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Abstract
We consider the Dirichlet Laplacian with uniform magnetic field on a curved strip in two dimensions. We give a
sufficient condition on the width and the curvature of the strip ensuring the existence of the discrete spectrum in
the strong magnetic field limit, answering (negatively) a conjecture made by Duclos and Exner.
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1. Introduction and statement of the main results

In this article, we address the question of existence of the discrete spectrum for a magnetic Laplacian
with Dirichlet boundary condition on a two-dimensional curved waveguide.
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2 E. Bon-Lavigne et al.

1.1. What is a waveguide?

Let 𝜸 : R→ R2 be a smooth and injective curve with |𝜸′ | = 1. We set N = (𝜸′)⊥, where for (𝑎, 𝑏) ∈ R2

we write (𝑎, 𝑏)⊥ for (−𝑏, 𝑎). We denote by 𝜅 the algebraic curvature of 𝜸. It is defined by

𝜸′′ = 𝜅N.

In this article, we work under the assumption that 𝜅 is compactly supported. The function

Θ :
{
R × (−𝛿, 𝛿) → R

2

(𝑠, 𝑡) ↦→ 𝜸(𝑠) + 𝑡N(𝑠)

is smooth with bounded derivatives, and it is injective for 𝛿 > 0 small enough. In this case, we set

Ω = Ω𝜸, 𝛿 = Θ(Ω0) , with Ω0 = Ω0, 𝛿 = R × (−𝛿, 𝛿).

The open set Ω is what we call a waveguide in this work.

1.2. The magnetic Laplacian with Dirichlet boundary conditions

The waveguide Ω is subject to a perpendicular uniform magnetic field with intensity B. That is why we
consider a vector potential A = (𝐴1, 𝐴2) that is smooth on Ω and such that

𝜕𝑥1 𝐴2 − 𝜕𝑥2 𝐴1 = 1. (1.1)

A fundamental property related to magnetic problems on simply connected domains is the gauge
invariance. It is nothing but the fact that equation (1.1) only defines A up to adding a gradient vector
field. Of course, it is trivial that there is a smooth solution to equation (1.1) since it is sufficient to consider
A = (0, 𝑥1). Actually, one will see that there is a natural choice of vector potential in our setting. Finding
a gauge that is adapted to the structure of the waveguide is in fact part of our problem, and it has been
tackled in the past; see, for instance, [7] where a curvature-dependent gauge is introduced. We now
assume that A can be chosen smooth on Ω and bounded with bounded derivatives (at any order). It will
be explained in Proposition 1.2 that we may indeed assume this.

For 𝐵 > 0, we consider on Ω the magnetic Laplacian corresponding to the uniform field equal to B:

(−𝑖∇ − 𝐵A)2 − 𝐵, (1.2)

subject to Dirichlet boundary conditions. The subtraction of B is made for the convenience of the
analysis and does not change the presence or absence of the discrete spectrum (it is based on relating
the Schrödinger operator to the square of a Dirac operator). In order to use semiclassical analysis, we
also introduce the positive parameter ℎ = 𝐵−1 and set

𝒫ℎ = (−𝑖ℎ∇ − A)2 − ℎ.

The operator 𝒫ℎ is well defined and selfadjoint on the domain

Dom(𝒫ℎ) = 𝐻1
0 (Ω) ∩ 𝐻2(Ω).

1.3. A subtle question and a conjecture by P. Duclos and P. Exner

Our aim is to study the existence of the discrete spectrum of 𝒫ℎ in the semiclassical limit ℎ → 0
(equivalent to the large magnetic field limit; see formula (1.2)). This question of existence is actually
subtle since, when h goes to 0, not only the bottom of the spectrum moves but also the bottom of the
essential spectrum. In this limit, it is natural to wonder if the bottom of the spectrum stays away from the
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threshold of the essential spectrum or collides with it. This question is all the more appealing that, when
the magnetic field is zero, that is when considering the Dirichlet Laplacian on a strip, one knows that the
discrete spectrum always exists as soon as the strip is not straight (see, for instance, [4] or the book [9,
Chapter 1]). It is also known that (variable) magnetic fields can play against the existence of the discrete
spectrum. Such considerations can be found in [14, Theorem 2.8 & Proposition 2.11] where a magnetic
Hardy inequality is proved when the magnetic field has compact support and used to establish that the
discrete spectrum is empty when the magnetic field is strong enough (see also the original work [5])1.

In the mid nineties, buoyed by the momentum of their work [4], Pierre Duclos and Pavel Exner
conjectured that the discrete spectrum of operator (1.2) is empty when the magnetic field is strong enough
(and uniform). This conjecture was explicitly formulated 10 years ago during an “Open Problems”
session in Barcelona; see [8]. Our main result disproves the conjecture when the waveguide has a fixed
width 𝛿 assumed to be small enough but independent of B.

1.4. Main result

Our main result is the following.
Theorem 1.1. Assume that 𝜅2 has a unique maximum, that is nondegenerate. There exist 𝛿0 > 0 and
ℎ0 > 0 such that for all 𝛿 ∈ (0, 𝛿0) and all ℎ ∈ (0, ℎ0) we have

inf sp(𝒫ℎ) < inf spess(𝒫ℎ).

In particular, 𝒫ℎ has nonempty discrete spectrum.
We can be more precise and provide some bounds for the bottoms of spectrum and essential spectrum.

For this, we compare the spectral properties of the magnetic Laplacian on Ω to those on Ω0. On Ω0, we
set A0 (𝑠, 𝑡) = (−𝑡, 0) and we consider in 𝐿2 (Ω0) the operator 𝒫ℎ,0 = (−𝑖ℎ∇ − A0)

2 − ℎ, with Dirichlet
boundary conditions. For ℎ > 0, we set

𝜆ess(ℎ) = inf sp(𝒫ℎ,0).

The following proposition gives a rather naive lower bound of the infimum of the essential spectrum. It
is likely not optimal (due to the presence of the ℎ2 factor), but it will be sufficient for our analysis.
Proposition 1.1. We have

spess (𝒫ℎ) = spess (𝒫ℎ,0) = sp(𝒫ℎ,0) = [𝜆ess (ℎ), +∞)

and

𝜆ess(ℎ) �
(𝜋ℎ)2

4𝛿2 𝑒−𝛿
2/ℎ .

To prove an upper bound on the bottom of the spectrum, we first introduce on Ω0 the function 𝜙0
defined by

𝜙0(𝑠, 𝑡) =
𝑡2 − 𝛿2

2
.

Then we define 𝜙0 = 𝜙0 ◦ Θ−1 ∈ 𝒞∞(Ω). In particular, 𝜙0 vanishes on 𝜕Ω. In order to perform the
analysis of the bottom of the spectrum, we will use a function 𝜙, looking like 𝜙0 at infinity, defined
thanks to the following proposition. We will use the following notation for the Schwartz space

𝒮(Ω) = {𝜓 ∈ 𝒞∞(Ω) : ∀(𝛼, 𝛽) ∈ N2 , ∃𝐶𝛼,𝛽 > 0 : ‖𝑥𝛼𝜕𝛽𝜓‖∞ � 𝐶𝛼,𝛽}.

1Let us also mention that, in [14], the spectrum is also analyzed (by means of resolvent convergence) in the shrinking limit
𝛿 → 0 with a possibly 𝛿-dependent magnetic field. Deriving effective operators in such regimes can actually be done in a quite
general framework; see [10].
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Proposition 1.2. There exists a unique 𝜙 ∈ 𝒞∞(Ω) such that Δ𝜙 = 1, 𝜙 |𝜕Ω = 0, and 𝜙 − 𝜙0 ∈ 𝒮(Ω).
Moreover, there exists 𝑐0 > 0 such that 𝜕𝜈𝜙 � 𝑐0 on 𝜕Ω, 𝜈 being the outward pointing normal to the
boundary.

Then, by gauge invariance, we can choose A = (∇𝜙)⊥ in the definition of 𝒫ℎ . In particular, we
may assume that A is bounded on Ω, as announced in Section 1.2. Here comes our result ensuring the
existence of the discrete spectrum.
Theorem 1.2. Assume that 𝜙 given by Proposition 1.2 has a unique minimum 𝜙min (reached at 𝑥min ∈ Ω)
that is nondegenerate and smaller than min 𝜙0 = −𝛿2/2. Then, as ℎ → 0, we have

inf sp(𝒫ℎ) �
𝐽

𝜋

√
det Hess𝑥min𝜙𝑒

2𝜙min/ℎ
(
1 + 𝑜(1)

)
,

with

𝐽 = 2 inf
𝑓 ∈ℰ

‖(𝜕𝜈𝜙)
1
2 𝑓 ‖2

𝜕Ω,

and

ℰ = { 𝑓 ∈ 𝒪(Ω) ∩ 𝐻1 (Ω) : 𝑓 (𝑥min) = 1},

where 𝒪(Ω) is the set of holomorphic functions on Ω.

Remark 1.3.
1. The setℰ is not empty as we can see by considering a function of the form 𝑓 : 𝑧 ↦→ 𝑐(𝑧 − 𝑧1)

−2 with
𝑧1 ∉ Ω and c such that 𝑓 (𝑥min) = 1.

2. Due to a classical trace theorem and the fact that 𝜕𝜈𝜙 is bounded, J is finite.
3. The fact that 𝜙 has a unique minimum (which is nondegenerate) can be ensured under explicit

assumptions on the curvature 𝜅 and on the width of the waveguide; see Proposition 1.3 below.
4. By using Proposition 1.1 and under the assumption on 𝜙 in Theorem 1.2, we have inf sp(𝒫ℎ) <

inf spess(𝒫ℎ).
Our proof of Theorem 1.2 is based on extensions of strategies used in [1]2, where the asymptotic

simplicity of the low-lying eigenvalues is established, under generic assumptions onΩ. Let us emphasize
that, in [1], Ω is assumed to be bounded and that the assumption on 𝜙 can be ensured, in the uniform
magnetic field case, when Ω is strictly convex (thanks to the works by Kawohl [12, 13]). In the present
setting, Ω is neither bounded, nor convex. Moreover, in our unbounded setting, one needs to be very
careful since the functional spaces (such as the Hardy spaces) involved in [1] are no more obviously well
defined. The study of such spaces on strips3 has an interest of its own, and their use to deduce precise
spectral asymptotics will be the object of a future work. Fortunately, we do not need them to disprove
Duclos–Exner’s conjecture.

To complete our analysis, it remains to give a sufficient condition under which the assumption of
Theorem 1.2 is satisfied.
Proposition 1.3. Assume that 𝜅 ∈ 𝒞∞

0 (R) and that 𝜅2 has a unique maximum, which is nondegenerate.
There exists 𝛿0 > 0 such that, for all 𝛿 ∈ (0, 𝛿0), 𝜙 has a unique minimum 𝜙min inΩ that is nondegenerate.
Moreover, 𝜙min < (𝜙0)min.

Theorem 1.1 follows from Proposition 1.1, Proposition 1.2, Theorem 1.2 and Proposition 1.3. Due
to our motivation to disprove a conjecture from the nineties, we provide the reader with rather self-
contained proofs (and sometimes recall basic arguments). In Section 2, we analyze the essential spectrum
and we prove Proposition 1.1. In Section 3, the existence of the function 𝜙 is established and we prove
Propositions 1.2 and 1.3. In Section 4, we prove Theorem 1.2.

2Motivated by the seminal works [6] and [11].
3Which started a long time ago; see, for instance, [15].
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2. The essential spectrum

In this section, we prove Proposition 1.1, which follows from Propositions 2.1 and 2.2. We first recall a
classical result.

Lemma 2.1. Let 𝜙 ∈ 𝒞∞(Ω) be bounded with bounded derivatives and A = (∇𝜙)⊥. For all 𝜓 ∈ 𝐻1
0 (Ω),

we have

‖(−𝑖ℎ∇ − A)𝜓‖2
𝐿2 (Ω) − ℎ‖𝜓‖2

𝐿2 (Ω) = 4ℎ2
∫
Ω
𝑒−2𝜙/ℎ |𝜕𝑧̄𝑢 |

2d𝑥,

where 𝑢 := 𝑒𝜙/ℎ𝜓 ∈ 𝐻1
0 (Ω) and 𝑧 = 𝑥1 + 𝑖𝑥2, 𝑥 = (𝑥1, 𝑥2).

Proof. We have

4ℎ2
∫
Ω
𝑒−2𝜙/ℎ |𝜕𝑧̄𝑢 |

2d𝑥 =
∫
Ω
|𝑒−𝜙/ℎ (ℎ𝜕1 + 𝑖ℎ𝜕2)𝑢 |

2d𝑥

=
∫
Ω
| (ℎ𝜕1 + 𝑖ℎ𝜕2)𝑒

−𝜙/ℎ𝑢 − [ℎ𝜕1 + 𝑖ℎ𝜕2, 𝑒
−𝜙/ℎ]𝑢 |2d𝑥

=
∫
Ω
| (ℎ𝜕1 + 𝑖𝜕2𝜙 + 𝑖ℎ𝜕2 + 𝜕1𝜙)𝜓 |

2d𝑥

=
∫
Ω
| (ℎ𝜕1 − 𝑖𝐴1 + 𝑖ℎ𝜕2 + 𝐴2)𝜓 |

2d𝑥

=
∫
Ω
| (𝐿1 + 𝑖𝐿2)𝜓 |

2d𝑥 , 𝐿 𝑗 = −𝑖ℎ𝜕 𝑗 − 𝐴 𝑗 .

Then, we get

4ℎ2
∫
Ω
𝑒−2𝜙/ℎ |𝜕𝑧̄𝑢 |

2d𝑥 = ‖(−𝑖ℎ∇ − A)𝜓‖2 + 2Re 〈𝐿1𝜓, 𝑖𝐿2𝜓〉

= ‖(−𝑖ℎ∇ − A)𝜓‖2 + 2Im 〈𝐿1𝜓, 𝐿2𝜓〉.

Note that

2Im 〈𝐿1𝜓, 𝐿2𝜓〉 = 2Im 〈𝜓, 𝐿1𝐿2𝜓〉

= 2Im 〈𝜓, 𝐿2𝐿1𝜓 + [𝐿1, 𝐿2]𝜓〉

= 2Im 〈𝐿2𝜓, 𝐿1𝜓〉 − 2ℎ‖𝜓‖2.

The conclusion follows. �

Proposition 2.1. For all ℎ > 0, we have

sp(𝒫ℎ,0) = [𝜆ess (ℎ), +∞),

and

𝜆ess(ℎ) �
(𝜋ℎ)2

4𝛿2 𝑒−𝛿
2/ℎ .

Proof. By using the Fourier transform with respect to s, we have

𝒫ℎ,0 =
∫ ⊕

𝒫ℎ,0, 𝜉d𝜉,
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where the operator

𝒫ℎ,0, 𝜉 = −ℎ2𝜕2
𝑡 + (𝜉 + 𝑡)2 − ℎ

is equipped with the Dirichlet conditions at 𝑡 = ±𝛿. Let us denote by (𝛾𝑛 (𝜉, ℎ))𝑛�1 the increasing
sequence of its eigenvalues. A straightforward application of the min-max theorem shows that, for all
ℎ > 0,

lim
𝜉→±∞

𝛾𝑛 (𝜉, ℎ) = +∞.

We get

sp(𝒫ℎ,0) = [min
𝜉 ∈R

𝛾1 (𝜉, ℎ), +∞) = spess(𝒫ℎ,0).

By the min-max principle, we have

inf sp(𝒫ℎ,0) = inf
𝜓∈𝐻 1

0 (Ω0)\{0}

‖(−𝑖ℎ∇ − A0)𝜓‖
2 − ℎ‖𝜓‖2

‖𝜓‖2 ,

and, by letting 𝜓 = 𝑒−𝜙0/ℎ𝑢, we get

inf sp(𝒫ℎ,0) = inf
𝑢∈𝐻 1

0 (Ω0)\{0}

4ℎ2‖𝑒−𝜙0/ℎ𝜕𝑧̄𝑢‖
2

‖𝑒−𝜙0/ℎ𝑢‖2 .

This allows to get the rough lower bound

inf sp(𝒫ℎ,0) � 𝑒−𝛿
2/ℎ inf

𝑢∈𝐻 1
0 (Ω0)\{0}

4ℎ2‖𝜕𝑧̄𝑢‖
2

‖𝑢‖2

� ℎ2𝑒−𝛿
2/ℎ𝜆Dir

1 ((−𝛿, 𝛿))

�
(𝜋ℎ)2

4𝛿2 𝑒−𝛿
2/ℎ .

This last argument already appeared in [11, Theorem 3.1]. �

Let us recall the following classical result.

Lemma 2.2. Consider (𝑇1,Dom(𝑇1)) and (𝑇2,Dom(𝑇2)) two closed operators on a Banach space E
and having the same domain. Assume that there exists 𝑧0 ∈ 𝜌(𝑇1) ∩ 𝜌(𝑇2) such that the operator
𝐾 : (𝑇1 − 𝑧0)

−1 − (𝑇2 − 𝑧0)
−1 : 𝐸 → 𝐸 is compact. Then,

spess (𝑇1) = spess (𝑇2).

Proof. Let us recall the proof and note that it does not require the selfadjointness of 𝑇1 or 𝑇2. We recall
that 𝜆 ∈ spess(𝑇1) if and only if 𝑇1 − 𝜆 is not a Fredholm operator with index 0.

Consider 𝜆 ∉ spess (𝑇1), and write

𝑇2 − 𝜆 = 𝑇2 − 𝑧0 + (𝑧0 − 𝜆) =
(
Id + (𝑧0 − 𝜆) (𝑇2 − 𝑧0)

−1
)
(𝑇2 − 𝑧0)

=
(
Id + (𝜆 − 𝑧0)𝐾 + (𝑧0 − 𝜆) (𝑇1 − 𝑧0)

−1
)
(𝑇2 − 𝑧0)

=
(
(𝜆 − 𝑧0)𝐾 + (𝑇1 − 𝜆) (𝑇1 − 𝑧0)

−1
)
(𝑇2 − 𝑧0).
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Now, notice that 𝑇2 − 𝑧0 : Dom(𝑇2) → 𝐸 is Fredholm with index 0 (since it is bijective). The
operator (𝑇1 − 𝑧0)

−1 : 𝐸 → Dom(𝑇1) is also bijective and thus Fredholm with index 0. Therefore,
(𝑇1 −𝜆) (𝑇1 − 𝑧0)

−1 : 𝐸 → 𝐸 is also Fredholm with index 0 (see [3, Corollary 5.7]). Since K is compact,

(𝜆 − 𝑧0)𝐾 + (𝑇1 − 𝜆) (𝑇1 − 𝑧0)
−1

is still Fredholm with index 0 (see [3, Corollary 5.9]). Thus, 𝑇2 − 𝜆 is Fredholm with index 0 (again by
[3, Corollary 5.7]). �

Thanks to Lemma 2.2, it is rather easy to get the following.

Proposition 2.2. For all ℎ > 0, we have spess(𝒫ℎ) = spess (𝒫ℎ,0).

Proof. The operator 𝒫ℎ is unitarily equivalent to the selfadjoint operator 𝒫ℎ (on 𝐿2 (Ω0, d𝑠d𝑡) with
domain Dom(𝒫ℎ) = 𝐻2 (Ω) ∩ 𝐻1

0 (Ω) = Dom(𝒫ℎ,0)) given by

𝒫ℎ = −𝜕2
𝑡 + (𝑎−

1
2 (𝐷𝑠 − 𝐴̃(𝑠, 𝑡))𝑎−

1
2 )2 −

𝜅2

4𝑎2 − ℎ , 𝑎(𝑠, 𝑡) = 1 − 𝑡𝜅(𝑠),

where 𝐴̃(𝑠, 𝑡) = 𝑡 − 𝜅(𝑠) 𝑡
2

2 . The unitary transformation is made of a changing of coordinates via Θ,
a flattening of the metric induced by the Jacobian of Θ and a change of magnetic gauge. Since 𝜅 is
compactly supported, we see that 𝒫ℎ acts as 𝒫ℎ,0 away from a compact set.

Let us now apply Lemma 2.2 with 𝑇1 = 𝒫ℎ,0, 𝑇2 = 𝒫ℎ and 𝑧0 = 𝑖. The resolvent formula gives

𝐾 = (𝑇1 − 𝑧0)
−1(𝑇2 − 𝑇1) (𝑇2 − 𝑧0)

−1.

In our case, we have

𝑇2 − 𝑇1 = 𝑎−
1
2
[
(𝐷𝑠 − 𝐴̃)𝑎−1(𝐷𝑠 − 𝐴̃)

]
𝑎−

1
2 − (𝐷𝑠 − 𝑡)2 −

𝜅2

4𝑎2 .

Computing some commutators shows that we can find three smooth functions 𝑊1, 𝑊2 and 𝑊3 on Ω0,
compactly supported with respect to s, such that

𝑇2 − 𝑇1 = 𝑊1(𝑠, 𝑡)𝐷
2
𝑠 +𝑊2(𝑠, 𝑡)𝐷𝑠 +𝑊3(𝑠, 𝑡).

Then, by elliptic regularity and the Kolmogorov–Riesz theorem (see [3, Theorem 4.14 & Remark
4.15]), we notice that 𝑊 (𝒫ℎ − 𝑖)−1 : 𝐿2 (Ω0) → 𝐻1(Ω0) is compact for all 𝑊 ∈ 𝒞∞

0 (Ω0). This shows
that the terms involving 𝑊2 and 𝑊3 in K are compact operators on 𝐿2 (Ω0) (by using that the set of
compact operators forms an ideal). Concerning the term involving 𝑊1, we notice, on the one hand, that
𝐷2

𝑠 (𝒫ℎ − 𝑖)−1 is bounded on 𝐿2 (Ω0) and, on the other hand, that (𝒫ℎ,0 − 𝑖)−1𝑊1 : 𝐿2 (Ω0) → 𝐿2 (Ω0)
is compact since the operators

[(𝒫ℎ,0 − 𝑖)−1,𝑊1] = −(𝒫ℎ,0 − 𝑖)−1 [𝒫ℎ,0,𝑊1] (𝒫ℎ,0 − 𝑖)−1

and 𝑊1(𝒫ℎ,0 − 𝑖)−1 : 𝐿2 (Ω0) → 𝐿2 (Ω0) are compact.
Applying Lemma 2.2, the conclusion follows. �

3. On the function 𝜙

In this section, we prove Propositions 1.2 and 1.3. We recall that 𝜙0 and 𝜙0 were defined before
Proposition 1.2.
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8 E. Bon-Lavigne et al.

3.1. Proof of Proposition 1.2

Assume that two functions 𝜙1 and 𝜙2 satisfy the conclusions of the proposition. Then 𝜙1−𝜙2 is harmonic
in Ω and belongs to 𝐻1

0 (Ω). This implies that 𝜙1 = 𝜙2 and gives uniqueness.
Since the tube Ω is straight at infinity, we have Δ𝜙0 = 1 outside a compact set. In particular,

1−Δ𝜙0 ∈ 𝐿2 (Ω). By the Poincaré inequality (see, for instance, [4] for the case of a waveguide) and the
Riesz representation theorem, there exists a unique 𝑓0 ∈ 𝐻1

0 (Ω) such that

∀𝜑 ∈ 𝐻1
0 (Ω),

∫
Ω
∇ 𝑓0 · ∇𝜑 d𝑥 =

∫
Ω
(1 − Δ𝜙0)𝜑 d𝑥.

Then −Δ 𝑓0 = 1 − Δ𝜙0 in the sense of distributions, and 𝑓0 belongs to 𝒞∞(Ω) by elliptic regularity
(notice that elliptic regularity on the straight waveguide Ω0 is proved as in the classical case of the
half-space and that we can then deduce elliptic regularity on Ω via the diffeomorphism Θ with the same
proof as for bounded domains; see, for instance, [2, §9.6]).

Let 𝑉 = 1 − Δ𝜙0, and consider a bounded Lipschitzian function Φ on Ω. We have

〈−Δ 𝑓0, 𝑒
2Φ 𝑓0〉 =

∫
Ω
𝑉𝑒2Φ 𝑓0d𝑥.

Taking the real part and integrating by parts in the left-hand side, we get the “Agmon formula”

‖∇(𝑒Φ 𝑓0)‖
2
𝐿2 (Ω) − ‖ 𝑓0𝑒

Φ∇Φ‖2
𝐿2 (Ω) = Re

∫
Ω
𝑉𝑒2Φ 𝑓0d𝑥.

Since V has compact support, it follows that

‖∇(𝑒Φ 𝑓0)‖
2
𝐿2 (Ω) − ‖ 𝑓0𝑒

Φ∇Φ‖2
𝐿2 (Ω) � ‖𝑉 ‖𝐿2 (Ω) ‖ 𝑓0‖𝐿2 (Ω) max

suppV
𝑒2Φ.

By the Poincaré inequality, we have

‖∇(𝑒Φ 𝑓0)‖
2 � 𝜆1(Ω)‖𝑒

Φ 𝑓0‖
2,

where 𝜆1(Ω) > 0 is the infimum of the spectrum of the Dirichlet Laplacian on Ω. This shows that

(
𝜆1(Ω) − ‖∇Φ‖2

∞

) ∫
Ω
𝑒2Φ | 𝑓0 |

2d𝑥 � ‖𝑉 ‖𝐿2 (Ω) ‖ 𝑓0‖𝐿2 (Ω) max
suppV

𝑒2Φ.

Choosing Φ(𝑥) = Φ𝑚(𝑥) = 𝛼min(〈𝑥〉, 𝑚) (with 𝛼 > 0 fixed small enough) and letting 𝑚 → +∞, we
see by the Fatou lemma that there exists 𝐶 > 0 such that∫

Ω
𝑒2𝛼 〈𝑥 〉 | 𝑓0 |

2d𝑥 � 𝐶‖ 𝑓0‖𝐿2 (Ω) .

Coming back to the Agmon formula, we deduce that∫
Ω
𝑒2𝛼 〈𝑥 〉 |∇ 𝑓0 |

2d𝑥 < +∞.

Then we adapt the classical strategy used for elliptic regularity. Let 𝑅 > 0 be so large that 𝜅 is
supported in (−𝑅, 𝑅). Let 𝜒0 ∈ 𝐶∞(Ω0; [0, 1]) equal to 0 on (−𝑅, 𝑅) × (−𝛿, 𝛿) and equal to 1 on
Ω \ (−𝑅 − 1, 𝑅 + 1) × (−𝛿, 𝛿). Let 𝜒 = 𝜒0 ◦ Θ−1. Then the above arguments apply with 𝑓0 replaced
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by 𝜕𝑠 (𝜒 𝑓0) = 𝜸′ · ∇(𝜒 𝑓0). Since Δ (𝜒 𝑓0) is compactly supported, we deduce that for any 𝛽 ∈ N2 with
|𝛽 | = 2 we have ∫

Ω
𝑒2𝛼 〈𝑥 〉 |𝜕𝛽 𝑓0 |

2d𝑥 < +∞.

We proceed by induction on |𝛽 | to get the same estimate for any 𝛽 ∈ N2, and we deduce in particular
that 𝑓0 belongs to the Schwartz class 𝒮(Ω).

We set 𝜙 = 𝜙0 − 𝑓0. It is smooth, it satisfies the Dirichlet condition, 𝜙 − 𝜙0 belongs to 𝒮(Ω) and
Δ𝜙 = 1. It remains to discuss the uniform positivity of the normal derivative. By the Hopf lemma, we
already know that 𝜕𝜈𝜙 > 0 on 𝜕Ω, so it is enough to show that this estimate is uniform at infinity.

We have

𝜕𝜈𝜙 = 𝜕𝜈𝜙0 − 𝜕𝜈 𝑓0.

Since Θ is a rotation at infinity, we see by the explicit expression of 𝜙0 that there exists 𝑐1 > 0 such that,
for all 𝑥 ∈ 𝜕Ω with a sufficiently large curvilinear abscissa,

𝜕𝜈𝜙0 � 2𝑐1.

On the other hand, since 𝑓0 ∈ 𝒮(Ω) we have

lim
|𝑥 |→+∞
𝑥∈𝜕Ω

𝜕𝜈 𝑓0(𝑥) = 0.

Then 𝜕𝜈𝜙(𝑥) � 𝑐1 for 𝑥 ∈ 𝜕Ω large enough, and we deduce the uniform positivity of 𝜕𝜈𝜙 on 𝜕Ω.

3.2. Proof of Proposition 1.3

For (𝑠, 𝑡) ∈ Ω0, we set

𝑎(𝑠, 𝑡) = det
(
Jac(Θ) (𝑠, 𝑡)

)
= 1 − 𝑡𝜅(𝑠)

and notice that 𝑎(𝑠, 𝑡) � 1
2 as soon as 𝛿 is small enough.

Let 𝜙 = 𝜙 ◦ Θ. For 𝑠 ∈ R and 𝜏 ∈ (−1, 1), we set

𝑎𝛿 (𝑠, 𝜏) = 𝑎(𝑠, 𝛿𝜏) and 𝜓(𝑠, 𝜏) = 𝛿−2𝑎𝛿 (𝑠, 𝜏)
1
2 𝜙(𝑠, 𝛿𝜏).

Finally, we define on R × (−1, 1) the differential operator

ℳ𝛿 = 𝜕2
𝜏 + 𝛿2 (𝑎− 1

2
𝛿 𝜕𝑠𝑎

− 1
2

𝛿

)2
+
𝛿2𝜅2

4𝑎2
𝛿

,

where 𝑎−
1
2

𝛿 𝜕𝑠𝑎
− 1

2
𝛿 : 𝑢 ↦→ 𝑎

− 1
2

𝛿 𝜕𝑠 (𝑎
− 1

2
𝛿 𝑢).

Lemma 3.1. We have ℳ𝛿𝜓 = 𝑎
1
2
𝛿 and 𝜓(·,±1) = 0.

Proof. Since 𝜙(𝑠,±𝛿) = 0 we have 𝜓(·,±1) = 0 for all 𝑠 ∈ R. In the tubular coordinates, the equality
Δ𝜙 = 1 reads (

𝑎−1𝜕𝑠𝑎
−1𝜕𝑠 + 𝑎−1𝜕𝑡𝑎𝜕𝑡

)
𝜙 = 1.
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Setting 𝜙 = 𝑎
1
2 𝜙, we get [ (

𝑎−
1
2 𝜕𝑠𝑎

− 1
2
)2

+
(
𝑎−

1
2 𝜕𝑡𝑎

1
2
) (
𝑎

1
2 𝜕𝑡𝑎

− 1
2
) ]
𝜙 = 𝑎

1
2 ,

or [ (
𝑎−

1
2 𝜕𝑠𝑎

− 1
2
)2

+
(
𝜕𝑡 −

𝜅

2𝑎

) (
𝜕𝑡 +

𝜅

2𝑎

)]
𝜙 = 𝑎

1
2 ,

which gives [ (
𝑎−

1
2 𝜕𝑠𝑎

− 1
2
)2

+ 𝜕2
𝑡 +

𝜅2

4𝑎2

]
𝜙 = 𝑎

1
2 .

Since 𝜓(𝑠, 𝜏) = 𝛿−2𝜙(𝑠, 𝛿𝜏), the conclusion follows. �

Proof of Proposition 1.3. We look for an approximation Ψ5 of 𝜓, in the sense that

ℳ𝛿 (𝜓 − Ψ5) = 𝒪𝐻 2 (R×(−1,1)) (𝛿
5) , 𝜓 − Ψ5 ∈ 𝐻2 ∩ 𝐻1

0 (R × [−1, 1]). (3.1)

By elliptic regularity, this will give

‖𝜓 − Ψ5‖𝐻 4 (R×[−1,1]) = 𝒪(𝛿3),

and then, by Sobolev embeddings,

‖𝜓 − Ψ5‖𝒞2 (R×[−1,1]) = 𝒪(𝛿3). (3.2)

We look for Ψ5 of the form 𝜓0 + 𝛿𝜓1 + 𝛿2𝜓2 + 𝛿3𝜓3 + 𝛿4𝜓4. Note that we could proceed similarly to get
a rest of order 𝒪(𝛿𝑁 ) in 𝒞𝑘 (R × [−1, 1]) for any N and k.

There exist 𝑀0, . . . , 𝑀4 ∈ L(𝐻4 (R× [−1, 1]), 𝐻2(R× [−1, 1])) (we denote by L(H1,H2) the space
of bounded operators from H1 to H2) such that in L(𝐻4 (R × [−1, 1]), 𝐻2 (R × [−1, 1])) we have

ℳ𝛿 =
4∑

𝑘=0
𝛿𝑘𝑀𝑘 +𝒪(𝛿5).

In particular,

𝑀0 = 𝜕2
𝜏 , 𝑀1 = 0 , 𝑀2 = 𝜕2

𝑠 +
𝜅2

4
.

Similarly, in 𝐻2 (R × [−1, 1]) we have by Lemma 3.1

ℳ𝛿𝜓 =
4∑

𝑘=0
𝛿𝑘𝛼𝑘 +𝒪(𝛿5),

with

𝛼0 = 1, 𝛼1 = −
𝜅𝜏

2
, 𝛼2 = −

𝜏2𝜅2

8
,

https://doi.org/10.1017/fms.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.9


Forum of Mathematics, Sigma 11

and 𝛼3, 𝛼4 ∈ 𝒞∞(Ω). We compute 𝜓𝑘 by induction on k. It satisfies

𝑀0𝜓0 = 𝛼0, 𝑀0𝜓1 = −𝑀1𝜓0 + 𝛼1, 𝑀0𝜓𝑘 = −

𝑘∑
𝑗=2

𝑀 𝑗𝜓𝑘− 𝑗 + 𝛼𝑘 ,

with the Dirichlet condition 𝜓𝑘 (·,±1) = 0. This gives in particular

𝜓0 (𝑠, 𝜏) =
𝜏2 − 1

2
, 𝜓1(𝑠, 𝜏) =

𝜅(𝑠)

12
(𝜏 − 𝜏3).

Then 𝜓2 has to be a solution of

𝑀0𝜓2 = −𝑀2𝜓0 −
𝜅2𝜏2

8
=
𝜅2

4

(
−
𝜏2 − 1

2
−
𝜏2

2

)
=
𝜅2

4

(
1
2
− 𝜏2

)
.

This leads to take

𝜓2 (𝑠, 𝜏) =
𝜅2

4

(
𝜏2 − 1

4
−
𝜏4 − 1

12

)
=
𝜅2

4

(
𝜏2

4
−
𝜏4

12
−

1
6

)
.

Due to the asymptotic behavior of 𝜙 given in Proposition 1.2 and the fact that 𝑎 = 1 at infinity, 𝑎 1
2 𝜙− 𝜙0

and hence 𝜓 − 𝜓0 belong to the Schwartz class. Thus, Ψ5 satisfies equation (3.1) and hence equation
(3.2). Now setting Ψ = 𝜓0 + 𝛿𝜓1 + 𝛿2𝜓2 we deduce

‖𝜓 − Ψ‖𝒞2 (R×[−1,1]) = 𝒪(𝛿3).

This gives

‖𝛿−2𝜙(𝑠, 𝛿𝜏) − 𝑎(𝑠, 𝛿𝜏)−
1
2 Ψ‖𝒞2 (R×[−1,1]) = 𝒪(𝛿3)

or ����𝛿−2𝜙(𝑠, 𝛿𝜏) −

(
1 + 𝛿𝜏

𝜅

2
+ 𝛿2 3

8
𝜏2𝜅2

)
Ψ

����
𝒞2 (R×[−1,1])

= 𝒪(𝛿3).

Then ��𝛿−2𝜙(𝑠, 𝛿𝜏) − 𝑓𝛿 (𝑠, 𝜏)
��
𝒞2 (R×[−1,1]) = 𝒪(𝛿3) , (3.3)

where we have set

𝑓𝛿 (𝑠, 𝜏) = 𝜓0 + 𝛿
(
𝜓1 +

𝜏𝜅

2
𝜓0

)
+ 𝛿2

(
3𝜏2𝜅2

8
𝜓0 +

𝜏𝜅

2
𝜓1 + 𝜓2

)
.

We have

𝑓𝛿 (𝑠, 𝜏) =
𝜏2 − 1

2
−
𝛿𝜅(𝑠)

6

(
𝜏 − 𝜏3

)
+ 𝛿2𝜅2𝑃2 (𝜏) ,

where

𝑃2 (𝜏) =
3𝜏2 (𝜏2 − 1)

16
+
𝜏(𝜏 − 𝜏3)

24
+
𝜏2

16
−
𝜏4

48
−

1
24

.
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Let us explain why 𝑓𝛿 has a unique minimum, nonattained at infinity and which is nondegenerate.
Firstly, when 𝑠 ∉ supp 𝜅, we have

𝑓𝛿 (𝑠, 𝜏) =
𝜏2 − 1

2
� −

1
2
= 𝑓𝛿 (𝑠, 0).

This shows that 𝑓𝛿 has a minimum in Ω0. This minimum is in fact strictly less than − 1
2 and thus attained

at points where the curvature is not 0. Indeed, consider 𝑠0 the maximum of 𝜅2. We have 𝜅(𝑠0) ≠ 0,
𝜅′(𝑠0) = 0, and 𝜅(𝑠0)𝜅

′′(𝑠0) < 0. Let us notice that

𝑓𝛿

(
𝑠0,

𝛿𝜅(𝑠0)

6

)
= −

1
2
+ 𝛿2𝜅2 (𝑠0)

(
1

72
−

1
36

−
1

24

)
+𝒪(𝛿3)

= −
1
2
−
𝛿2𝜅2 (𝑠0)

18
+𝒪(𝛿3).

This shows that, for 𝛿 small enough,

inf
(𝑠,𝜏) ∈R×(−1,1)

𝑓𝛿 (𝑠, 𝜏) � −
1
2
−
𝛿2 max 𝜅2

18
+ 𝐶𝛿3 < −

1
2

and that the infimum is a minimum (which is not attained at infinity).
Now, we prove that for 𝛿 small enough all the possible minima are nondegenerate. Consider a

minimum (𝑠1, 𝜏1) of 𝑓𝛿 . We have 𝜏1 ∈ (−1, 1) and 𝜅(𝑠1) ≠ 0. Moreover, we must have

𝜕𝜏 𝑓𝛿 (𝑠1, 𝜏1) = 0,

which implies that

𝜏1 =
𝛿𝜅(𝑠1)

6
+𝒪(𝛿2). (3.4)

Then,

𝑓𝛿 (𝑠1, 𝜏1) = −
1
2
−
𝛿2𝜅2 (𝑠1)

18
+𝒪(𝛿3).

With the upper bound on the minimum, we deduce that

0 � 𝜅2 (𝑠0) − 𝜅2 (𝑠1) � 𝐶𝛿.

By using the uniqueness and nondegeneracy of the minimum, this implies that

𝑠1 = 𝑠0 +𝒪(𝛿
1
2 ) , 𝜏1 =

𝛿𝜅(𝑠0)

6
+𝒪(𝛿2) , (3.5)

where we used equation (3.4) and that 𝜅′(𝑠0) = 0.
Let us now estimate the second derivative of 𝑓𝛿 at (𝑠1, 𝜏1). We have

𝜕2
𝑠 𝑓𝛿 (𝑠1, 𝜏1) = −

𝜅(𝑠0)𝜅
′′(𝑠0)

9
𝛿2 + 𝑜(𝛿2) , 𝜕𝑠𝜕𝜏 𝑓𝛿 (𝑠1, 𝜏1) = 𝒪(𝛿

3
2 ),

and

𝜕2
𝜏 𝑓𝛿 (𝑠1, 𝜏1) = 1 +𝒪(𝛿2).
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We infer that there exist 𝛿0, 𝑐 > 0 such that for all 𝛿 ∈ (0, 𝛿0) and all minimum (𝑠1, 𝜏1),

Hess(𝑠1 ,𝜏1) 𝑓𝛿 � 𝑐𝛿2.

By definition, this means that the minima are nondegenerate.
Let us finally prove that there is only one minimum. Consider two minima 𝑋1 = (𝑠1, 𝜏1) and

𝑋2 = (𝑠2, 𝜏2). From equation (3.5), we have, uniformly in 𝜆 ∈ [0, 1],

𝑋1 + 𝜆(𝑋2 − 𝑋1) =

(
𝑠0,

𝛿𝜅(𝑠0)

6

)
+ (𝒪(𝛿

1
2 ),𝒪(𝛿2)). (3.6)

Since the differential of 𝑓𝛿 vanishes at 𝑋1, the Taylor formula gives

𝑓𝛿 (𝑋2) − 𝑓𝛿 (𝑋1) =
∫ 1

0
(1 − 𝜆)Hess𝑋1+𝜆(𝑋2−𝑋1) 𝑓𝛿 (𝑋2 − 𝑋1, 𝑋2 − 𝑋1)d𝜆.

By using equation (3.6), we deduce as before that there exist 𝛿0, 𝑐 > 0 such that for all 𝛿 ∈ (0, 𝛿0) and
all 𝜆 ∈ [0, 1],

Hess𝑋1+𝜆(𝑋2−𝑋1) 𝑓𝛿 � 𝑐𝛿2.

This shows that

0 = 𝑓𝛿 (𝑋2) − 𝑓𝛿 (𝑋1) �
𝑐𝛿2

2
|𝑋1 − 𝑋2 |

2.

Therefore, for 𝛿 small enough, 𝑓𝛿 has a unique minimum 𝑋 (𝛿), which is not attained at infinity and
nondegenerate, and

Hess𝑋 (𝛿) 𝑓𝛿 � 𝑐𝛿2.

By a perturbative argument using equation (3.3), this shows that 𝛿−2𝜙(𝑠, 𝛿𝜏) has also a unique minimum,
which is not attained at infinity and nondegenerate. The same conclusion follows for 𝜙. �

4. Upper bound for the bottom of the spectrum

This last section is devoted to the proof of Theorem 1.2. From the min-max principle, we have

inf sp(𝒫ℎ) = inf
𝜓∈𝐻 1

0 (Ω)\{0}

‖(−𝑖ℎ∇ − A)𝜓‖2 − ℎ‖𝜓‖2

‖𝜓‖2 .

From Lemma 2.1, we have

inf sp(𝒫ℎ) = inf
𝑢∈𝐻 1

0 (Ω)\{0}

4ℎ2
∫
Ω
𝑒−2𝜙/ℎ |𝜕𝑧̄𝑢 |

2d𝑥∫
Ω
𝑒−2𝜙/ℎ |𝑢 |2d𝑥

. (4.1)

Let us construct a convenient test function. It is natural to consider a test function in the form

𝑢(𝑥) = 𝑓 (𝑥)𝜒(𝑥),

where 𝑓 ∈ 𝒪(Ω) ∩ 𝐻1(Ω) is such that 𝑓 (𝑥min) ≠ 0 and the cut-off function 𝜒 ensures that u satisfies
the boundary condition. It is chosen of the form 𝜒 = 𝜌 ◦ Θ−1 with 𝜌(𝑠,±𝛿) = 0 and 𝜌(𝑠, 𝑡) = 1 for all
𝑠 ∈ R and 𝑡 ∈ (−𝛿 + 𝜖, 𝛿 − 𝜖). This function 𝜌 will be determined below to optimize an upper bound;
see equation (4.5).
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4.1. Estimate of the numerator

By using the change of variable Θ, we have

4ℎ2
∫
Ω
𝑒−2𝜙/ℎ |𝜕𝑧̄𝑢 |

2d𝑥 = ℎ2
∫
Ω0

𝑒−2𝜙̃ (𝑠,𝑡)/ℎ | 𝑓 (𝑠, 𝑡) |2
(
𝑎−2 |𝜕𝑠𝜌 |

2 + |𝜕𝑡 𝜌 |
2
)
𝑎(𝑠, 𝑡)d𝑠d𝑡 , (4.2)

with 𝜙 = 𝜙 ◦Θ and 𝑓 = 𝑓 ◦Θ. Since 𝜌 is constant on R× [−𝛿 + 𝜖, 𝛿 − 𝜖], the right-hand side is actually
an integral over R ×

(
(−𝛿,−𝛿 + 𝜖) ∪ (𝛿 − 𝜖, 𝛿)

)
. We begin with the contribution of the integral over

R × (𝛿 − 𝜖, 𝛿). We will choose 𝜖 smaller that h. Then, using the Taylor formula to expand 𝜙(𝑠, 𝑡) and
𝑎(𝑠, 𝑡) near 𝑡 = 𝛿, we have∫

R

∫ 𝛿

𝛿−𝜖
𝑒−2𝜙̃ (𝑠,𝑡)/ℎ |𝜕𝑡 𝜌 |

2 | 𝑓 (𝑠, 𝑡) |2𝑎(𝑠, 𝑡)d𝑡d𝑠

� (1 + 𝐶𝜖 + 𝐶𝜖2/ℎ)

∫
R

∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2 | 𝑓 (𝑠, 𝑡) |2𝑎(𝑠, 𝛿)d𝑡d𝑠.

We also want to replace | 𝑓 (𝑠, 𝑡) |2 by | 𝑓 (𝑠, 𝛿) |2. To do so, we remark that, for all (𝑠, 𝑡) ∈ R × (𝛿 − 𝜖, 𝛿),

��| 𝑓 (𝑠, 𝑡) |2 − | 𝑓 (𝑠, 𝛿) |2
�� � 2

∫ 𝛿

𝑡
| 𝑓 (𝑠, 𝜏) | |𝜕𝑡 𝑓 (𝑠, 𝜏) |d𝜏

�
(
‖ 𝑓 (𝑠, ·)‖2

𝐿2 ( [𝛿−𝜖 , 𝛿 ])
+ ‖𝜕𝑡 𝑓 (𝑠, ·)‖

2
𝐿2 ( [𝛿−𝜖 , 𝛿 ])

)
so that∫

R

(∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2d𝑡
)
𝑎(𝑠, 𝛿)

��| 𝑓 (𝑠, 𝑡) |2 − | 𝑓 (𝑠, 𝛿) |2
��d𝑠 � ∫

R

𝑎(𝑠, 𝛿)𝑅(𝑠, 𝜖 , ℎ)d𝑠,

with

𝑅(𝑠, 𝜖 , ℎ) =
(
‖ 𝑓 (𝑠, ·)‖2

𝐿2 ( [𝛿−𝜖 , 𝛿 ])
+ ‖𝜕𝑡 𝑓 (𝑠, ·)‖

2
𝐿2 ( [𝛿−𝜖 , 𝛿 ])

) ∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2d𝑡. (4.3)

Therefore, ∫
R

∫ 𝛿

𝛿−𝜖
𝑒−2𝜙̃ (𝑠,𝑡)/ℎ |𝜕𝑡 𝜌 |

2 | 𝑓 (𝑠, 𝑡) |2𝑎(𝑠, 𝑡)d𝑡d𝑠

� (1 + 𝐶𝜖 + 𝐶𝜖2/ℎ)

∫
R

∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2 | 𝑓 (𝑠, 𝑡) |2𝑎(𝑠, 𝛿)d𝑡d𝑠

� (1 + 𝐶𝜖 + 𝐶𝜖2/ℎ)
( ∫
R

∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2 | 𝑓 (𝑠, 𝛿) |2𝑎(𝑠, 𝛿)d𝑡d𝑠

+

∫
R

𝑎(𝑠, 𝛿)𝑅(𝑠, 𝜖 , ℎ)d𝑠
)
.

(4.4)

Looking at the right-hand side suggests to consider a function 𝜌 that minimizes∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2d𝑡 among the 𝐻1-functions equal to 1 in 𝛿 − 𝜖 and 0 in 𝛿. This leads
to the explicit choice

𝜌(𝑠, 𝑡) =
1 − 𝑒2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ

1 − 𝑒−2𝜖 𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ
, ∀(𝑠, 𝑡) ∈ R × (𝛿 − 𝜖, 𝛿). (4.5)
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The minimum satisfies∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2d𝑡 =
2𝜕𝑡𝜙(𝑠, 𝛿)

ℎ(1 − 𝑒−2𝜖 𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ)
.

We recall from Proposition 1.2 that 𝜕𝑡𝜙(𝑠, 𝛿) = 𝜕𝜈𝜙(Θ(𝑠, 𝛿)) is uniformly positive. Choosing 𝜖 =
ℎ| ln ℎ|, we get, uniformly with respect to s,∫ 𝛿

𝛿−𝜖
𝑒−2(𝑡−𝛿)𝜕𝑡 𝜙̃ (𝑠, 𝛿)/ℎ |𝜕𝑡 𝜌 |

2d𝑡 =
2𝜕𝑡𝜙(𝑠, 𝛿)

ℎ
+ 𝑜(ℎ−1) = 𝒪(ℎ−1) , (4.6)

where we used that Θ and Θ−1 have uniformly bounded Jacobians.
Using that 𝑓 ∈ 𝐻1(Ω), we get∫

R

(
‖ 𝑓 (𝑠, ·)‖2

𝐿2 ( [𝛿−𝜖 , 𝛿 ])
+ ‖𝜕𝑡 𝑓 (𝑠, ·)‖

2
𝐿2 ( [𝛿−𝜖 , 𝛿 ])

)
d𝑠 −→

𝜖→0
0

so that, with equations (4.3) and (4.6), it follows that∫
R

𝑎(𝑠, 𝛿)𝑅(𝑠, 𝜖 , ℎ)d𝑠 = 𝑜ℎ→0 (ℎ
−1).

With equation (4.4), this gives∫
R

∫ 𝛿

𝛿−𝜖
𝑒−2𝜙̃ (𝑠,𝑡)/ℎ |𝜕𝑡 𝜌 |

2 | 𝑓 (𝑠, 𝑡) |2𝑎(𝑠, 𝑡)d𝑡d𝑠

� 2ℎ−1
∫
R

𝜕𝜈𝜙(Θ(𝑠, 𝛿)) | 𝑓 (𝑠, 𝛿) |2𝑎(𝑠, 𝛿)d𝑠 + 𝑜ℎ→0 (ℎ
−1).

Let us now come back to equation (4.2). Considering the term with the tangential derivative, we get
with similar computations∫

R

∫ 𝛿

𝛿−𝜖
𝑒−2𝜙̃ (𝑠,𝑡)/ℎ |𝜕𝑠𝜌 |

2 | 𝑓 (𝑠, 𝑡) |2𝑎(𝑠, 𝑡)−1d𝑡d𝑠 = 𝑜ℎ→0 (ℎ
−1).

We play the same game with the contribution of the integral over R × (−𝛿,−𝛿 + 𝜖) in equation (4.2)
(notice that 𝜕𝑡𝜙(𝑠,−𝛿) = −𝜕𝜈𝜙(Θ(𝑠,−𝛿)) is now uniformly negative). We get

4ℎ2
∫
Ω
𝑒−2𝜙/ℎ |𝜕𝑧̄𝑢 |

2d𝑥 � 2ℎ‖(𝜕𝜈𝜙)
1
2 𝑓 ‖2

𝜕Ω + 𝑜ℎ→0 (ℎ).

4.2. Estimate of the denominator and conclusion

We have ∫
Ω
𝑒−2𝜙/ℎ |𝑢 |2d𝑥 =

∫
Ω
𝑒−2𝜙/ℎ | 𝑓 (𝑥)𝜒(𝑥) |2d𝑥

= 𝑒−2𝜙min/ℎ

∫
Ω
𝑒−2(𝜙−𝜙min)/ℎ | 𝑓 (𝑥)𝜒(𝑥) |2d𝑥.

The Laplace method yields (notice that 𝜒(𝑥min) = 1 for h small enough)∫
Ω
𝑒−2𝜙/ℎ |𝑢 |2d𝑥 = ℎ𝑒−2𝜙min/ℎ

(
| 𝑓 (𝑥min) |

2 𝜋√
det Hess𝑥min𝜙

+ 𝑜ℎ→0 (1)

)
.
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With equation (4.1), this shows that

inf sp(𝒫ℎ) � 2
√

det Hess𝑥min𝜙
‖(𝜕𝜈𝜙)

1
2 𝑓 ‖2

𝜕Ω

𝜋 | 𝑓 (𝑥min) |2
(1 + 𝑜ℎ→0 (1))𝑒2𝜙min/ℎ ,

and Theorem 1.2 since this estimate holds for all the functions f in ℰ.
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