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DERIVED MENDELSOHN TRIPLE SYSTEMS

ZORAN STOJAKOVIC

Mendelsohn triple system of order v which can be extended to a tetrahedral
quadruple system of order v + 1 we call a derived Mendelsohn triple system.
We consider some properties of derived Mendelsohn triple systems and give some
results on their existence.

1. INTRODUCTION

Mendelsohn triple systems (MTSs), which represent a generalisation of Steiner
triple systems, were introduced in [6]. A MTS of order v is a pair (S,T), where 5 is a
finite set of v elements and T is a collection of cyclic triples (abc) = {(a,b), (b,c), (c,a)},
a, b, c distinct elements from 5, such that every ordered pair of distinct elements from
5 belongs to exactly one cyclic triple from S. By MTS(u) we denote a MTS of order
v.

In [14] a class of quadruple systems called tetrahedral quadruple systems (TQSs)
was defined. TQSs represent a generalisation of Mendelsohn triple systems different
from generalisations in [11, 13]. A TQS of order v is a pair (S,T), where 5 is a finite
set of v elements and T is a family of directed quadruples (abed), a, b, c, d distinct
elements of 5 , such that every ordered triple of distinct elements of 5 belongs to
exactly one directed quadruple from T. A directed quadruple (abed) is the following
set of 12 ordered triples

(abed) = {(abc),(bca),{cab),{adb),{dba),(bad),

(acd), (cda), (dac), (bde), (deb), (cbd) }.

By TQS(u) we denote a TQS of order v.
It was proved in [14] that TQSs are equivalent to generalised idempotent alter-

nating symmetric (GIAS) 3-quasigroups, their properties were investigated and some
parts of the spectrum of TQSs determined. In [3] further investigation of TQSs was
carried on and it was proved that the spectrum of TQSs consists of all v such that
v = 1,2,4,5,8,10 (mod 12).
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The sequence xm, x m + i , . . . , xn is denoted by {asi}"=m or by zJJ,. If m > n, then
zjjj will be considered empty.

An n-ary groupoid (n-groupoid) (Q,f) is called an n-quasigroup if the equa-

tion /(aj~1,a;,ajt).1) = b has a unique solution x for every a" , i G Q and every

t 6 { l , . . . , n } .
By Sn we denote the symmetric group of degree n and by An its alternating

subgroup.

2. ALTERNATING SYMMETRIC 3-QUASIGROUPS AND T Q S S

In [12, 14] a class of n-groupoids called alternating symmetric n-groupoids was
defined and considered.

DEFINITION 1.: A 3-groupoid (5,/) is alternating symmetric (AS) if for every
permutation a £ A* and all a;| 6 5

/({*o(t)}?=l) = *«r(4) <=> /(*?) = *4-

This definition of AS-3-groupoids can be given also in another equivalent form.

THEOREM 1 . [14] A 3-groupoid (S, f) is AS if and only if the following identities

are satisfied:
{ f(x,y,z) = f(y,z,x),

{x,y,z),z) = x.

Every AS-3-groupoid is necessarily a 3-quasigroup.
A 3-groupoid (S,f) is called generalised idempotent (GI) if and only if for all

x,y G S

f(x,y,y) = f(y,x,y) = /(y.

An AS-3-groupoid which is GI is called a GIAS-3-groupoid.
So, a 3-groupoid (Q, f) is a GIAS-3-groupoid if and only if it satisfies the following

identities:
f(x,y,z) = / (y ,z ,z) ,

),z) = x,

f{*,y,y) = x.

Hence the class of all GIAS-3-groupoids is a variety.
In [14] it is proved that finite GIAS-3-groupoids are equivalent to TQSs.

THEOREM 2 . [14] Every TQS of order v defines and is defined by a GIAS-3-
groupoid of order v.
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If (S, T) is a TQS of order v, and / is defined for distinct elements x,y,z,u £ S

by

(1) f(x,y,z)=u<=>{xyzu)eT

and

(2) f(x,y,y) = f(y,x,y) = f(y,y,x) = x,

then (S,f) is GIAS-3-groupoid of order v. Conversely, if (5,/) is a GIAS-3-grou.poid
of order v, then by (1) a TQS (S,T) of order v is defined.

Since Steiner quadruple systems are equivalent to generalised idempotent totally
symmetric (GITS) 3-quasigroups (the definition of a totally symmetric 3-quasigroup is
obtained if in Definition 1 we replace A± by 54), and every GITS-3-quasigroup is a
GIAS-3-quasigroup, we see that TQS represent a generalisation of Steiner quadruple
systems. Some questions concerning the algebraic theory of Steiner quadruple systems
were considered in [2, 5, 8, 9, 10].

3. DERIVED M T S S

If {S,T) is a TQS of order v and x is any element in 5, we shall denote 5 \ {z}
by Sx and the set of all cyclic triples (abc) such that (xabc) £ T by T(x). Then
(Sx,T{x)) must be a MTS of order v - 1 , which we call a derived MTS (briefly DMTS)
of the TQS (S,T).

The DMTSs are equivalent to retracts of GIAS-3-quasigroups. If (S, / ) is a GIAS-
3-quasigroup, a £ 5 a fixed element, then by

xy = f(a,x,y)

a retract (S, •) of (S,f) is defined. Since (S,f) is a 3-quasigroup, (S, •) is a binary
quasigroup. But (S,f) is also AS, hence

xy = f(a,x,y) = f(x,y,a) = f(y,a,x)

and xy = z <=> f(a,x,y) = z O f(a,z,x) —y<^zx-y.

A quasigroup satisfying the equivalence xy = z •& zx = y (or the equivalent iden-
tity (xy)x = y) is called semisymmetric, hence (5,-) is a semisymmetric quasigroup.

Further, from f(a,a,x) — f(a,x,a) = x and f(a,x,x) — a, we get that for all
x E 5 , ax = xa = x, x2 = a, that is, (5, •) is a semisymmetric unipotent loop with
the unit a. Semisymmetric unipotent loops we shall call M-loops. M-loops which can
be obtained as retracts of GIAS-3-quasigroups will be called derived M-loops.
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M-loops were considered in [7] where it was proved that every M-loop of order v

defines a MTS(w — 1) (and also that every such loop can be defined by one identity
x(((yy)z)x) = z). As we have seen, derived M-loops of order v are equivalent to
DMTSs of order v — 1. If (5,-) is a derived M-loop with the unit a, and (S,f) is a
GIAS-3-quasigroup such that xy = f(b,x,y) for some b £ S, then it follows that a = b.

An interesting problem about Steiner triple systems (which is far from solved) is
whether or not every Steiner triple system is derived of some Steiner quadruple system.
The similar question for MTSs - is every MTS derived of some TQS - has a negative
answer. Since the spectrum of MTSs consists of all v = 0,1 (mod 3), v ^ 6 and the
spectrum of TQSs consists of all v = 1,2,4,5,8,10 (mod 12), we get that no MTS of
order v = 6,10 (mod 12) is derived.

If we assume that two MTSs derived from a TQS for distinct elements a,b E Q

have a triple (xyz) in common, then f(a,x,y) = f(b,x,y), hence a = b, which is a
contradiction. So, for different elements a, b 6 Q the two DMTSs must be disjoint.

THEOREM 3 . Let (S,T) be a TQS(v). If for every a € S a DMTS (Sa,T(a)) is

defined, then a family of disjoint MTSs is obtained such that C(S) = (J T(a), where

C(S) is the set of all possible cyclic triples of elements from S.

PROOF: We have already proved that for a ^ b, Ta C\ T\, = 0, and by a simple
calculation we get that every cyclic triple of elements from 5 belongs to |J T(a) . D

The following problem, which arises quite naturaly, was considered by several
authors (see [1, 4]). If 5 is a set of v elements, where i; is such that there exists
a MTS(u) , is it possible to partition C(S) into v — 2 subsets Ti, . . . , TB_2 such that
each (5 ,Ti ) , . . . , (S,Tv-2) is a MTS? Such a collection of MTSs of order v is called
a large set of pairwiswe disjoint MTSs of order v (LSMTS(i;)) and so far only partial
results on the existence of LSMTS(t;) are known.

The family of MTSs obtained in Theorem 3 is not a LSMTS(v), but it is in some
sense "large". In fact, it is a partition of C(S) into v MTSs of order v — 1 and such a
family we shall call quasi LSMTS(u) (QLSMTS(r)). So, the next theorem is valid.

THEOREM 4 . For every v = 1,2,4,5,8,10 (mod 12) there exists a QLSMTS(v).

4. CONSTRUCTIONS OF D M T S

THEOREM 5 . If (Si ,Ti) and ( 5 2 , r 2 ) are DMTSs of orders vx and v2 respec-

tively, then the MTS of order viv2 -f-«i +"2 equivalent to the direct product of M-loops

defined by the given DMTs, is also derived.

PROOF: Let (Si ,Ti) and (S2,T2) be DMTSs of orders v^ and v2 respectively.

If (5*1, •) and (lS2,*) are M-loops which are equivalent to the given DMTSs, where
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Si = Si U {a}, a ^ Si , S2 = S2 U {6}, 6 ^ S2, then, since the class of M-loops is
a variety, their direct product (Si x S2, o) is also an M-loop which defines a MTS of
order V1V2 + V\ + «2 •

M-loops (Si , - ) and (S2)*) are derived, hence there exist GIAS-3-quasigroups
(Si,fi), (S 2 , /2 ) such that fi(a,x,y) = xy, f2(b,x,y) = x*y. Since the class of GIAS-
3-quasigroups is a variety, the direct product of ( S i , / i ) and (J52,f2), (Si X S2,y), is
also a GIAS-3-quasigroup. If we define a retract of g by g((a,b),x,y), then this retract
is in fact the direct product of M-loops (Si , •) and (S2, *) . D

In the preceding theorem the assumption that (S, Ti) and (S, T2) are DMTSs of
orders Vi and v2, implies that v\, v2 > 3. But since there exists an M-loop of order
2 (although there is no MTS which is equivalent to that M-loop, we can consider this
M-loop to be equivalent to a DMTS(l) with empty set of triples), Theorem 5 can be
extended to the case where V\ = 1. Hence, as a consequence of Theorem 5 we get the
next theorem which starting from a DMTS(v) gives a DMTS(2v+l).

THEOREM 6 . If{S,T) is a DMTS(v), then there exists a DMTS(2v + 1)(R,K),
such that (S, T) is a subsystem of (R, K).

A subsystem of a MTS (R,K) is a MTS (S,T) such that S C R and T C K.

THEOREM 7. Let (R,K) be a MTS(2v + 1) having a DMTS(v) {S,T) as a
subsystem. II the M-loop \R,-) which is equivalent to (R,K) is such that for every
a,b,c,d £ R\ S, ab = cd => ba = dc, then (R,K) is itself derived.

PROOF: Let S = {zi, . . . , xv} and let A = R \ S = {ai, . . . , av+i}. We form
the following partition A = Ai U ... U Av of the set of all ordered pairs of distinct
elements of A: (a,b) £ Ai if and only if (zi, a,6) G K. In every set Ai, i = 1, . . . , v,
each element of A appears exactly once as the first and exactly once as the second
component of an ordered pair. Also, if we replace every pair (a, 6) in Ai by (b, a) we
get some class Aj .

Take an element p 0 R, let S* = S U {p} and {S*,T*) be a TQS such that
(S*,r*(p)) = (S,T). Let (A, B) be any TQS on the set A. If y{ is the solution of the
equation a-^yi = x<, i = 1, . . . , v, then t/,- E A, and we define a bijection g : A —• S*
by fl(tti) = p, g{yi) = Xi, i = 1, ... ,v. If in A; we replace every pair (a,6) by
(5(0),g{b)), we get a set which will be denoted by Si. Then Si U . . . U S» is a partition
of the set of all ordered pairs of distinct elements of S*.

We define a set K* of directed quadruples on R* = S*UA as follows. T*VB C K*
and if a,b £ A, c,d E S*, then (abed) € K* if and only if there exists i £ {1, . . . , v}
such that (a,b) 6 A{, (c,d) £ Si.

We prove that (R*,K*) is a TQS(2t> + 2). For every t, \A{\ = |S<| = v + 1,
hence we have formed a list of v(v + 1) directed quadruples of the form (abed), where
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(a,b) G Ai, (c,d) £ Si, but since (abed) = (bade) in that list every directed quadruple
appears exactly twice, so K* \ {T* U B) has v(u + l ) 2 /2 elements. \T*\ = \B\ =
(u + l)w(v - 1)/12, hence

^ (i, + l)t>(« - 1) ( t,(t> + l ) 2 ^ ( 2 p
6 22 12

It is easy to verify that every ordered triple of distinct elements of R* belongs to at

least one directed quadruple of K*, which is by (3) sufficient for (R*,K*) to be a

TQS(2v + 2).

It is straightforward to check that (R,K) is a DMTS(2v + 1) of the TQS

(R*,K*). D

The choice of TQS (A, B) in the above proof was arbitrary, which means that
there exists a large number of TQS(2v + 2) having (R,K) as a subsystem.

REMARK. Each MTS (R,K) such that its equivalent M-loop is commutative has the

property given in the preceding theorem, but there are numerous examples of MTSs

satisfying the conditions of Theorem 7, which have noncommutative equivalent M-loops.

If (R, •) is an M-loop, then it is not difficult to prove that the implication ab =

cd => ba = dc is equivalent to (ab)c = c(ba).

An open problem is whether Theorem 7 can be proved without any conditions for

the MTS {R,K).
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