ON THE NUMBER OF REAL ZEROS OF POLYNOMIALS OF EVEN DEGRE[E](#page-0-0)

L[A](https://orcid.org/0000-0003-3317-0586)NDE MA^{\odot} and ZHAOKUN MA

(Received 11 January 2023; accepted 17 January 2023; first published online 27 February 2023)

Abstract

For any real polynomial *p*(*x*) of even degree *k*, Shapiro ['Problems around polynomials: the good, the bad and the ugly...', *Arnold Math. J.* ¹(1) (2015), 91–99] proposed the conjecture that the sum of the number of real zeros of the two polynomials $(k-1)(p'(x))^2 - kp(x)p''(x)$ and $p(x)$ is larger than 0. We prove that the conjecture is true except in one case: when the polynomial $p(x)$ has no real zeros, the derivative polynomial $p'(x)$ has one real simple zero, that is, $p'(x) = C(x)(x - w)$, where $C(x)$ is a polynomial with $C(w) \neq 0$, and the polynomial $(k − 1)(C(x))^{2}(x − w)^{2} − kp(x)C'(x)(x − w) − kC(x)p(x)$ has no real zeros.

2020 *Mathematics subject classification*: primary 26C10; secondary 12D10, 30C10, 30C15. *Keywords and phrases*: real zeros, polynomials, Rolle's theorem, conjecture of B. Shapiro.

1. Introduction

The assertion that if a real polynomial $p(x)$ has only simple real zeros, then the function $p(x)$ is (locally) strictly monotone was known to Gauss (see [\[3\]](#page-3-0)). We can reformulate it in the form of the classical Laguerre inequality: if $p(x)$ has only simple real zeros, then the polynomial $p_1(x) = (p'(x))^2 - p(x)p''(x)$ is strictly positive. A refinement of the Laguerre inequality constitutes the Hawaiian conjecture (see [\[1\]](#page-3-1)), where if $p(x)$ is a real polynomial, then the number of real zeros of $(p'(x)/p(x))'$ does not exceed
the number of nonreal zeros of $p(x)$. The Hawaiian conjecture was settled in 2011 the number of nonreal zeros of $p(x)$. The Hawaiian conjecture was settled in 2011 by Tyaglov [\[4\]](#page-3-2). Shapiro proposed three conjectures around the Hawaiian conjecture (see Conjectures 11, 12 and 13 in [\[2\]](#page-3-3)). Conjecture 11 is discussed in [\[5\]](#page-3-4).

We consider Conjecture 12 which states: for any real polynomial $p(x)$ of even degree *k*, we have $\Delta := \frac{\mu}{h}[(k-1)(p'(x))^2 - kp(x)p''(x)] + \frac{\mu}{h}p(x) > 0$. Here, $\frac{\mu}{h}p(x)$ stands for the number of real zeros of a polynomial $p(x)$ with real coefficients.

Our first result shows that, in most cases, the conjecture is true.

THEOREM 1.1. Let $p(x)$ be a real polynomial of even degree k. Then the quantity $\Delta = \frac{\mu}{r} \left[(k-1)(p'(x))^2 - kp(x)p''(x) \right] + \frac{\mu}{r} p(x) > 0$ *if and only if one of the following*
four cases holds: *four cases holds:*

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

- (1) *the polynomial p*(*x*) *has real zeros;*
- (2) the polynomial $p(x)$ has no real zeros and the polynomial $p'(x)$ has at least three *distinct real zeros;*
- (3) *the polynomial* $p(x)$ *has no real zeros and the polynomial* $p'(x)$ *has one real zero with exponent larger than 1;*
- (4) *the polynomial* $p(x)$ *has no real zeros, the polynomial* $p'(x)$ *has one real zero which is simple, that is,* $p'(x) = C(x)(x - w)$ *, where* $C(x)$ *is a polynomial with* $C(w) \neq 0$ *, and the polynomial* $(k-1)(C(x))^{2}(x-w)^{2} - kp(x)C'(x)(x-w)$ *kC*(*x*)*p*(*x*) *has at least one real zero.*

The only case in which the conjecture is false is described in our second result.

THEOREM 1.2. Let $p(x)$ be a real polynomial of even degree k. Then the quantity $\Delta = \frac{\mu}{r}[(k-1)(p'(x))^2 - kp(x)p''(x)] + \frac{\mu}{r}p(x) = 0$ if and only if the polynomial $p(x)$
has no real zeros, the polynomial $p'(x)$ has one real zero which is simple, that is *has no real zeros, the polynomial p*- (*x*) *has one real zero which is simple, that is,* $p'(x) = C(x)(x - w)$, where $C(x)$ *is a polynomial with* $C(w) \neq 0$, and the polynomial $(k-1)(C(x))^2(x-w)^2 - kp(x)C'(x)(x-w) - kC(x)p(x)$ has no real zeros.

At the end of the paper, we give some examples to show that the case described in Theorem [1.2](#page-1-0) does occur.

2. Proofs of the theorems

We derive Theorem [1.1](#page-0-1) from a series of lemmas.

LEMMA 2.1. *For a real polynomial p*(*x*) *of even degree k, the real zeros of the polynomial* $kp''(x)p(x) - (k-1)(p'(x))^2$ *are all included in the critical points of the rational fraction* $P(x) = (p'(x))^k / (p(x))^{k-1}$.

PROOF. Observe that

$$
P'(x) = \left(\frac{(p'(x))^k}{(p(x))^{k-1}}\right)' = \frac{k(p'(x))^{k-1}p''(x)(p(x))^{k-1} - (k-1)(p'(x))^k(p(x))^{k-2}p'(x)}{(p(x))^{2k-2}}
$$

$$
= \frac{k(p'(x))^{k-1}p''(x)(p(x))^{k-1} - (k-1)(p'(x))^{k+1}(p(x))^{k-2}}{(p(x))^{2k-2}}
$$

$$
= \frac{(p'(x))^{k-1}(kp''(x)p(x) - (k-1)(p'(x))^2)}{(p(x))^k}.
$$

LEMMA 2.2. When the real polynomial $p(x)$ of even degree has real zeros, we have - $\int_{r}^{R} [(k-1)(p'(x))^{2} - kp(x)p''(x)] + \frac{4}{r} p(x) > 0.$

Now suppose $p(x)$ is a real polynomial of even degree with no real zeros, so that degree has an odd number of real zeros. In particular, it has at least one real zero. $r_p(x) = 0$. The derivative polynomial $p'(x)$ has odd degree. A real polynomial of odd

LEMMA 2.3. Let $p(x)$ be a real polynomial of even degree with no real zeros. If $p'(x)$ *has at least three distinct real zeros, then* $\sharp_r[(k-1)(p'(x))^2 - kp(x)p''(x)] + \sharp_r p(x) > 0$ *.* **PROOF.** The rational function $P(x)$ is a real function. Since $p(x)$ has no real zeros and $p'(x)$ has no real poles, the rational function $P(x)$ has no real poles and so satisfies the conditions of Rolle's theorem. By the hypothesis, the polynomial $p'(x)$ has at least three real zeros. By Rolle's theorem, between two adjacent real zeros of $P(x)$, there is at least one real critical point. So, $P(x)$ has at least two real critical points. These two real critical points of $P(x)$ are not zeros of $p'(x)$. So, by Lemma [2.1,](#page-1-1) at least two real critical points of *P*(*x*) are real zeros of the polynomial $(k-1)(p'(x))^2 - kp(x)p''(x)$. So, $\sharp_r[(k-1)(p'(x))^2 - kp(x)p''(x)] \ge 2 > 0.$

EXAMPLE 2.4. Let $p_1(x) = x^4 - 2x^2 + 5 = (x^2 - 1)^2 + 1$, so $k = 4$.

Obviously, $p_1(x)$ has four distinct complex zeros and it has no real zeros. Further, $p'_1(x) = 4x^3 - 4x = 4x(x^2 - 1)$ has three real zeros. In each of the intervals (−1, 0) and $(0, 1)$, there is one critical point of the rational fraction $P_1(x) = (p' - p')$ (0, 1), there is one critical point of the rational fraction $P_1(x) = (p'(x))^k / p^{k-1}(x) = (4x^3 - 4x)^4 / (x^4 - 2x^2 + 5)^3$ and $\sharp_r[(k-1)(p'_1(x))^2 - kp_1(x)p''_1(x)] = 2 > 0$. This is in accord with I emma 2.3 accord with Lemma [2.3.](#page-1-2)

LEMMA 2.5. Let $p(x)$ be a real polynomial of even degree with no real zeros. If $p'(x)$ *has one real zero with exponent larger than 1, then* $\frac{4}{7}[(k-1)(p'(x))^2 - kp(x)p''(x)] +$ - $\sharp_r p(x) > 0.$

PROOF. By hypothesis, $p'(x) = C(x)(x - w)^l$, where $C(x)$ is a polynomial, *w* is real, $C(w) \neq 0$ and $l > 1$. Then,

$$
(k-1)(p'(x))^{2} - kp(x)p''(x)
$$

= $(k-1)(C(x))^{2}(x-w)^{2l} - kp(x)C'(x)(x-w)^{l} - klC(x)p(x)(x-w)^{l-1}$
= $(x-w)^{l-1}((k-1)(C(x))^{2}(x-w)^{l+1} - kp(x)C'(x)(x-w) - klC(x)p(x))$

and this polynomial has a zero at $z = w$ with exponent $l - 1$. From this, it follows that $r[(k-1)(p'(x))^2 - kp(x)p''(x)] + \sharp_r p(x) \ge l-1 > 0.$

LEMMA 2.6. Let $p(x)$ be a real polynomial of even degree with no real zeros. If $p'(x)$ *has one real zero which is simple, that is,* $p'(x) = C(x)(x - w)$ *, where* $C(x)$ *is a polyno*mial with $C(w) \neq 0$, and $(k-1)(C(x))^2(x-w)^2 - kp(x)C'(x)(x-w) - kC(x)p(x)$ has *real zeros, then* $\sharp_r[(k-1)(p'(x))^2 - kp(x)p''(x)] + \sharp_r p(x) > 0.$

PROOF. By hypothesis, the polynomial

$$
(k-1)(p'(x))^{2} - kp(x)p''(x) = (k-1)(C(x))^{2}(x-w)^{2} - kp(x)C'(x)(x-w) - kC(x)p(x)
$$

has real zeros. Consequently, $\sharp_r[(k-1)(p'(x))^2 - kp(x)p''(x)] + \sharp_r p(x) > 0.$ □

PROOF OF THEOREM [1.1.](#page-0-1) Let $\Delta = \frac{\mu}{k}[(k-1)(p'(x))^2 - kp(x)p''(x)] + \frac{\mu}{k}p(x)$. The four cases of Theorem [1.1](#page-0-1) arise as follows.

- (1) If $p(x)$ has real zeros, then $\Delta > 0$ by Lemma [2.2.](#page-1-3)
- (2) If $p(x)$ has no real zeros and $p'(x)$ has at least three distinct real zeros, then $\Delta > 0$
by Lemma 2.3 by Lemma [2.3.](#page-1-2)

92 L. Ma and Z. Ma

- (3) Suppose $p'(x)$ has fewer than three distinct real zeros. Because $p'(x)$ is a polynomial of odd degree, it must have just one real zero. If *p*(*x*) has no real zeros and $p'(x)$ has one real zero with exponent larger than 1, then $\Delta > 0$ by Lemma [2.5.](#page-2-0)
If $p(x)$ has no real zeros $p'(x) = C(x)(x - w)$ has one real zero which is simple
- (4) If $p(x)$ has no real zeros, $p'(x) = C(x)(x w)$ has one real zero which is simple, and the polynomial $(k-1)(C(x))^{2}(x-w)^{2} - kp(x)C'(x)(x-w) - kC(x)p(x)$ has real zeros, then $\Delta > 0$ by Lemma [2.6.](#page-2-1)

The only remaining case is when $p(x)$ has no real zeros, $p'(x) = C(x)(x - w)$ has one real zero which is simple, that is, $C(x)$ is a polynomial with $C(w) \neq 0$, and the polynomial $(k-1)(C(x))^2(x-w)^2 - kp(x)C'(x)(x-w) - kC(x)p(x)$ has no real zeros. In this case, the calculation in Lemma [2.6](#page-2-1) shows that $\Delta = 0$. This completes the proof of Theorem [1.1.](#page-0-1)

PROOF OF THEOREM 1.2. Let $\Delta = \frac{\mu}{\mu}[(k-1)(p'(x))^2 - kp(x)p''(x)] + \frac{\mu}{\mu}p(x)$. From the proof of Theorem 1.1, the hypotheses of Theorem 1.2 describe the only case in which proof of Theorem [1.1,](#page-0-1) the hypotheses of Theorem [1.2](#page-1-0) describe the only case in which $\Delta = 0$; in all other cases, $\Delta > 0$.

EXAMPLE 2.7. Let $p_2(x) = x^2 + ax + b$ with *a*, *b* real, so $k = 2$.

For this example, $(k-1)(p'_2(x))^2 - kp_2(x)p''(x) = (2x+a)^2 - 4(x^2 + ax + b) =$ *a*² − 4*b*. If *a*² − 4*b* < 0, then the polynomials $(k - 1)(p'_2(x))^2 - kp_2(x)p''_2(x)$ and $p_2(x)$ have no real zeros, that is $\frac{1}{2}[(k - 1)(p'_1(x))^2 - kn_2(x)p''_1(x)] + \frac{1}{2}m_2(x) = 0$, in contrast have no real zeros, that is, $\sharp_r[(k-1)(p'_2(x))^2 - kp_2(x)p''_2(x)] + \sharp_r p_2(x) = 0$, in contrast to Shaniro's conjecture to Shapiro's conjecture.

EXAMPLE 2.8. Let $p_3(x) = x^4 + x^2 + 1$, so $k = 4$. For this example, $(k - 1)(p'_3(x))^2$ $k p_3(x) p_3''(x) = 3(4x^3 + 2x)^2 - 4(x^4 + x^2 + 1)(12x^2 + 2) = -4(2x^4 + 11x^2 + 2)$. The zeros of the polynomial $2t^2 + 11t + 2$ are $\frac{1}{2}(-11 \pm \sqrt{105})$ which are both negative real zeros. So, the polynomial $2x^4 + 11x^2 + 2$ has four complex zeros and no real zeros. So, $\sharp_r[(k-1)(p'_3(x))^2 - kp_3(x)p''_3(x)] + \sharp_r p_3(x) = 0.$

References

- [1] G. Csordas, T. Craven and W. Smith, 'The zeros of derivatives of entire functions and the Wiman–Pólya conjecture', *Ann. of Math. (2)* 125(2) (1987), 405–431.
- [2] B. Shapiro, 'Problems around polynomials: the good, the bad and the ugly... ', *Arnold Math. J.* ¹(1) (2015), 91–99.
- [3] T. Sheil-Small, *Complex Polynomials*, Cambridge Studies in Advanced Mathematics, 75 (Cambridge University Press, Cambridge, 2002).
- [4] M. Tyaglov, 'On the number of critical points of logarithmic derivatives and the Hawaii conjecture', *J. Anal. Math.* 114 (2011), 1–62.
- [5] M. Tyaglov and M. J. Atia, 'On the number of non-real zeroes of a homogeneous differential polynomial and a generalisation of the Laguerre inequalities', *J. Math. Anal. Appl.* 494(2) (2021), Article no. 124652.

LANDE MA, School of Mathematical Sciences, Tongji University, Shanghai 200092, PR China e-mail: dzy200408@sina.cn

ZHAOKUN MA, YanZhou College,

ShanDong Radio and TV University, YanZhou, ShanDong 272100, PR China e-mail: dzy200408@126.com