) (Binney & Spergel 1984). This reconstruction is 
useful, because x(0) contains much more information than x(t) (see also Ratcliff et 
al. 1984). 

Regular orbits fall naturally into families. Each orbit family is parented by 
a sequence of stable closed orbits. In a realistic non-rotating triaxial potential 
there are three principal orbit families (Schwarzschild 1979): the box family, whose 
parents are the long-axis orbits; the short-axis tube family, which is parented by 
the closed short-axis loop orbits, and the long-axis tube family which has the closed 
long-axis loop orbits for its parents. (De Zeeuw (1985) additionally subdivides the 
long-axis tube family into inner- and outer-tubes.) At a given energy we may think 
of the orbital tori of each family as wrapped around the degenerate wire-like torus 
of the parent orbit of that energy, much as the insulator and sheath of a coaxial 
cable encircle the cable's central wire [see Fig. 1 of Lynden-Bell (1962)]. 

The orbits of each orbit family form a η-dimensional continuum. A useful 
graphical display of these continua is obtained by treating η independent action 
integrals over the orbits as Cartesian coordinates, and thus identifying the orbit 
that has actions ( J i , . . . , J n ) with the corresponding point in an n-dimensional 
action space. The orbits associated with neighbouring points in action space, occupy 
adjacent regions of phase space. Furthermore, the volume of phase space that is 
occupied by the orbits whose representative points lie with a volume element d n J 
in action space, is (2π)ηάη3. Consequently, action space gives a fair representation 
of the a priori probability of a group of orbits. 

If the frequencies are nearly everywhere incommensurable (as will usually 
be the case) a strengthened Jeans theorem applies: the distribution function of a 
steady-state galaxy in which almost all orbits are regular with incommensurable 
frequencies, may be presumed to be a function /(J) of the actions only. Further-
more, the number of stars with action^ in the range dn3 is dN = (2π)η/(3)άη J, so 
/ is up to a constant, simply the density of stars in action space. 

In general, the orbits of different orbit families have to be accomodated in 
different action spaces. Schwarzschild's principal families of orbits in a non-rotating 
potential form an exception to this rule, however; it is possible to define the actions 
of orbits of the principal families in such a way that the continua of all three families 
may be fitted together into a single action space, the principal action space. Any 
additional orbit family gives rise to a zone of missing actions in the principal action 
space. The volume of this zone is proportional to the phase-space volume occupied 
by the subfamily's orbits, but actions cannot be assigned to the family's orbits in 
such a way that they occupy the zone of missing actions in the principal action 
space (Binney & Spergel 1984). 

2.1 Resonances and Extra Integrals 

If the fundamental frequencies of a regular orbit are rationally related, that 
is, if we have m · ω = 0 for integer vector m, then the orbit does not explore 
all of the torus {H — U, . . . , / Λ — in} to which it is confined. The restriction of 
the orbit to a subset of its torus may be attributed to an extra isolating integral, 
Ιη+ι Ξ m · θ. If η = 2, the orbit is closed. If η — 3 the orbit closes only if a 
second rational relationship holds, m' · ω — 0 for m' φ m. Familiar examples of 
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these phenomena are furnished by motion in spherical potentials; the four isolating 
integrals (H, L x , Ly and Lz) may be decomposed into three, say H, |L| and Lz 

that specify a torus, and a fourth, say Lx/Ly that arises because the orbit has only 
two independent frequencies, the radial frequency AC and the azimuthal frequency 
Ω. If κ and Ω happen to be rationally related, as in Kepler (/c = Ω) or harmonic 
(κ = 2Ω) motion, a fifth integral arises (the position angle of the apocentre), and 
the orbit closes. 

2.2 Stäckel Potentials 

Recently, de Zeeuw (1985) has shown that potentials studied a century ago by Ja-
cobi and Stäckel provide analytic models of the most important features of the 
orbital structures of non-rotating elliptical-like potentials. In particular, (i) essen-
tially all orbits in a Stäckel potential are confined to tori; (ii) motion on the tori is 
quasiperiodic; (iii) in realistic cases, all orbits belong to the same three orbit fam-
ilies as orbits earlier integrated numerically by Schwarzschild (1979). De Zeeuw's 
discovery of handy analytic models of orbits in non-rotating galaxy-like potentials, 
has opened up a rich vein of exploration. It is worth taking a little time to review 
the main features of Stäckel orbits. 

Orbits in Stäckel potentials are intimately connected with systems of confo-
cal ellipsoidal coordinates. In two dimensions these coordinates are most neatly 
expressed by writing (χ = Δ ι s inhucosu, y = Δ χ coshusin v) , where (x,y) are the 
usual Cartesian coordinates, Δ χ > 0 is a constant, and u and i>, which are constant 
on ellipses and hyperbolae respectively, are the new coordinates. In three dimen-
sions, ellipsoidal coordinates (λ > 0 > μ > —Δχ 2 > ν > —Δ22) may be defined as 
the roots for τ of the cubic 

x2 y2 z2 

— + 2 + 2 = 1 1 

τ r + Δ χ 2 τ + Δ 2

2 V ' 

where 0 < Δχ < Δ2 are constants, λ is constant on ellipsoids which at large |x| 
approximate spheres of radius |x| ~ γ/λ. In the (x ,y) plane, λ = A x 2 s i n h 2 u , 
μ — — Δ χ ^ ο β 2 ^ . At large |x|, μ and ν specify angular position, μ depending 
mainly on azimuth φ and ν depending most strongly on colatitude θ (de Zeeuw 
1985, Appendix A ) . 

Let pT be the momentum canonically conjugate to τ = λ, μ or v. Then the 
remarkable property of Stäckel potentials is that on an any orbit in one of these 
potentials (and these alone!), pT is a function of the corresponding coordinate alone. 
In fact 

pl(r) = 2 { E - ^ - + G ( R ) ) / { T + Δ Ι ' ) , ( 2 ) 

where E , ¿2 and is are the values of the energy and two non-classical integrals on 
the orbit, and G defines the potential Φ through 

λ—*μ—>ι/ ν ' ν ' 

The real-space boundaries of the orbits are the curves on which one of the momenta 
vanishes; hence all orbits are bounded by coordinate surfaces. The number of 
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Figure 1. The partition of action space between orbit families in the potential of 
the perfect ellipsoid that has unit mass and axes in the ratios b/a = 0.75, c/a — 
0.5. The small and large triangles are surfaces of constant energy; E — —0.4 and 
E — —0.2 respectively. They are plotted on the same scale and divided into the 
domains of the boxes (B), short-axis tubes (S) and the long-axis tubes (L). The 
quantity η plotted in Fig. 2 is the ratio of the length of the portion of the edge of 
the triangle marked "3" to the sum of the lengths of "3" and "4". 

possible momentum, and therefore velocity, vectors at any point χ on the orbit 
ranges from 1-8 depending on how many of the pT change sign on the orbit. On 
box orbits, all momenta change sign, and eight velocity vectors are possible at any 
given point, while on tube orbits, only two momenta, ρ χ and one other, change 
sign, so only four velocities occur at a point. The number of roots of the equations 
pT = 0, and thus the family to which a given orbit belongs, depends on the values 
of the constants E, i2 and ¿ 3 . 

The action integrals which enable all orbits to be represented in a common 
action space, are 

Λ (χ, ν ) = JT{H,I2,h) ΞΞ — / | p r ( r ) | d r , where k = { 0 

for τ — λ 

for τ — μ or ζ/, 

(4) 
and r m ¡ n and r m a x are the smallest and largest values of τ along the orbit. Unfor-
tunately no comparably simple expressions are available for the angle coordinates 
ΘΤ as functions of the phase-space coordinates. 

While Stäckel potentials provide invaluable models of galaxy potentials, they 
are subject to significant limitations. The most important of these arise from the 
speed with which the isopotential surfaces become round at large |x|. If the po-
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Figure 2. The quantity η defined in the caption to Fig. 1 plotted for four potentials 
against a(E), the distance along the potential's major axis at which the potential 
Φ — E. rc is the core radius of the body generating the potential. In their cores, the 
bodies generating the four potentials ^sch? $sts and <&stL all have axis ratios 
similar to those of the perfect ellipsoid for which Fig. 1 is plotted (see Gerhard & 
Binney 1985 for details). The potential Φ β ο Ι ι is an approximation to Schwarzschild 's 
(1979) potential (ρ oc r~ 3 for r ^> r c ) , and Φείε is the Stäckel potential that 
most closely approximates it. Similarly, Φβίΐ, is a Stäckel approximation to the 
potential Φι, generated by a body with roughly constant axis ratios and density 
profile ρ oc r - 2 at r » r c . 

tential were axisymmetric, all orbits would belong to one of the tube families. 
(Short-axis tubes if the potential were oblate, and long-axis tubes in the prolate 
case.) Hence the fraction of orbits of a given energy E that are boxes is a natural 
measure of the importance of the potential's triaxiality at radii characteristic of 
E. Figure 1 shows the action-space boundaries between the different orbit families 
for two values of E in a particular Stäckel potential. Notice ii) that the box-orbit 
fraction decreases quite rapidly with increasing energy, and (ii) that the shape of 
the box domain is almost independent of energy. Consequently, at any energy the 
box-orbit fraction is roughly proportional to ( l — 7 ) 2 , where ί(Ε) is the fraction 
of orbits in the potential's equatorial plane that are loops. (These orbits fall in 
the (Jr,Ja) plane in action space.) In Figure 2 η is plotted against a measure a 
of orbital energy for two Stäckel and two general potentials. One sees that with 
increasing energy, ( l — η)2 —• 0 rather rapidly in the case of the Stäckel potentials, 
but slowly, if at all, for the other potentials plotted. 

The concentration of the effects of triaxiality to the centres of Stäckel poten-
tials is mirrored in conditions which the density profile p(x) of a body must satisfy 
if it is to generate, via Poisson 's equation, a Stäckel potential. In fact, if p(x) does 
generate a Stäckel potential, then (i) then p(x) must have a homogeneous core, i.e. 
ρ(χ ) ~ constant for | x | < a, a constant; and (ii) at | x | ^> a, the non-spherical part 

of />, pi = \J^2m I / Y2l((ì)p(x)d2(ì\2, must fall off as p2 oc | x | - 4 . In particular, 

the ellipticity of a surface of constant ρ is independent of | x | only if ρ oc | x | ~ 4 for 
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|x| ^> a, as in de Zeeuw's perfect ellipsoids. If we require that the density along 
the body's minor axis falls off as ρ oc | x | _ r \ with η « 3 as is suggested by Hubble's 
law, or η « 2 as would be required to generate a flat rotation curve, then the body 
can generate a Stäckel potential only if it rapidly becomes round for |x| > a. Thus 
bodies that generate Stäckel potentials are characterized by cores in which stars 
move nearly harmonically, and outer envelopes, in which the potential is either 
near Keplerian (if η > 3) or dominated by a locally spherical density distribution 
(if η < 3). Unfortunately there are many problems in galactic dynamics for which 
it is essential to consider models which have either singular central densities (see 
Gerhard, this meeting) or massive, strongly aspherical outer envelopes (e.g. Bin-
ney et al. 1986), and the application of Stäckel models to such problems can be 
frustrating. 

3. ORBITS IN SLOWLY-ROTATING POTENTIALS 

Rotation of the figure of a triaxial potential has far-reaching consequences for both 
regular and irregular orbits. Observâtionally, the most important effect of figure 
rotation is to imbue the vital triaxiality-supporting box orbits with a definite sense 
of circulation about the potential's rotation axis (usually assumed to coincide with 
the galaxy's shortest axis) (Schwarzschild 1982). The work of Merritt (1980) and 
Vietri (1985) has shown that strongly triaxial systems cannot achieve significant 
ratios ν/σ of rotational and random velocities unless rotation of the potential has 
thus enabled the boxes to contribute to the overall stellar circulation. 

Rotation affects the work of the galaxy modeler in two further ways: (i) in the 
presence of rotation the action spaces of Schwarzschild's principal orbit families no 
longer fit neatly together to form a single principal action space (Binney & Spergel 
1984); (ii) some distance from the centre, figure rotation eliminates the majority of 
orbital tori in favour of a sea of stochastic orbits. 

4. CHAOS 

Since the frequencies cjfc are continuous functions of the phase-space coordinates, a 
general potential supports an infinite number of closed orbits. Consideration of the 
stability characteristics of these orbits gives some insight into the way in which the 
regular orbital structure exemplified by Stäckel potentials can dissolve into chaos. 

If one linearizes the equations of motion around a closed orbit of period Γ , 
one obtains a set of coupled linear differential equations with coefficients that are 
periodic functions of time. By Floquet's theorem (e.g Margenau & Murphy 1956), 
any solution of these linear equations can be written as a sum of solutions of the 
form XeßtP(t), where X and μ are constants, and Ρ has period T: P(t-\-T) — P(t). 
There are generally (n — 2) possible non-zero values of μ. The orbit is unstable if 
the real part of any of the μ'β is positive. The orbit is stable if at least one μ is 
non-zero, and every such μ is pure imaginary. A stable closed orbit, is always a 
parent of an orbit family. 

There are infinitely many closed orbits of any given energy £ in a Stäckel 
potential, but no subsidiary orbit families, because all but 3-6 of these closed 
orbits are neutrally stable (every μ = 0) . This is a very special circumstance. 
In less special potentials, there are infinitely many of both stable and unstable 
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closed orbits. In many cases of astrophysical interest, a few subsidiary families are 
able to push the principal tori back enough to gain a significant foothold in phase 
space, but the families parented by all other stable closed orbits are too small to 
be seen in a quick survey of possible orbits; these subsidiary families live like lice 
squeezed flat between the barely ruffled surfaces of the principal families. Fig. 7 of 
Binney (1982) shows an example of this phenomenon. 

Now, just as stable closed orbits on the tori of a principal family give birth to 
subsidiary families, so stable closed orbits can arise on the tori of a subsidiary family, 
and call into being orbit families of the third generation. Closed orbits on tori of the 
third-generation spawn fourth-generation orbit familes, and so on ad infinitum— 
Gustavson (1966) shows a concrete example of this hierarchy. Little of the original 
regular phase-space structure survives the endless formation of orbit families unless 
the proportion of phase space that is claimed by families of any generation m is 
significantly less than that claimed by families of generation (m — l ) . 

At present there is no inexpensive way to estimate how much of phase space 
a particular resonance will seize. If a moderately triaxial potential is stationary in 
inertial space, resonances are unimportant, but resonances rapidly create havoc in 
phase space once we set the potential rotating. A partial explanation of this phe-
nomenon is as follows. By setting the potential rotating at angular frequency Ω, 
we shift some of the orbital frequencies ujk by ± Ω while leaving others unchanged, 
and thus call into being a whole new set of resonances. Contopoulos & Mertzanides 
(1977), Athanassoula et al. (1983), Teuben & Sanders (1985) and others have stud-
ied these resonances in planar bars, while Binney (1981), Magnenat (1982), Mulder 
& Hooimeyer (1983) and Pfenniger (1984) have studied resonances that involve the 
motion perpendicular to the potential's equatorial plane. Evidently, these reso-
nances of rotating potentials are much more effective at breaking up tori of the 
principal families than are the resonances of non-rotating potentials, but no simple 
mechanism has been identified to date. 

The study of the generation of chaos by resonances, provides endless enter-
tainment for analysts and computer enthusiast alike. In fact, the detailed structure 
of phase space at the onset of chaos is so fascinating, that before plunging deeply 
into its study, it is well to decide what we need to know about the chaotic regions of 
phase space before we can build serviceable galaxy models. My list would include: 

(i) What are the characteristics of a potential Φ that determine whether its phase 
space is largely regular or largely chaotic? One possible answer to this question 
is "the distance of Φ from the nearest integrable potential Φ/". Unfortunately, 
along any given orbit, any Hamiltonian lies arbitrarily close to an integrable 
Hamiltonian (Contopoulos 1963), so this is not a very satisfactory answer as 
it stands. Evidently the regular orbital structures of some integrable Hamil-
tonians are more easily disrupted than those of others. Also the effectiveness 
of a potential perturbation δ Φ in introducing chaos depends on more than 
just the magnitude of 6Φ (Gerhard 1985). Figure rotation seems to be an 
especially potent form of perturbation, 

(ii) How should we incorporate stochastic orbits into our galaxy models? On 
closer examination, stochastic orbits often prove to be nearly quasi-periodic 
for several orbital periods at a time, and seem chaotic only because they 
switch abruptly from one quasi-periodic structure to another in an apparently 
random way. Are numerical experiments trustworthy here? What are the 
statistical characteristics of this switching? Can stochastic orbits be treated 
as linear combinations of regular orbits? 
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(iii) How many fundamentally different stochastic orbits are there at each en-
ergy? Goodman & Schwarzschild (1981) found that a single stochastic sea in 
Schwarzschild's (1979) model galaxy actually contains orbits that differ from 
one another on time-scales of a Hubble time. As Petrou (1984) and Pfenniger 
(1985) have pointed out, partial barriers, or "cantori" in phase-space can con-
tain stochastic orbits for many orbital periods before suddenly releasing them 
into a wider volume of phase space. In the long run, this process gives rise to 
"Arnold diffusion" through phase space. How should we describe this sort of 
process mathematically, and what are its astronomical consequences? 
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DISCUSSION 

Toomre: What is the best evidence you know that the shapes of triaxial galaxies 
(which I have finally gotten used to!) actually revolve appreciably in space? 

Binney: In a non-rotating potential, the box orbits, which form the backbone of 
a triaxial galaxy, do not contribute to the circulation. Here one can get the stars 
to circulate only by weighting tube orbits, which are fundamentally opposed to the 
bar. The degree of their opposition grows with the strength of the bar. Merritt 
(1980, Astrophys. J. Suppl., 63, 435) found that for Schwarzschild's axis ratios 
a : b : c = 1 : 0.625 : 0.5, only modest rotation could be found in this way. Thus 
if rapidly-rotating galaxies are strongly triaxial near their core, their figures must 
rotate. I suspect that there are two main classes of rapidly rotating galaxies: (a) 
those which are strongly triaxial at small radii and have rapidly rotating figures 
which become axisymmetric well in advance of the Inner Lindblad Resonance; (b) 
those which are axisymmetric at small radii and become triaxial with low pattern 
speed far from the center. 

Ostriker: Am I correct in thinking that the limitation (for non-rotating figures) 
to small regions of substantial triaxiality for Stäckel potentials is not fundamental. 
Real galaxies could have large (in units of core radius) triaxial parts but one simply 
could not compute the equilibrium analytically. 

Binney: Yes. The logarithmic potential investigated by many people has a beau-
tifully regular orbital structure to very large radii. But at large radii this orbit 
structure diverges from that characteristic of Stäckel potentials in that it supports 
a host of subsidiary families in the box domain. We still haven't figured out the 
details of galaxy building with potentials of this sort, but I see no fundamental 
problem. 

Illingworth: My question relates to Alar Toomre's question, (a) What general con-
straints can be placed on the amount of figure rotation for a given (e.g., observed) 
level of rotation? (b) Could figures counter-rotate? 

Binney: As far as I am aware, the literature contains no satisfactory study of the 
problem you raise in (a). Vietri's study of triaxial spheroids for our Galaxy is the 
best reference I know. As to (b) , in principle figures can counter-rotate (Freeman's 
analytic models do) but never by very much and I rate the probability of such 
models very low—see Vietri for details. 

White: We know that the bars in barred spirals are rapidly rotating triaxial systems. 
If nature can do the trick in this case, how confident can we be that it is not possible 
for more elliptical-like systems? 

Binney: The density profiles of bars and ellipticals are quite different. Bars in 
disks have fairly constant surface density inside pretty sharp edges, while ellipticals 
have smooth, steep density profiles. Thus in a bar, the orbital frequencies can 
all be comparable with the pattern speed Ω, while in an elliptical the range in 
frequencies is very great. Furthermore, the sharp edges of bars can be identified 
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with a resonance, perhaps corotation or the Inner Lindblad Resonance. Ellipticals 
seem to have no comparable characteristic radius. 

Statler: Levison & Richstone find in the non-rotating logarithmic potential, strange 
orbits that look like boxes but do not line up with the symmetry planes. Are these 
resonances, or nearly-stochastic orbits, or something else? 

Binney: Many resonances arise in the logarithmic potential when the semi-axes of 
the zero-velocity surfaces are much larger than the potential's core radius (Levi-
son and Richstone do use a finite core contrary to what is said in their poster). 
Their weird orbits are almost certainly trapped, or partially trapped, around such 
resonances. 

Sellwood: N-body simulations by Wilkinson & James, Gerhard etc. took a remark-
ably long time to settle to a steadily rotating potential. Is it likely that real elliptical 
galaxies have settled yet to uniform figure rotation? 

Binney: No. In studying steady-state models we are surely doing no more than 
getting zeroth-order approximations to reality. As yet we know little of how a 
steady-state system will respond to perturbations. I expect many will be stable, 
and others will display only slowly-damped long-period oscillations. 

Toomre asking a question, in his usual style. 
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James Binney explains that orbits are simple. 
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