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Abstract

For any real polynomial p(x) of even degree k, Shapiro [‘Problems around polynomials: the good, the bad
and the ugly. . .’, Arnold Math. J. 1(1) (2015), 91–99] proposed the conjecture that the sum of the number of
real zeros of the two polynomials (k − 1)(p′(x))2 − kp(x)p′′(x) and p(x) is larger than 0. We prove that the
conjecture is true except in one case: when the polynomial p(x) has no real zeros, the derivative polynomial
p′(x) has one real simple zero, that is, p′(x) = C(x)(x − w), where C(x) is a polynomial with C(w) � 0, and
the polynomial (k − 1)(C(x))2(x − w)2 − kp(x)C′(x)(x − w) − kC(x)p(x) has no real zeros.
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1. Introduction

The assertion that if a real polynomial p(x) has only simple real zeros, then the function
p(x) is (locally) strictly monotone was known to Gauss (see [3]). We can reformulate
it in the form of the classical Laguerre inequality: if p(x) has only simple real zeros,
then the polynomial p1(x) = (p′(x))2 − p(x)p′′(x) is strictly positive. A refinement of
the Laguerre inequality constitutes the Hawaiian conjecture (see [1]), where if p(x)
is a real polynomial, then the number of real zeros of (p′(x)/p(x))′ does not exceed
the number of nonreal zeros of p(x). The Hawaiian conjecture was settled in 2011
by Tyaglov [4]. Shapiro proposed three conjectures around the Hawaiian conjecture
(see Conjectures 11, 12 and 13 in [2]). Conjecture 11 is discussed in [5].

We consider Conjecture 12 which states: for any real polynomial p(x) of even
degree k, we have Δ := �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) > 0. Here, �r p(x)
stands for the number of real zeros of a polynomial p(x) with real coefficients.

Our first result shows that, in most cases, the conjecture is true.

THEOREM 1.1. Let p(x) be a real polynomial of even degree k. Then the quantity
Δ = �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) > 0 if and only if one of the following
four cases holds:
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(1) the polynomial p(x) has real zeros;
(2) the polynomial p(x) has no real zeros and the polynomial p′(x) has at least three

distinct real zeros;
(3) the polynomial p(x) has no real zeros and the polynomial p′(x) has one real zero

with exponent larger than 1;
(4) the polynomial p(x) has no real zeros, the polynomial p′(x) has one real

zero which is simple, that is, p′(x) = C(x)(x − w), where C(x) is a polynomial
with C(w) � 0, and the polynomial (k − 1)(C(x))2(x − w)2 − kp(x)C′(x)(x − w) −
kC(x)p(x) has at least one real zero.

The only case in which the conjecture is false is described in our second result.

THEOREM 1.2. Let p(x) be a real polynomial of even degree k. Then the quantity
Δ = �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) = 0 if and only if the polynomial p(x)
has no real zeros, the polynomial p′(x) has one real zero which is simple, that is,
p′(x) = C(x)(x − w), where C(x) is a polynomial with C(w) � 0, and the polynomial
(k − 1)(C(x))2(x − w)2 − kp(x)C′(x)(x − w) − kC(x)p(x) has no real zeros.

At the end of the paper, we give some examples to show that the case described in
Theorem 1.2 does occur.

2. Proofs of the theorems

We derive Theorem 1.1 from a series of lemmas.

LEMMA 2.1. For a real polynomial p(x) of even degree k, the real zeros of the
polynomial kp′′(x)p(x) − (k − 1)(p′(x))2 are all included in the critical points of the
rational fraction P(x) = (p′(x))k/(p(x))k−1.

PROOF. Observe that

P′(x) =
( (p′(x))k

(p(x))k−1

)′
=

k(p′(x))k−1 p′′(x)(p(x))k−1 − (k − 1)(p′(x))k(p(x))k−2 p′(x)
(p(x))2k−2

=
k(p′(x))k−1 p′′(x)(p(x))k−1 − (k − 1)(p′(x))k+1(p(x))k−2

(p(x))2k−2

=
(p′(x))k−1(kp′′(x)p(x) − (k − 1)(p′(x))2)

(p(x))k . �

LEMMA 2.2. When the real polynomial p(x) of even degree has real zeros, we have
�r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) > 0.

Now suppose p(x) is a real polynomial of even degree with no real zeros, so that
�r p(x) = 0. The derivative polynomial p′(x) has odd degree. A real polynomial of odd
degree has an odd number of real zeros. In particular, it has at least one real zero.

LEMMA 2.3. Let p(x) be a real polynomial of even degree with no real zeros. If p′(x)
has at least three distinct real zeros, then �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) > 0.
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PROOF. The rational function P(x) is a real function. Since p(x) has no real zeros and
p′(x) has no real poles, the rational function P(x) has no real poles and so satisfies
the conditions of Rolle’s theorem. By the hypothesis, the polynomial p′(x) has at least
three real zeros. By Rolle’s theorem, between two adjacent real zeros of P(x), there is
at least one real critical point. So, P(x) has at least two real critical points. These two
real critical points of P(x) are not zeros of p′(x). So, by Lemma 2.1, at least two real
critical points of P(x) are real zeros of the polynomial (k − 1)(p′(x))2 − kp(x)p′′(x).
So, �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] ≥ 2 > 0. �

EXAMPLE 2.4. Let p1(x) = x4 − 2x2 + 5 = (x2 − 1)2 + 1, so k = 4.
Obviously, p1(x) has four distinct complex zeros and it has no real zeros. Further,

p′1(x) = 4x3 − 4x = 4x(x2 − 1) has three real zeros. In each of the intervals (−1, 0) and
(0, 1), there is one critical point of the rational fraction P1(x) = (p′(x))k/pk−1(x) =
(4x3 − 4x)4/(x4 − 2x2 + 5)3 and �r[(k − 1)(p′1(x))2 − kp1(x)p′′1 (x)] = 2 > 0. This is in
accord with Lemma 2.3.

LEMMA 2.5. Let p(x) be a real polynomial of even degree with no real zeros. If p′(x)
has one real zero with exponent larger than 1, then �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] +
�r p(x) > 0.

PROOF. By hypothesis, p′(x) = C(x)(x − w)l, where C(x) is a polynomial, w is real,
C(w) � 0 and l > 1. Then,

(k − 1)(p′(x))2 − kp(x)p′′(x)

= (k − 1)(C(x))2(x − w)2l − kp(x)C′(x)(x − w)l − klC(x)p(x)(x − w)l−1

= (x − w)l−1((k − 1)(C(x))2(x − w)l+1 − kp(x)C′(x)(x − w) − klC(x)p(x))

and this polynomial has a zero at z = w with exponent l − 1. From this, it follows that
�r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) ≥ l − 1 > 0. �

LEMMA 2.6. Let p(x) be a real polynomial of even degree with no real zeros. If p′(x)
has one real zero which is simple, that is, p′(x) = C(x)(x − w), where C(x) is a polyno-
mial with C(w) � 0, and (k − 1)(C(x))2(x − w)2 − kp(x)C′(x)(x − w) − kC(x)p(x) has
real zeros, then �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) > 0.

PROOF. By hypothesis, the polynomial

(k − 1)(p′(x))2 − kp(x)p′′(x) = (k − 1)(C(x))2(x − w)2 − kp(x)C′(x)(x − w) − kC(x)p(x)

has real zeros. Consequently, �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x) > 0. �

PROOF OF THEOREM 1.1. Let Δ = �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x). The four
cases of Theorem 1.1 arise as follows.

(1) If p(x) has real zeros, then Δ > 0 by Lemma 2.2.
(2) If p(x) has no real zeros and p′(x) has at least three distinct real zeros, then Δ > 0

by Lemma 2.3.
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(3) Suppose p′(x) has fewer than three distinct real zeros. Because p′(x) is a
polynomial of odd degree, it must have just one real zero. If p(x) has no real zeros
and p′(x) has one real zero with exponent larger than 1, then Δ > 0 by Lemma 2.5.

(4) If p(x) has no real zeros, p′(x) = C(x)(x − w) has one real zero which is simple,
and the polynomial (k − 1)(C(x))2(x − w)2 − kp(x)C′(x)(x − w) − kC(x)p(x) has
real zeros, then Δ > 0 by Lemma 2.6.

The only remaining case is when p(x) has no real zeros, p′(x) = C(x)(x − w) has
one real zero which is simple, that is, C(x) is a polynomial with C(w) � 0, and the
polynomial (k − 1)(C(x))2(x − w)2 − kp(x)C′(x)(x − w) − kC(x)p(x) has no real zeros.
In this case, the calculation in Lemma 2.6 shows that Δ = 0. This completes the proof
of Theorem 1.1. �

PROOF OF THEOREM 1.2. Let Δ = �r[(k − 1)(p′(x))2 − kp(x)p′′(x)] + �r p(x). From the
proof of Theorem 1.1, the hypotheses of Theorem 1.2 describe the only case in which
Δ = 0; in all other cases, Δ > 0. �

EXAMPLE 2.7. Let p2(x) = x2 + ax + b with a, b real, so k = 2.
For this example, (k − 1)(p′2(x))2 − kp2(x)p′′(x) = (2x + a)2 − 4(x2 + ax + b) =

a2 − 4b. If a2 − 4b < 0, then the polynomials (k − 1)(p′2(x))2 − kp2(x)p′′2 (x) and p2(x)
have no real zeros, that is, �r[(k − 1)(p′2(x))2 − kp2(x)p′′2 (x)] + �r p2(x) = 0, in contrast
to Shapiro’s conjecture.

EXAMPLE 2.8. Let p3(x) = x4 + x2 + 1, so k = 4. For this example, (k − 1)(p′3(x))2 −
kp3(x)p′′3 (x)= 3(4x3+2x)2− 4(x4+x2+1)(12x2+2) = −4(2x4+11x2+2). The zeros of
the polynomial 2t2 + 11t + 2 are 1

2 (−11 ±
√

105) which are both negative real zeros.
So, the polynomial 2x4 + 11x2 + 2 has four complex zeros and no real zeros. So,
�r[(k − 1)(p′3(x))2 − kp3(x)p′′3 (x)] + �r p3(x) = 0.
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