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A SYMPLECTIC APPROACH TO YANG MILLS THEORY 
FOR NON COMMUTATIVE TORI 

MAURO SPERA 

ABSTRACT. In this note we give a symplectic approach to Yang Mills theory for 
non commutative n-tori, inspired by the classical theory of Atiyah and Bott. 

Introduction. In this note we present a symplectic approach to Yang Mills theory 
for a large class of "elementary modules" (in the sense of M. A. Rieffel ([17])) over 
«-dimensional non commutative tori, inspired by the classical theory of M. F. Atiyah 
and R. Bott ([1]). Roughly speaking, we prove the following: the moduli space consist­
ing of Yang Mills minima modulo gauge equivalence appears as a symplectic manifold 
obtained through a Marsden-Weinstein reduction from the space of all hermitian connec­
tions, which naturally carries a symplectic structure. Actually, these modules can be di­
rectly approached using Heisenberg group theory (as in [6]), as we shall see, but we think 
that our methods and results are interesting on their own; moreover they can, in princi­
ple, be extended to cover more general situations, which will be examined elsewhere (see 
e.g. [24] for some progress in this direction). In order to lay down our constructions, we 
shall build on the extension of Sobolev space techniques to non commutative tori given 
in [23]. 

The present work is organized as follows: in § 1 we collect some background material 
on non commutative Yang Mills theory ([6], [18], [20]). In § 2 we recall basic notions 
on non commutative rc-tori and their Sobolev spaces; next (§ 3) we present our results, 
also giving the Heisenberg group approach previously mentioned; § 4 is devoted to final 
comments. 

1. Preliminaries. Here we shall be acting within the framework of general C*-
dynamical systems. For the basic definitions and results of non commutative differential 
geometry on C*-dynamical systems we refer to [3], [4], [5], [6], [17], [18] (see also [19], 
[20], [21]). Let (A,G,T) be a C*-dynamical system G a finite dimensional Lie group, 
equipped with a G-invariant faithful trace r . Let E°° be a hermitian smooth vector bun­
dle over it (i.e. a hermitian finitely generated projective (right) module over A°°, the 
smooth subalgebra associated to A, naturally obtained from a unique module E over 
A). Let Ë := EndA H, E := End̂ oo S°°, Q = {u G E | wis invertible and w_1 = u*}, 
J7 = {a G E | a* = —a}. Since we shall be always working within the smooth category, 
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A SYMPLECTIC APPROACH TO YANG MILLS THEORY 369 

we omit oo-superscripts. S becomes a left £-module, Q and J are called, respectively, 
the gauge group and the gauge algebra. We shall focus our attention on the space A 
consisting of all connections V compatible with the hermitian structure of H. This is an 
affine space modelled on A1 (7) (in general A*(-) = -valued /c-forms on Lie (G), the Lie 
algebra of G). 2L is acted on by G by means of the following formula: 

gC7) = g'V -g'1 ^ V + g V O T 1 ) , g€ Ç 

(V (T) := [V, T], for T G EY which becomes, at Lie algebra level, 

fa := </>(V) = -V(</>) = ^ • V • ^ ) | , = 0 , </> G J. 
at 

4> represents the vector field on J3. induced by <j>. Choosing a base connection V ° (in 
terms of which any other hermitian connection V can be written as V = V ° + a, 
a £ Al(J)\ the above formulae read: 

( 1 1 ) g(V) = V° + gV°(g-l) + gag-\ 

( />(V)=-V°(0)-[( />,«]. 

The curvature of V, i.e. F v := V2 , always fulfils Bianchi's identity V(F V ) : = 
[V, F v ] = 0 and is gauge covariant: 

Fg(V) = gfVg-\ 

In terms of the covariant derivative operators, F v has the expression 

F*(X,Y)=[VX,VY]-V[XIY] 

(X, Y e Lie(G)). It will be assumed throughout the paper that Lie(G) = Rn, n = 2p. 
Lie(G) will be equipped with a complex structure inducing a real metric h and a sym-
plectic form LJ, reading in a suitable (Darboux) symplectic basis { eu £f }/=i,2,...,/? a s u — 
Y?i=\ et A ef. Let * denote the Hodge operator induced by h. Using the natural (nor­
malized) trace on Ë induced by r and denoted by the same symbol, we can introduce a 
pre-Hilbert space structure on Ak(E) as follows: 

(a,b) =r(*(«* A */?)), a,beAk(E), £ = 0,l,.. . ,rc 

(here a* is the hermitian conjugate of a). The generalized de Rham sequence 

(1.2) 0 - • A°(£) -^-> AX{E) - ^ A2(£) - ^ • • • 

(here V is the natural extension of V to Ak(E)\ V (7) := [V, (-l)kT\, ^ G A*(£)) gives 
rise to an adjoint sequence 

0 <— A°(£) ¥- A\E) ¥- A2(E) < 
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with V * the adjoint to V with respect to ( , ), and to corresponding Laplace operators 

A = V*V + V V * 

(at each level; if k = 0, A = V*V and if k = n, A = VV*). If F v is central, i.e. 
F v (T) = [F v , T\ = 0, T G E, then (1.2) becomes a complex (V 2 = 0) and we can form 
the Hodge cohomology groups 

H% = {ker A | A: Ak(E) -+ Ak(E)} 

whose elements are called harmonic k-forms, k — 0 , 1 , . . . , n. Using an explicit orthonor­
mal basis of Lie(G) (= Lie(G)* via h), say { e\, e^,..., en}, we gather some useful for­
mulae in 

PROPOSITION 1.1. 

(i) V:A°C7) — V O ) 

V b = J2 ^i(b)eh b G A°a) (V, := V,,.) 

V*:AX(J)^A0(J) 

V "a = - J2 Vite), a=J2 ^i G A1 (J). 
i= 1 /= 1 

(U) V:A\J)->A2U) 

Va = X)[Vi(fl/) - V/fa)]*/ A *,-, A = £a { e i G A1 (J), 
i<7 /= ! 

V*:A2(J)-^A\J) 

V *£ = - £ [ £ V, (^ ) ]^ , £ = £ btjet A e,- G A2(_7). 
7=1 i=\ «j 

(Hi) A:A0O) —A 0O) 

Ab = V *V (b) = - £ Vf
2(fc), fc G A°(J7), 

A i A ' O ) — A 1 ^ ) 
Aa = (V*V + V V » 

= é[A(fly-) + é ^ ( û i ) ] ^ , « = £ < W G A ! a ) 
7=1 i = l 1=1 
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( Weitzenbôck 's formula). 

The proof of Proposition 1.1 is straightforward. Corresponding formulae for any Lie 
group can be found in [20]. Moreover, Weitzenbôck type formulae can be easily given 
for any k = 1,2,... ,n. 

The Yang-Mills functional Qtyf: A —» R + is defined as follows ([6]): 

^ ! W ( V ) : = ( F V , F V ) - | |FV | | 2 , V e l 

It is gauge invariant, i.e., 7lM(g(V )) = 9W(V ) Vg G Ç. 
The Yang-Mills equations are the Euler-Lagrange equations pertaining to 9 ^ ; their 

solutions are called critical (or Yang-Mills) connections. In view of gauge invariance, V 
critical entails g(V ) critical Vg G Q. The Yang-Mills equations read precisely as in the 
classical case ([18], [20]): 

PROPOSITION 1.2. (i) Let Ebea hermitian smooth vector bundle on a C*-dynamical 
system (A, G,T). The Yang-Mills equations read: 

V*(Fv) = 0 

V (F v ) = 0. (Bianchi identity) 

(ii) ([20], [18]) Explicitly, if G is abelian, the first equation becomes: 

E W ^ ) = 0, y=l ,2 , . . . ,n . 
/=i 

(ïn) ([20]) The Hessian 9fsj at a critical connection reads: 

ttv(a,a) = \\Va\\2 + 2(Fv,a A a), a eAl(J). 

The proof of Proposition 1.2 mimics the classical one. We recall the following result 
of A. Connes and M. A. Rieffel ([6]): 

THEOREM ([6]). Let Lie(G) be abelian, and assume E admits connections in with 
constant curvature. Then the set in A on which ^M attains a minimum consists exactly 
of those connections in A with constant curvature. Furthermore, the curvatures of all 
these minimizing connections will be the same. 

PROOF. If F v is constant, for some V G A, then clearly V satisfies the Yang-Mills 
equations. Moreover, a straightforward computation shows that, for any a G A1 (J/). 

yMÇV +a) = 9 ^ ( V ) + | |Va + 0 A a\\2, 

whence V i s a minimum of <yrM and all other minima are given by the connections V +a 
fulfilling 

(1.3) V a + a A a = 0, 
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i.e., precisely the connections having the same (constant) curvature as V , since, in gen­
eral, 

Fv+a = Fv +Va + aA a. m 

Observe that if F v is constant, then 9{v(a,a) = || Va\\2 > 0 and Hq(a,d) = 0 <=• 
Va = 0; this equation is the linearization of (1.3) and formally represents the "tangent 
space" to the "manifold" of constant curvature connections in V . In order to achieve 
complete rigour, we must resort to Sobolev space techniques, which will be done starting 
from the next section, concentrating on the non commutative torus case. 

2. Non commutative tori and their Sobolev spaces. For background on non com­
mutative tori we refer to [6], [17], [18] and references therein. The non commutative 
torus AQ is by definition the cocycle C*-algebra C*(D,a), where D = Zn (we confine 
ourselves to the case n = 2/?), the standard lattice in L* = R*\ and o{x,y) — e~

l™(x>y\ 
;c,y G L*, with 9 G A2L. For our purposes we require 9 to be non degenerate, i.e., 
0 (x,y) = 0 Vy G L* => x — 0. (L*, 9 ) is then a symplectic vector space. 

There is a natural action of the (commutative) torus T1 on AQ (see below) which allows 
one to identify the ensuing smooth algebra as S(D, a) ([17]). Let us denote this by Se. AQ 
is generated by unitaries { ux}xein (belonging to Se ) fulfilling the commutation relations 

lÂyLljç e UjçUym 

Any element O G Se can be uniquely expressed as 

Z" 

m = (mi,m2,... ,m„) G Zn, {Om} G 5(ZW), {uk} corresponding to the standard basis 
of L*. The action of T1 is given by (if (z\,zi, • • • ,zn) £ Tn, i.e., Zk G C,|z*| = l) 

«(/) = /, 

flz,.(M/) = ZjUj, 

aZj(uk) = uk, k^j, 

(where / denotes the identity of Ae ). The (T1 -invariant) normalized trace r on AQ is given 
by 

T ( < D ) = O 0 , 0 = (0,0,. . . ,0), Q>eAe. 

We shall concentrate on particular "elementary" modules (in M. A. Rieffel's termi­

nology ([17])) 
VT := 5(M), M=RP, 

which are acted on by Se via: 

(fux)(m) = e((m- ^ , r " « ) ) / ( m - 7 ^ ) ) 
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m G M J G 5(Af), e{d) := e2lTia, a G R. Here ( , ) denotes the standard duality between 
Kp and R *", and r = (T\ T") is an invertible map 7: R *2' - • R̂ 7 x R *' such that: 

x j E Z " ^ ^ can of course be defined for any x G R *" (see [17] for the general definition 

of T). It is known from the general theory that E := End^ VT is, in this case, of type Sxp 

as well and is based on the lattice DL = Zn determined by the requirement y G D1 if 

and only if 6(x, y) = 0 (mod 1) \/x G D. More precisely, we have: 

PROPOSITION 2.1. End^ VT = 5_^ -i. 

PROOF. In terms of the standard basis of Z n, { e i, e2,.. .,en } , >> G D 1 if and only if 

0(y,ek) = ZkeZ, k= l ,2 , . . . ,n . 

Let / = 0~xek\ then any v G Z)1 can be written as y — £j*=1 mi^, mk G Z. An 
immediate computation shows: 

0(y,y') = -(e-l)ji9 

whence, by setting V; := wy, we find the commutation relations 

VjVi = e(H0-l)ji)ViVJ9 

and our assertion follows. • 
An R "-family of constant curvature connections compatible with a suitable metric on 

VT is given by the formula (in terms of covariant derivatives operators, see [17]) 

(2.1) Vx = Qsx + (a,SX)I, a eKp x R*P, 

where S := (5i,53) = (T-xf:L-^ R*" x R*\ andifz = (s9u) G R*P x R? we have 
GZ = C ] + G 2 with 

(ô]/)(wi) = 27r/(m,j)/(/n), 

(Qlf)(m) = £ ", J^(m), / G 5(M), 

and I is here the identity operator on VT, i.e., the identity of E. 
The curvature form F v reads: 

Fv(x,r) = [Vx,vF] 

(2.2) = 27T/(<s3(X),Si(y)> - (s3(nsiW))/ 
= : 2iriu(X9Y)I9 X,Y G L. 

(j is a symplectic form on L, in this particular case (see [17], pages 290-293): it is es­
sentially 6, upon identification of L with L*. In particular, it does not vanish. 

Let now V denote any connection of the family (2.1). We have the following 
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PROPOSITION 2.2. V acts on E via the formula: 

(2.3) Vx(Vy) = 2ni(X,y) Vy, x G L, y G D1. 

PROOF. Using the general formula (cf. [17]) 

r 1 
(0/)(m) = y.± 0(w)e((m, w") )/(m + w) e(( - w', w") )dw 

(O G £), with dw the counting measure on 

D1 = {w=(w\w")= (-T'(y),7"(yj),yeDL}9 

a straightforward computation shows that 

[(VxO)/](m):={[Vx ,0]/}(m) 

/ 2iri(X,y)Q>(w)e((m, w"))f(m + w')e({ -w ,w"))dw, 

whence (2.3) follows. • 
Upon fixing a metric on Rn in such a way that {yk} =: { ek}, k = 1,2,...,n be­

comes an orthonormal basis, we have for the Oth-order Laplace operator the formula (by 
Proposition (1.1)) 

[(AO)/](m) = - ] T [ ( V > ) / ] ( m ) 

= 4TT2 / f ] l ( > 7 ' ^ ) | 2 o ( w M ( m ' w / / ) ) / ( ^ + H;/M(-H;/,vv//))Jvv, 
JD± i=\ 2 

f G 5(M). Let y, := ( v, e,) ; we have, in particular 

AVy = 4TT2-£ yhVy 
i=\ 

Moreover writing 

Z" 

m = (mi,m2,... ,m„) G Zn, we find: 

ll<I>llo2 = ( ^ * ) = E I * n , | 2 = ll{*m}llp(Z») 
Z" 

(here we use the normalized trace on £) and 

;0,AO) = 47r2X>2|<*>n 
Z" 

where m2 := £?=1 w
2. 
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Let AQ(£) denote the Hilbert space completion of Ak(E) with respect to the norm 

induced from ( , ) , which will be labelled as || ||Q. Sobolev norms are introduced in 

Ak(E), k— 0 , 1 , . . . , n by the définition (compare with [23]) 

\\b\\l:=\\b\\l + {b,éfb) 

= (b,(I + As)b), b£Ak(E)y 

s = 1,2, . . . , where A is the (kth) Laplace operator attached to V . An equivalent norm 

is, for instance, the following: 

\\b\\f:=(b,V + *fb). 

Then we complete accordingly, obtaining Sobolev spaces Ak(E). 

The following assertions are part of, or immediately follow from the theory developed 

in [23] and Proposition 2.2. 

THEOREM 2.3. (i)Ak
s(E) = A*( r ) , k = 0 , 1 , . . . , « ; s = 0 , 1 , 2 . . . . 

(H) Ak
s(E) c—• Ak(Ê) ifs>p — | (Sobolev Embedding Theorem), 

(iii) The Hodge-de Rham complex pertaining to V is elliptic and has the same coho-

mology groups as the de Rham complex on T1. 

(iv) The inclusion A®(E) <—• A®(E), s > s', is compact (RellicWs Theorem) and 

Hilbert-Schmidtfor s — s' > | (Maurin ys Theorem), 

(v) JsPs(E) is a Banach *-algebra for s > n. 

(vi) A®(E) is a topological A®(E)-module for s > n, 0 < s1 < s. 

From (iii), we get, in particular: 

Hk
v ^Hk(Tn)^Ak(Rn), 

whence /iy = (n\ k = 0 , 1 , . . . , n. Here, as usual, we set /iy = d im/ /y . 

REMARK. The Sobolev spaces introduced above depend, a priori, on V . But this is 

not the case, according to 

PROPOSITION 2.4. The Sobolev norms pertaing to any two connections Vo, V = 

Vo + a, a G A!(j/), are equivalent (we definitely set s > 0). 

PROOF. It is enough to prove the result for A°S(E); its validity for Ak(E), k = 

1,2, . . . ,n, will be then obtained by using similar arguments in conjunction with 

Weitzenbôck type formulae (see Proposition 1.1, (iii), and the remark following it). 

Let s be even, s — 2/7, and b G Hs := A®(E) (defined via Vo, any connection of 

the family (2.1). Then (b, Asb) = \\APb\\l But A^ = A£ + AT, where K: Hs -+ H0 is a 

compact operator, by Rellich's theorem, and hence continuous. So: 

||A^||0
2<2(|Kè||0

2
+||^||0

2)<C||è|L2 

(for some C > 0). Exchanging the role of Vo and V yields the result for s = 2p. 

https://doi.org/10.4153/CJM-1992-025-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-025-9


376 M. SPERA 

Let now s be odd: s = 2p + 1. Then 

(b,Asb) = (Apb,A-Apb) = IIVA^Ho2 

< 2 ( | | V 0 A ^ | | 0
2 + | |aA^||0

2) 

< 4(|| V o ^ H o 2 + || Vo^Ho2) + D\\Apb\\2
0 

(for suitable D > 0). 

Now b G Hs implies Kb G H3 and VoKb G H2. But K: Hs —• / / 2 is continuous (for 

s > 2) and so 

||VoJH>||o2<C,||*||,2 

(for some Ci > 0), whence, on proceeding now as above, the desired result follows. The 

remaining case s = 1 is immediately settled. • 

We also have the following 

PROPOSITION 2.5. V : A°s+l(E) —• A](E) has closed range for any V = V 0 + a, 

aEAx(J). 

PROOF. If £ G Im(V )sn A] (£), then £ G Im(V ) — (obvious notation). It is easy to 

see that ( £, rj) — 0 Vr/ G Ker V *. In particular, if </> is harmonic, then V </> G Ker V *. 

But if £ € A](£), then ( £ , A 0 ) = 0, whence V*£ is orthogonal to Ker A and this 

entails, by the Fredholm alternative, V*£ = AÀ, for some A G A®+l(E), which in turn 

implies V *(£ — V À ) = 0, whence our assertion follows easily. Recall that the Laplacian 

A = V *V : A®(E) —• A®_2(E) differs from Ao by a compact operator, and this entails the 

Fredholm alternative for it. • 

Let j^y, Çs, Js denote the Sobolev completions of J?, Ç, J/, respectively. Qs becomes a 

Lie group modelled on the Hilbert space % (local charts for Qs being produced through 

the exponential map), provided we act in the "good range" s > n, which henceforth will 

be tacitly assumed. The action of Çs+\ on As given by (1.1) is then smooth. 

3. Symplectic description of Yang-Mills minima. To begin with, let us proceed 

in some generality, without referring explicitly to non commutative tori. The following 

description may, in fact, work in general, provided the relevant concepts involved retain 

their meaning. 

For the notions of symplectic geometry discussed here we refer, for instance to [2], 

[11], [1], [13]. We have the following 

THEOREM 3.1. (i) J%s carries a weak symplectic structure, 

(ii) Qs+\ acts on S^ in a hamiltonian manner. 

(Hi) The map ji : J^ —• 3s~\ defined as 

M ( V ) : = F V 

(with Adenoting the component ofFv "parallel" to UJ, using the || ||o metric on 

A^_j (E)) is a Çs+\ -equivariant moment map. 

PROOF, (i) Let us define, for V eAs,a,be A] (J), 

ûsj(a,b) := (a A b,UJ) = r(*(a A b A *CJ)) . 
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cOy is a weak symplectic structure on A] (J) = 7V ty (tangent space to j ^ in V ) since 
the map from A](J) to A](J7)* given by a —•+ a _! CJ (_J denotes contraction) is injective 
but not surjective. In fact, if us/(a, b) = 0 VZ? G A](J7), then 

0 = a>v(fl,fc) - £ r ( ^ f - <*xbi\ Vft G A](7), 

in terms of the symplectic basis { et, £i}/=i,2,...,p referred to in § 1, and this clearly entails 
a — 0. The latter assertion follows immediately once we observe that (as sets) % C % C 

J7*. Thus we naturally obtain a closed, non degenerate smooth 2-formon Jig, i.e. a (weak) 
symplectic form û defined at each V by the above formula, 
(ii) The action of Çs+\ on As is symplectic, i.e., if g G Çs+\, then 

g * UJ = û. 

Here * denotes pull-back. We check this explicitly: 

(g*a>)v : = àg(V)(g(à),g(bj) 

= âv+gv(g-i)(gag-\gbg-1) = (gag~l A gbg~\uj) 

= ûsj(a,b). 

Now define, for (j> G J7?+I, the smooth function on J^: 

A 0 ( V ) - ( F v , ^ > a ; ) . 

Then 

(d\(P)v(a)= (Va,<l>Lj) = X > [ ( V ^ - - Vf«;)</>] 
i=l 

/> 

/=i 

= -(V<£ A a,a;) = (<£ Ja ) ) v (« ) , 

whence the action of Qs+\ on Rs is indeed hamiltonian. 
We now check that, upon defining Poisson brackets { , } by 

{A^,A^}(V):= a)v(</>v,Vv), 

</>, i/> G ^+i , we have 
{ Â >, A^} = A[0^j. 

Indeed: 

{A^A^XA) = a ) v ( V f V ^ ) = -u>v(VV>,V<£) 

= ( ^ ) v ( ^ v ) = $(A*)(V) - jf(F<emV\$uj)\t=() 
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(iii) The map /x: J^ —• 3s-\ is smooth and Çs+\ -equivariant since 

pKV) = gpVg-l 

and, moreover, if <j> G J7ç+i, then 

(/ i(V),0) = (FV,</>) := ( F V , ^ < J > = A*(V), 

whence it is an equivariant moment map: 

withg_1(</>) := g~{(f>g (adjoint action of Ç̂ +i on J7v+i). 
If we work at the pre-Hilbert space level, we can identify 3 with J* by means of r , and 

transform the adjoint action of Q on J into the coadjoint action of Q on J/*, adhering to 
the Kirillov-Kostant-Souriautheory ([11], [13]). Theorem 3.1 generalizes corresponding 
classical results ([1]). • 

Now suppose that F v is constant (and of the form F v = F v CJ); the isotropy group 

g^={gegs+x\gf}
g-' = Fv} 

then coincides with (^+i. If we consider the moduli space 94 consisting, by definition, 
of the Yang-Mills minima up to gauge equivalence, we see that, taking into due account 
the Connes-Rieffel theorem discussed in § 1, it appears formally as a Marsden-Weinstein 
symplectic quotient 

since gFvg~l = F v if and only if gFv g~l = Fv. Under suitable conditions, to be 
described below, this picture can be implemented rigorously, i.e., 94 becomes a genuine 
Hausdorff symplectic manifold. 

Let us now give some definitions. A connection V is called irreducible if V <f> = 0, 
(j) G E, entails </> = XI, X G C. Otherwise it will be called reducible. Let Âs denote the 
manifold of irreducible connections (in J3t). Let Ç^s) denote the effective gauge group 
Ç(S)/ T (T being the circle group) and set %s) := Lie(^r(5)). Thus, if a G J7(.S), we have an 
orthogonal decomposition a = r(a)l + a, withr(a) = 0, a G %S)- If g = ea = eT(a)g 
(g = e^), then g(V) = g(V) and this justifies our terminology. If V is irreducible, 
then V <f> = 0, <j> G %+\, entails <j> — 0. This last fact descends from elliptic regularity, 
which holds in view of Theorem 2.3 and Propositions 2.4 and 2.5. Indeed, if V cj> = 0, for 
<j> £ %+\ » then A</> = 0, whence <j> G i , and <j> = 0 since A < / > = O = > V 0 = O = > 0 = O 
(by the irreducibility of V and the very definition of J). 

Let us now prove the following provisional theorem, which will be later partially 
replaced by a more complete result. 
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THEOREM 3.2. Let s > ny and let all the objects involved in the statements below 
pertain to a module VT overAo subject to the conditions discussed in the previous section. 
In particular, let V be a constant curvature connection on VT (one can choose V to 
belong to the family (2.1)). Then 

(i) As/ Çs+i is a Hausdorff manifold, 
(ii) ^ f l / i - 1 (F v ) is a submanifold of 5^. 

(Hi) M = A, H n~l(Fv)/ Çs+\ is a submanifold of 5^/ Çs+i and appears as a 
Marsden-Weinstein reduction of As. 

(iv) Around V, (M looks like 

n 

{ V +a | a = *Yl,a)eh aj ^ *^' \\a\\s = \\a\\o < e> for some e > 0} . 

Before giving the proof of Theorem 3.2, we make the following 

REMARKS, (i) We shall see that moduli spaces defined in Theorem 3.2 (iii), and 
during the discussion preceding it, and denoted by the same symbol 9\{, will indeed 
coincide, since they will consist of irreducible (and smooth) connections, 
(ii) The arguments presented here have been adapted from [14] (see also [10]). We again 
proceed in some generality, in order to make clear that the arguments given here extend 
beyond the concrete examples discussed, provided the relevant objects are meaningful 
and the Sobolev theory holds. 

PROOF OF THEOREM 3.2. (i) A natural candidate for an atlas of Âs/ Çs+\ is provided 
by local charts of the form 

Oy,e = {V +fl,0GAjC7)| V*a = 0, | | f l | | ,< e} , 

fore > 0 small enough. The condition V *a — 0 (Coulomb(orHodge) gauge condition) 
means that a is orthogonal to the tangent space to the orbit of Qs+\ through V . Here V is a 
general hermitian irreducible connection; in order to simplify the following calculations, 
we assume it to have constant curvature (V 2 = 0), but the argument works in general, 
for a dense set of connections V + a, a G A] (J7), V + a irreducible: it is easy to check 
that if V is irreducible, then V + a is such, for a small enough, upon comparison of their 
associated (Oth-order) Laplacians; the argument is completed by resorting to Proposition 
2.5. 

Let 

§s+\u := {g€ Çs+\ | | | £ - / | U i < e}. 

Consider the map O: Qs+\j,e x Oy,e —̂  ̂  given by, for V ' = V + a, 

0(£,V') = V +gV{g-x)+gag-x. 

The differential of O at (/, V ) reads: 

(</0)(/,v)(7,fc) = - V 7 + £ , 
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7 G Çs+\, b G A] (J7), V *Z? = 0; thus, it is injective since V is irreducible, and surjective 
since Im V is closed (Proposition 2.5), s o ^ = I m V © Ker V * (Sobolev indices omit­
ted). (dO)(/,v ) is then an isomorphism by the open mapping theorem; hence ys+\,i,ex CV ,e 
is diffeomorphic to a neighbourhood of V in 5is, for some small e > 0. We shall prove 
that CV,e injects into the quotient, i.e., for e > 0 sufficiently small, if g(V2) = Vi, then 
g G ^+i,/,€. This will be achieved by bootstrapping. If V, = V + aj and \\aj\\s < 5, 
S > 0,7= 1,2, then 

Vg = ga2-axg 

(by (1.1)). Moreover, 

| |Vg | | 0 < ||ga2||o+||flig||o 

<C||g||o(||ai| |, + | M | , ) < oo. 

for some C > 0. Actually ||g||o = 1 if we use the normalized trace r on E to define 
|| 11o; g does not necessarily belong to £, a priori, but it is a unitary operator on the 
GNS-Hilbert space HT induced by r and its norm as a vector in HT is precisely ||g||o. 
Retrieving our calculation, we get 

llsll? = IMIo + (s>As> < oo, 

i.e., g G Q\. Similarly, 

||Vg||i < \\ga2\\\ +\\a\g\\\ 

<Cx\\g\\x{\\ax\\s + \\a2\\s\ Cx > 0 . 

But 
i | V s | | M | V £ | | 0

2 + (Vs,AVg> 

= ( g , A g ) + ( ^ , V * ( V * V + V V * ) V ^ ) 

= (g,Ag)+(g,A 2g), 

(as V 2 = 0), and so g G Q2. Similarly, we get g G Çs+\. 
An analogous computation also shows that g G Çs+i,i,e for e small enough. In partic­

ular one also obtains as a corollary that if aj G A1 (J), j — 1,2, then g G Ç. This shows 
that the topology of Â/ Q does not depend on the Sobolev structure. It remains to prove 
the Hausdorff property. Let Vi, V2 be two inequivalent connections in Oy?e; suppose 
that there exist sequences { V"} —> V/,7 = 1,2, in || 1̂  and g«(V9

n) = V,n. Setting 
V n = V + Û", we have, as before: 

Vg„ = gnaî-aïgn. 

Proceeding now as above, we have ||gw||.y+i uniformly bounded by a constant C > 0; 
upon passing to a subsequence, still denoted by {g„}, we have, by Rellich's theorem 
(Theorem 2.3, (iv)), gn —> g (say) in || \\s. This is easily seen to entail g G Çs+\ and 
gC^2) = Vi, so that Vi and V2 are gauge equivalent, contrary to our initial assumption. 
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The various charts Oy,e overlap smoothly (direct check), and hence Âg is a Hausdorff 
manifold as claimed. This proves (i). 
(ii) We must show that the differential d\i is surjective at any irreducible V . If d\x^ is 
not surjective, there exists <j> G Js+i » <t> 7̂  0> such that 

(d/xv(fl),^) = 0, flGAjO). 

But then 

= (d\<f> )y (a) = cDy ( V (/>, a), 

whence, a) being non degenerate, V <j> — 0 with (f> ^ 0, which contradicts our hypothe­
sis, 
(iii) In view of (i) and (ii), we have to seek a solution to the system 

(3 1) [Ta=f 

Let b G A] (J7) be a solution to the equation 

Tb=f, 

which exists according to (ii); if we find £ E A](j7) such that 

V£ = 0 
0.2) ^ v*^ = _ v * ^ 

then we see that a = b + £ is a solution of (3.1). Solving (3.2) is equivalent (using the 
irreducibility of V in conjunction with V 2 = 0) to solving the Poisson equation 

which is possible by the Fredholm alternative, and in view of Weitzenbôck's formula 
(Proposition 1.1, (iii)), with F v (•) = 0. 
(iv) fAf is locally described through the equations 

n _ f S/a + a A a = 0, 

which entail 
Aa + V *(a A a) = 0. 

The tangent space TytM atV is depicted by the equations 

i.e., by H^. Owing to the irreducibility of V, the only solutions to (3.4) are provided by 
scalar 1-forms, which solve the full equations (3.3). 9v( is independent of the Sobolev 
structure, since scalar forms are automatically smooth. 
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Alternatively, one can use the implicit function theorem in the following guise: the 
map P: h\(J) —• A]_2C7) defined by 

P(a) = Aâ + V *(â A à) 

has differential (at à — 0) equal to A, which is an isomorphism; hence the equation 
P(a) = 0 has no solution different from a — 0 in a small neighbourhood of V . • 

The following theorem is essentially a reformulation of Theorem 3.2, (iv) above, but 
we give it since we shall need a slight variation of it in the sequel. 

THEOREM 3.3. (i) Let I be an open interval in R containing 0 and let I 3 t —• 
V(0 = V + a(t) be a smooth curve of solutions to (3.3), with a(t) — ta\ + b(t), where 
t~xb{t) —• 0 if t —• 0. Then its tangent vector in V, namely a\, fulfils the equation 
Aa\ = 0, and so it is a scalar I-form. 

(ii) lfa(f) is real analytic in t, then a(t) is a scalar I-form. 

PROOF, (i) If V + a(f) fulfils (3.3), then 

rVai + G(0 = 0, 

/V*fli+V*fc(0 = 0, 

with an obvious definition of G(t), and rxG(t) —•» 0 if t —» 0. Dividing by t ^ 0 and 
letting t —+ 0 we get the assertion, since V is irreducible. 

(ii) This follows easily from power series expansion (upon setting a(t) — £ £ i **<z*X 
which yields equations 

I Vak + Ek
hz\ah A a*_A = 0, 

1 V * ^ = 0, k= 1,2,..., 

which are solved recursively and give scalar 1-forms a^, k = 1,2,.... 
This result shows once more that, in the irreducible case, Hy is the genuine tangent 

space to the moduli space. In general it is not true that any element solving the linearized 
equations (3.4) appears as the tangent vector in V to a curve of connections solving the 
full equations (3.3). We shall see an instance of this phenomenon later on (compare, e.g. 
[10], [14],). 

The neighbourhood CV,e H M C fW cannot be indefinitely extended in general: 
Vi = V + a\, V2 = V 4- «2, where ajj = 1,2, are scalar 1-forms are gauge equivalent 
if and only if there exists g G Q such that 

(3.5) Vg = (a2-ax)g 

and V may possess eigenvalues. 
If V is not irreducible, then it has a non trivial stabilizer 

T v : = { * € & . ! U ( V ) = V } 

which measures the lack of injectivity of V . Proceeding again as in [14], we easily obtain 
the following 
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COROLLARY 3.4. If V is reducible, a chart around it is given by 

Ov,e/r
v. 

(ii) IfV is reducible and has constant curvature, the formal tangent space to 9d in 
VisHl

v/T
v. m 

From now on we definitely deal with non commutative tori: the calculations below 
just refer to this case. 

Let fWy denote the connected component of the moduli space containg V. We are 
now in a position to state the following 

THEOREM 3.5. fMy is a reduced symplectic manifold isomorphic with T1. 

PROOF. Theorem 3.5 is a consequence of Theorem 3.2. The only thing which re­
mains to be proven is the global character of fWy • We must retrieve the calculation in 
Theorem 3.2, (iv) and reconsider equation 3.5, which reads explicitly, if g — 
Ez-SmtTV?2 •••y^: 

(3.6) 27rimjgm = (a2 - ax)jgm. 

This implies that 
(27riy\a2-ai)j G Z, j = l,2,...,rc, 

and this condition is clearly sufficient to get a solution to (3.6), since it is then enough to 
choose g = Vp Vf • • • Y%\ m, = (2ir i)-\a2 - arfj. m 

Actually, we shall see in a minute that it is possible to go beyond Theorem 3.5 by 
showing that fTVf is connected, so CM = fWy — T71. We are not able to prove this with 
our geometric tools. Nevertheless, it is possible to achieve this by resorting "ad hoc" to 
Heisenberg group theory as in [6]; this approach renders part of our previous discussion 
redundant (we determine CM directly), but causes some loss in geometric insight. Each 
approach has its own merits, and sheds light on the other. 

THEOREM 3.6. CM ^ T". 

PROOF. Let V be a fixed connection of the family (2.1). The formula (2.2) giving 
its curvature naturally defines a representation of the Heisenberg Commutation Relations 
for p degrees of freedom, upon considering the covariant derivative operators induced 
by V (suitably rescaled by — i(2n)~2, in order to get symmetric operators, and the right 
commutation relations) with respect to a Darboux basis for UJ. This representation is 
integrable to a Weyl form 7ry (or, equivalently, to a unitary representation of the 2p + 1 -
dimensional Heisenberg group, sending the centre into T) on L2(M, d\x) (dfi denotes the 
Lebesgue measure on M), for which S(M) provides the set of C°°-vectors; this can be 
ascertained by applying Dixmier's ([7]) and Nelson's ([15]) theorems to S(M) (together 
with Stone's theorem ([15])), and then by recalling the notion of C°°-vector space for 
a unitary representation of a Lie group (see, e.g. [13]), and the concrete form of the 
Heisenberg operators (see below). 
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7Tv is irreducible, in view of the Stone-von Neumann uniqueness theorem for the Weyl 
commutation relations ([25], [15], [12], [7]), which states that any such representation is 
unitarily equivalent to a sum of copies of the Schrodinger representation, say 7ro, which is 
also defined on L2(M, d{i) and is irreducible. Recall that this irreducibility is tied to the 1 -
dimensionality of the ground state space of the quantum harmonic oscillator hamiltonian. 
7To has S(M) as its set of C°°-vectors and, as remarked above, the same is true for 7ry since 
the covariant derivative operators involved are, by construction, linear combinations of 
the position and momentum operators attached to 7r0 (see § 2). 

Any other connection V = V + a, a G A!(J7), having the same curvature as V , 
gives rise to another representation of the Heisenberg commutation relations; we have 
a5(M) C A1(5(M)),and a is clearly a bounded perturbation of V ; so, the use of the 
Kato-Rellich theorem ([15]), in conjunction with the previous arguments, yields that V ' 
also gives rise to an irreducible representation of the Weyl commutation relations, 7ry, 
on L2(M, d\i) whose set of C°°-vectors is again 5(M), and which is, of course, unitarily 
equivalent to 7ry. 

Explicitly, we write 

e - v Q-x = v+a, 
with Q a unitary operator on L2(M,dn). Proceeding now as in [6], we find that, for 
any j = 1,2,..., n, the unitary operator QWjQWJ (where Wj is Uj acting on the left) 
intertwines 7ry with itself and so, owing to irreducibility, Q*WjQWJ = Ujl, \ Uj\ — 1, i.e. 
WjQ = UjQWj. Now let N = Wx, x G Rn, with 

WjN= uJxNWj. 

N exists in view of the commutation relations for AQ and because 9 is assumed to be 
non degenerate. Let U — QN. Then it is immediately checked that WjU = UWj,j = 
1,2, . . . ,n , i.e., U G E. Now N~XV N = V + cr, with a a scalar 1-form, and 
U(V + cr)U~l — V + a, so U intertwines V + a and V + a. This shows that any 
V ' having the same constant curvature as V is gauge equivalent to a connection of the 
family (2.1). 

The proof is completed by resorting to the calculation in the preceding theorem. • 
We now deduce some corollaries of the previous theorem. 

COROLLARY 3.7. The moduli space 9Aiyryiy d > 1, consisting of the Yang-Mills 
minima up to gauge equivalence on (VT)d (d copies ofVT) is precisely 

9^vr)d ^ (Tn)d/ ÇLd)n-\ 

where lLd denotes the permutation group over d elements. 

PROOF. Let V = ©f=1 V,- on(V7)^, with V/ a connection of the family (2.1). Clearly 
V has constant curvature and is reducible, with 

r v ^ U(d,C). 
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The formal tangent space to the moduli space in V is given by H^ / T v (Corollary 3.4). 
In this case, it is immediately checked that 

n 

H\j = { a — ̂ 2 atei I ai £ M(d, C ), a* — —at}. 

Now, using the same notation as above, let V (t) — V + a(t) by an analytic curve of 
connections, t G /, V (0) = V fulfilling (3.3). Then, proceeding as in Theorem 3.3, one 
finds that a(t) is a scalar matrix 1-form and, moreover, a(t) A a(t) — 0, i.e. [a*(0, 0/(0] = 
0, ij = 1,2,...,«. 

Conversely, any antihermitian scalar matrix 1-form a fulfilling a A a = 0 provides a 
solution to the full equations (3.3). 

The components aj of a can be simultaneously diagonalized, aj — diag(<zj, aj,... erf), 
and if «i, say, is fixed, then the other components are determined up to a permutation 
(namely, an element of Xd). Moreover, aj = diag(aj, aj,..., df) is gauge equivalent to 
a'j = diag(aj1, « j 2 , . . . , a'd) whenever a* — af € 2niZ, k = 1,2,..., d. Hence, in view of 
Theorems 3.5, 3.6, the moduli space is (T1)*1, modulo the action of (Ld)n~l. The proof is 
complete. The appearance of Hd is natural since it is the Weyl group of U(d,C). In this 
case the formal tangent space is not the "true" tangent space. • 

COROLLARY 3.8 ([6]). Let Ep,q, p,q G Z, (p,q) = 1, p + Oq > 0, be the basic 
Heisenberg modules on the non commutative 2-torus AQ, 6 G R — Q. Then (with the 
obvious notation): 

%E^ = (T2)d/Il
d. 

PROOF. Using the explicit formulae in [6] and reasoning as above yields the desired 
conclusion. • 

Let us now drop the condition (p,q) — 1. According to Rieffel's results ([18]), the 
higher critical points of ^M on EPtq are described by fixing a finite partition 

{mk,pk,qk},mk > 0,(pk,qk)= l,pk + 0qk > 0, 

p + 0q = YJ
mk(Pk + 0qk), 

decomposing EPtq as ®k(EPkm)mk, and setting V = ©^m^V^, V* a constant curvature 
connection on EPkAk. The ensuing moduli space M is then isomorphic to Uk(T2)mk / Xm*. 
This result admits an immediate symplectic reinterpretation: 

COROLLARY 3.9. 5fSf = v~l(Fv)/ ÇFv. 

PROOF. FV = ®kFmkVk, whence ÇFv = Uk Q^k, which easily implies the de­
sired result. • 
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4. Concluding remarks, (i) It is possible to extend the notion of holomorphic 
structure in our non commutative context ([20], [21], [22]) by taking (with respect to 
the complex structure of R n = Cp) the anti-holomorphic part V " of an integrable com­
patible connection (i.e., a V with V "2 = 0) and declaring two such structures equivalent 
if they can be obtained from each other by the action of the complex gauge group Çc\ 
i.e. the group of all invertible endomorphisms of S. We plan to use this notion elsewhere 
to discuss the holomorphic geometry on non commutative vector bundles along the lines 
of the beautiful classical portrait ([1], [8], [9]). 
(ii) As mentioned in the introduction, we discussed, in [24], 9^-nioduli spaces for a 
certain class of Rieffel's modules, finding, in this case, highly reducible connections and 
infinite dimensional moduli spaces. 
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