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ABSTRACT. Photometric errors due to scintillation are considered in detail. Given 
noise characteristics, the standard deviations, as deduced from observations, are com­
puted for the quantities measured at successive steps of the photometric procedure. 
This allows us to understand better the errors computed on-line in observatories, and to 
understand better the overall error. The latter can be minimized by suitable changes in 
the time sequence of the measurement. 

1. INTRODUCTION 

Many reports concerning IR photometry are not explicit as to the accuracy of 
their data, the definition of error bars and/or the possible systematic errors. This prob­
ably reflects a real problem in IR photometry, which results from a combination of vari­
ous sources of noise, whose statistical properties differ from each other and may vary 
between observations. Thus, although it is highly desirable to obtain average atmos­
pheric characteristics from extended monitoring at each and every observatory, this 
must be complemented by efforts to characterize fluctuations at each observing session. 
Resident astronomers have realized this and provided on-line data pretreatment that 
may be very efficient, if adequately used. We propose here to analyze the meaning of 
on-line results, to show how to deduce from them an estimate of the accuracy and to dis­
cuss how to improve this accuracy. Only extinction fluctuations are considered here 
because they supersede sky emission fluctuations when the observed object is not too 
faint. The case where emission noise is dominant was treated elsewhere (Papoular 
1983). It is assumed that extinction is independent of direction and that image wander­
ing is negligible. 

2. STATISTICAL BACKGROUND 

First recall the basic statistical definitions and relations that will be needed. Let 
X be the random variable to be measured and Wx,(f), its noise power spectrum. Then, 
its variance is q£=JjN X (f) df and an estimate of the error on X is the standard devia­
tion, 05.. If W x (f) is not known, 0J has to be evaluated by repeating the measurement 
a large number of times. Usually, however, a small number, N, of measurements are 
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performed, from which the sample variance S;c is computed using S ^ =■ 
( l ^ f 4 - ^ ) £ ( X - 5 0 ^ , where )£ - E ^ X / N J a n d Sx *s considered as an estimate of 0* . But 
we showed (Papoular and Pegourie 1983) tha t this is often overly optimistic because the 
low frequency fluctuations are not properly taken into account. Using the results of 
Barnes et al. (1971), it can be shown tha t the most probable value of Sj^is not CT* but 

4-.JL /If. w. (f).[ i - *?*MNT>} > W 

where T is the interval between successive measurements. The difference between A£ 
and a i * is not negligible unless all the frequencies in Wx(f) are such tha t f > l/ffNT. 
The monitoring of atmospheric emission and extinction fluctuations in a number of 
observatories (Allen and Barton 1981, Papoular 1983) yielded a conspicuous " l/f^-noise'1 

spectrum with W (f) still increasing for f < 0.001 Hz. As a result, the measuring time 
NT should, in principle, be very long in photometry (~ 1/2 hour). 

The best estimate of X is taken to be its average, X. The error in X is often 
taken to be Ox/s/JT- Again, this is shown in Papoular and Pegourie (1983) to be too 
optimistic because it neglects correlations between measurements. In fact, the averaging 
procedure does not uniformly reduce the noise spectrum Wx(f), but preferentially its 
higher components (Barnes, et al. 1971): 

H?AUt*(jtfT) 

On the other had, integration over a time NT alters the noise according to 

Thus, integration acts as a real low-pass filter, with a bandwidth ~ 1/NT, while averag­
ing acts like a multiple-band pass filter. 

By definition, (Ty is the integral, over frequency space, of expression (2) or (3), 
the computation of which requires a knowledge of the noise spectrum W* (f). It is usu­
ally implicitly assumed tha t this spectrum is white, in which case Sx / \ffi is a good esti­
mate of (TJf. As stated above, this is not acceptable in astronomical photometry. More­
over, the exponent ck (in the 1/f spectrum)changes with time and photometric band. 

Photometric procedures also include back-ground subtraction and comparison 
with s tandard stars. In these cases, sums and differences of random variables arise, with 
a constant time difference, T, between the measurements of two variables. If both vari­
ables (X,Y) can be assumed to have the same noise spectrum Wx, then the following 
relations hold (Papoular 1983, Appendix C): 

Wx+, (f)u f. WAD- Co**(TfT) ([fx) 

Wx.^/j^Wif/J.W-fr/T) H) 
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It is possible to compute the variance at any stage of the process, using equations of the 
form (2) to (4). For purposes of comparison, we may normalize variances by dividing 
them with the total noise energy, 0£*= / W x(f) df over the available spectrum. 

3. COMPUTATION OF VARIANCES IN PHOTOMETRY 

The sequence of measurements, as well as the symbols used, are summarized in 
Figure 1. A, B, a, b represent signals; j$*, estimated sample variances; indices *_ and £ 
are for program star and standard star respectively; T , 9 and T are time intervals. Each 
line of the figure represents an element of the sequence with its name and outcome. Let 
I be a quantity proportional to the spectral brightness of the point object observed, and 
X(t)be the atmospheric extinction at the same wavelength and direction, and at the time 
of the observation. Then, 

a(k)*I. «tf>[-X(t)} or b^-T.e^f -XWj (s) 

Here we overlook the sky emission, for reasons stated in the introduction, t is a random 
variable with a non-zero average: X(t)= X#+X(t)- It usually is so small that 
C«pf-*)CM]*f-̂ (fc)and the i*average of a over a time T is 

O c = I . [ < - X - X c ] > («) 
where the average of fa (over a long time) is zero. Let W/*(f) be the (unknown!) noise 
power density of )f (t)- Because of the linearity of this relation, the noise spectra of the 
photometric signals will be proportional to Wx» with the coefficient I*! Table I 
represents, in a self-explanatory way, the signals at the various levels of the sequence of 
Figure 1, together with their respective averages, noise spectra and estimated variances, 
according to the rules of section 2. Descending this sequence, we find a number of quan­
tities that usually are computed on-line during observations: A,B (A-B)/2 ( or A-B), I and 
I. Also computed are sample variances, such as 

3 ( ^ a £ ; [ ^ k . l ] V f M (7) 

By way of an example, at ESO (La Silla), the on-line computer gives El, E2 and 
STD, where El ~Sa^27H; E2 = 2 S ( A - B ) / 2 ; STD = 2 Sy 

Note that their IT and n correspond to our nx and N. Also %E1 = 100- §i» 
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The quantity of interest for one star (at a given wavelength) is I. Since there is 
usually no time available to determine its variance experimentally, the latter is often 
estimated by S ? = ST* / . . or S,* / , . , , v As stated in section 2, this usually is not 
valid. I I /M I / ( M - U 

The final step usually involves a comparison with a standard star of known spec­
tral brightness l£,X . At a given wavelength, we have (skipping subscriptX): 

I...(W&).Ir-W(&-^*) ® 
where I* and 1^ are the results of the above sequence of measurements for star, and stan­
dard £, respectively. I« is the true spectral brightness of the star and T ^ , ,X the aver­
age atmospheric extinctions during the respective sequences. Then, the relative error in 
I » & is 

e»(WrJ-is X*-5X (5) 
which is also to be considered as a random variable, with zero mean value. Assuming 
the directions of * and Z are close to one another, the standard deviation (or overall 
error) 6\ can be determined by noting that J t and ̂ .^ are the same functions of time, 
taken at intervals T = L M N 8 . Then eq. (4b) is applicable and gives the last line in 
Table I; (Tn can then be determined by integrating W[ # £ over all frequencies. 

4 DISCUSSION 

Let us assume a simple model for the noise spectrum: 

W>(^j=W. &r /*f. (<o) 

Then it is easy to compute (numerically) all standard deviations in units of Ql as a 
function of 0< , for different values of f0 and of the parameters, Z, n, N.... It is found, 
e.g., tha t < E 1 / E 2 > ^ 1 only got c*r 0, but decreases notably as o< increases. Experi­
mentally, it is found tha t < E 1 / E 2 ) ' ~ ' 1 in the middle of photometric nights and falls to 
~ 0.1 in the presence of cirrus clouds. Similarly, Figure 2 shows the same trend for 
< ( % E 2 / ( / o S T D ) > . Observations yield values of the order of 0.5 in normal weather at 
La Silla, which corresponds to o< ~ 1 (i.e. 1/f noise) around f ~ 0.01 Hz. Photometry of 
bright stars at Mauna Kea (Barnes et al. 1971) indicated dominant noise components 
down to at least 0.002 Hz. This, together with Milone and Robb (1983) and Allen and 
Barton (1981) compels us to investigate thoroughly the behavior of errors in the presence 
of 1/f noise. As an example, Figure 3 shows clearly the advantage of performing the 
comparison with a s tandard as early as possible in the sequence of Figure 1, for instance 
for each wave band instead of once, after completing the whole sequence for the program 
star. The h ighero( , the larger the advantage, either in accuracy or in total measuring 
time, or both (for p( = 0, the accuracy depends only on the total time spent for each 
wavelength, whatever the order of operations in the sequence). The total time in each 
case is equal to n N M S as indicated in the Table under Figure 3. This was clearly 
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demonstrated with RADS (Milone and Robb 1983), which performs the comparison 
immediately after step 1 in Figure 1. Quantitatively, this effect can be traced to the fac­
tor sin (Tfft) in eq. (4b). 
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