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Abstract
A (k+ r)-uniform hypergraph H on (k+m) vertices is an (r,m, k)-daisy if there exists a partition of the
vertices V(H)=K ∪M with |K| = k, |M| =m such that the set of edges ofH is all the (k+ r)-tuples K ∪ P,
where P is an r-tuple ofM. We obtain an (r − 2)-iterated exponential lower bound to the Ramsey number
of an (r,m, k)-daisy for 2-colours. This matches the order of magnitude of the best lower bounds for the
Ramsey number of a complete r-graph.
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1. Introduction
For a natural number N, we set [N]= {1, . . . ,N}. Given a set X, we denote by X(r) the set of
r-tuples of X. For two sets X, Y we say that X< Y if max (X)<min (Y). Unless stated otherwise,
the elements of a set X will be always displayed in increasing order. That is, if X = {x1, . . . , xt},
then x1 < . . . < xt .

A (k+ r)-uniform hypergraphH on k+m vertices is an (r,m, k)-daisy if there exists a partition
of the vertices V(H)=K ∪M with |K| = k and |M| =m such that

H = {K ∪ P : P ∈M(r)}
We say that the set K is the kernel of H, the elements of M(r) are the petals of H and M is the
universe of petals. We will often refer to an edge of H by X and its correspondent petal by P.

Daisies were first introduced by Bollobás, Leader, andMalvenuto in [1]. They were interested in
Turán-type questions related to (r,m, k)-daisies, i.e., the maximum number of edges that an (r +
k)-graph has with no copy of an (r,m, k)-daisy. In this paper we will study the Ramsey number
Dr(m, k) of an (r,m, k)-daisy. The numberDr(m, k) is defined as theminimum integerN such that
any 2-colouring of the complete hypergraph [N](k+r) contains a monochromatic (r,m, k)-daisy.

Those numbers were already studied in [5]. Although themain focus of their paper is on daisies
with kernel of non fixed size, they noted that

Rr−k(�m/(k+ 1)� − k)�Dr(m, k)� Rr(m)+ k, (1)

where Rr(m) is the Ramsey number of the complete graph K(r)
m , i.e., the minimum integer N such

that any 2-colouring of [N](r) contains a monochromatic set X of sizem.
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2 M. Sales

A natural question raised in [5] is whetherDr(m, k) behaves similarly Rr(m). Erdős, Hajnal, and
Rado (see [3, 4]) and Conlon, Fox, and Sudakov [2] showed that there exists absolute constants
c1, c2 such that for sufficiently largem,

tr−2(c1m2)� Rr(m)� tr−1(c2m), (2)

where ti(x) is the tower function defined by t0(x)= x and ti+1(x)= 2ti(x). In this paper, we provide
for k� 1 a lower bound of Dr(m, k) in the same order of magnitude as the best current bounds of
the Ramsey number Rr(m) for sufficiently largem. We remark here that for k= 0, the problem is
equivalent to the Ramsey number, since an (r,m, 0)-daisy is just the complete graph K(r)

m .

Theorem 1.1. Let r� 3 and k� 1 be integers. There exist integer m0 =m0(r, k) and absolute
constant c such that

Dr(m, k)� tr−2(ck−2m24−r
)

holds for m�m0.

In order to prove Theorem 1.1 we will actually study the Ramsey number of a subfamily of
daisies.We say that a hypergraphH is a simple (r,m, k)-daisy ifH is an (r,m, k)-daisy and its kernel
K can be partitioned into K =K0 ∪K1 such that K0 <M<K1. We define the Ramsey number of
simple (r,m, k)-daisies Dsmp

r (m, k) as the minimum integer N such that any 2-colouring of the
complete hypergraph [N](k+r) yields a monochromatic copy of a simple (r,m, k)-daisy.

In [5], the authors observed that the Ramsey number of daisies can be bounded from below by
the Ramsey number of simple daisies.

Proposition 1.2 ([5], Proposition 5.3). Dr(m, k)�Dsmp
r

(�m/(k+ 1)�, k).
Our main technical result is an (r − 2)-iterated exponential lower bound for the Ramsey num-

ber of simple (r,m, k)-daisies. Note that Theorem 1.1 is a corollary from Proposition 1.2 and
Theorem 1.3.

Theorem 1.3. Let r� 3 and k� 1 be integers. There exist integer m0 =m0(r, k) and absolute
positive constant c such that

Dsmp
r (m, k)� tr−2(ck2

4−r−2m24−r
)

holds for m�m0.

Our proof is a variant of the stepping-up lemma of Erdős, Hajnal and Rado [3, 4]. There are
k+ 1 distinct simple (r,m, k)-daisies depending on the sizes of K0 and K1. While it is not hard
to construct a colouring avoiding a monochromatic copy of one of these simple daisies, the main
challenge is to define a colouring that avoids all k+ 1 simple (r,m, k)-daisies simultaneously. To
this end, we will introduce in Section 2 some auxiliary trees using the vertices of our ground set.
A big portion of the paper consists on the study of those trees and how to use them to obtain a
stepping-up lemma.

The paper is organized as follows. We introduce some auxiliary trees and most of the terminol-
ogy in Section 2. Section 3 is devoted to give a general overview of the proof. We briefly describe
the stepping-up lemma in [3, 4] with our setup and later describe the colouring of the variant.
Sections 4 and 5 are the heart of the proof. We prove a key lemma (Lemma 5.1) that allows us to
identify an important auxiliary tree containing the petal of an edge and then show how to reduce
the stepping-up argument to this tree.We finish the proof of the stepping-up lemma and Theorem
1.3 in Section 6.
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Figure 1. An example of a binary tree T[23] with its 4 levels.

Figure 2. The auxiliary tree TX for X = {2, 3, 7}.

2. Auxiliary trees
Given an integer N, we construct a binary tree T[2N ] of height N with 2N+1 − 1 vertices and iden-
tify its leaves with the set [2N]. We also identify each level of the tree with the set [N + 1], where
the root is at level 1, while the leaves are at level N + 1 (see Figure 1). For a vertex u ∈ T[2N ] we
denote its level by π(u).

Given two vertices u, v in T[2N ], we say that u is an ancestor of v if π(u)<π(v) and there is a
path u= x1, x2, . . . , x� = v in T[2N ] such that π(xi) �= π(xj) for every 1� i, j� �. For two vertices
x, y ∈ [2N] we define the greatest common ancestor a(x, y) of x and y as the vertex ofT[2N ] of highest
level that is an ancestor of both x and y. Also define

δ(x, y)= π(a(x, y)).

Let X = {x1, . . . , xt} ⊆ [2N] with x1 < . . . < xt be a subset of the leaves of our binary tree. We
define the auxiliary tree TX of X as the subtree of T[2N ] whose vertices are X and all their common
ancestors. That is,

TX = X ∪ {a(xi, xi+1) : 1� i� t − 1}.
Note that TX is a tree of 2t − 1 vertices (see Figure 2). Moreover, we denote the set of non-leaves

by a(X) and its projection by δ(X), i.e.,

a(X)= {a(xi, xi+1) : 1� i� t − 1}
δ(X)= {δ(xi, xi+1) : 1� i� t − 1}.

Since the auxiliary tree TX is uniquely determined by its ground set X, sometimes we will denote
TX by X.

Given a vertex u ∈ a(X), we can define the set X(u) of descendants of u as the leaves of TX that
have u as an ancestor. That is,

X(u)= {x ∈ X : u is an ancestor of x}.
The set of descendants of u can be partitioned into the left descendants and right descendants
as follows: Since TX is a binary tree, the vertex u has two children uL and uR. Let uL be the left
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Figure 3. The interval {2, 3, 4} is closed, since X(u)= {2, 3, 4} for u= a(2, 4). The interval {4, 5} is not closed, since X(v)=
{1, 2, 3, 4, 5} �= {4, 5} for v= a(4, 5).

children of u and uR be the right children of u. Then we define the left descendants of u by

XL(u)=
{
uL if uL ∈ X,

X(uL) if uL ∈ a(X),

and the right descendants of u by

XR(u)=
{
uR if uR ∈ X,

X(uR) if uR ∈ a(X),

Note that by this definition XL(u), XR(u) �= ∅ and max XL(u)<min XR(u).
Although an auxiliary tree is not uniquely determined by its ancestors, we can at least determine

the “shape” of the tree TX by looking at a(X). In a more precise way, the following can be proved
by a simple induction.

Fact 2.1. If X and Y are subsets of [2N] such that a(X)= a(Y), then |X| = |Y|. Moreover, if X =
{x1, . . . , xt} and Y = {y1, . . . , yt}, then a(xi, xi+1)= a(yi, yi+1) for every 1� i� t − 1.

Now we devote the rest of the section on classifying our auxiliary trees.

Definition 2.2. Given X = {x1, . . . , xt} ⊆ [2N]. We say that an interval I = {xp, . . . , xq} ⊆ X for
some 1� p� q� t is closed in X if the following condition holds:

(�) I = X(a(xp, xq)).

In Figure 3, one can see examples of a closed interval and a not closed one. Alternatively, one
can replace (�) by the useful equivalent condition:

(��) For every vertex y ∈ X \ I, the vertex a(xp, xq) is not an ancestor of y.

The following proposition shows that closed intervals cannot have proper intersections.

Proposition 2.3. Let I1, I2 be two intervals in X with |I1|� |I2|. If I1 and I2 are closed, then either
I1 ∩ I2 = ∅ or I1 ⊆ I2.

Proof. Suppose that I1 ∩ I2 is a proper intersection. That is, I1 ∩ I2 �= ∅, I1 \ I2 �= ∅ and I2 \ I1 �= ∅.
Write X = {x1, . . . , xt} and I1 = {xp1 , xp1+1, . . . , xq1}, I2 = {xp2 , xp2+1, . . . , xq2} for 1� p1 < p2 �
q1 < q2 � t. Let u= a(xp1 , xq1 ) and v= a(xp2 , xq2 ). We claim that either u is an ancestor of v or v
is an ancestor of u. Let z ∈ I1 ∩ I2. By definition, both u and v are ancestors of z. This means that
there exists descending paths connecting z to u and z to v in TX with vertices in different levels.
However, every vertex in TX has at most one father. Therefore, either the path z to u contains the
path z to v or vice-versa. If the path z to u contains the path z to v, then u is an ancestor of v. Hence
u is an ancestor of I2 \ I1, which contradicts the fact that I1 is closed (Condition (��) of Definition
2.2). The other case is analogous. �

We classify the closed intervals ofX by three classes: left combs, right combs, and broken combs
(see also Figure 4).

Definition 2.4. Given a closed interval I in X we say that
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Figure 4. An example of a left, right, and broken comb, respectively.

Figure 5. A left and right 1-comb.

(a) I is a �-left comb if � is the least positive integer such that there exists a partition I =A∪ B
with |A| = � and B �= ∅ and

(a1) A< B.
(a2) A is a closed interval in X
(a3) If z =max (A) and B= {b1, . . . , bs}, then δ(z, b1)> δ(b1, b2)> . . . > δ(bs−1, bs).

(b) I is a �-right comb if � is the least positive integer such that there exists a partition I =A∪ B
with |A| = � and B �= ∅ and

(b1) B<A.
(b2) A is a closed interval in X
(b3) If z =min (A) and B= {b1, . . . , bs}, then δ(b1, b2)< . . . < δ(bs−1, bs)< δ(bt , z).

(c) I is a broken comb if it is neither a left or right comb.

We will use the convention that an �-left/right comb will be described by its partition I =A∪ B
with |A| = � that verifies the condition onDefinition 2.4. As we can see in the picture above, the set
A should be thought as the “handle” of the comb, while the set B should be thought as the “teeth”
of the comb. For broken combs we will adopt the same convention by assuming that B= ∅.

Onemay remove the use of the projection δ(bi, bi+1) in conditions (a3) and (b3) of the right/left
comb by using the following equivalent alternative conditions:

(a3∗) If B= {b1, . . . , bs}, then the intervals A∪ {b1, . . . , bi} are closed in X for every 1� i� s
(b3∗) If B= {b1, . . . , bs}, then the intervals {bi, . . . , bs} ∪A are closed in X for every 1� i� s.

Those conditions have the advantage of describing a comb only using closed intervals. This will
be useful later in the proof.

Example 2.5. A important type of comb in the stepping-up lemma [3, 4] is the 1-left/right comb
(see Figure 5). Those are the combs I = {y1, . . . , yt} satisfying that the sequence {δ(yi, yi+1)}1�i�t is
monotone. Indeed, the interval I is a 1-left comb if δ(y1, y2)> . . . > δ(yt−1, yt), while it is a 1-right
comb if δ(y1, y2)< . . . < δ(yt−1, yt).
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Figure 6. An example of a maximal left, right, and broken comb, respectively.

For the proof of Theorem 1.3 we will be interested in maximal comb structures inside our
auxiliary trees.

Definition 2.6. Given X = {x1, . . . , xt} ⊆ [2N], a interval I = {xp, . . . , xq} is a

(a) Maximal left comb in X if I is a left comb and I ∪ {xq+1} is not a closed interval in X.
(b) Maximal right comb in X if I is a right comb and I ∪ {xp−1} is not a closed interval in X.
(c) Maximal broken comb in X if I is a broken comb and neither I ∪ {xp−1} or I ∪ {xq+1} are

closed.

Figure 6 illustrates Definition 2.6. The next proposition shows that given two maximal combs
they are either disjoint or one is contained in the “handle” of the other.

Proposition 2.7. Given a closed inteval I1 and a maximal comb I2 =A2 ∪ B2 with |I1|� |I2| in a
set X ⊆ [2N], then one of the following holds:

1. I1 ∩ I2 = ∅
2. I1 ⊆A2.
3. I1 =A2 ∪ B1 for some initial segment B1 ⊆ B2

Moreover, condition (3) only holds if I1 is not a maximal comb.

Proof. By Proposition 2.3 we obtain that either I1 ∩ I2 = ∅ or I1 ⊆ I2. If the first case happens, then
I1 and I2 satisfy condition (1) and we are done. Hence, wemay assume that I1 ⊆ I2. If I2 is a broken
comb, then by definition A2 = I2. Thus in this case I1 ⊆A2, satsifying condition (2). Now suppose
without loss of generality that I2 =A2 ∪ B2 is a left maximal comb and write A2 = {x1, . . . , x�},
B2 = {y1, . . . , ys}. If I1 ∩ B2 = ∅, then I1 ⊆A2 and again condition (2) holds.

At last, it remains to deal with the case that I1 ∩ B2 �= ∅. Since I1 is an interval of X and I1 ⊆ I2,
then in particular I1 is an interval of I2. Write I1 = {xp, . . . , x�} ∪ {y1, . . . , yq} for 1� p� � and
1� q� s. By condition (a3∗) of Definition 2.4, the set A2 ∪ {y1, . . . , yq−1} is closed. Therefore for
any z ∈A2 ∪ {y1, . . . , yq−1} the greatest ancestor a(z, yq) of z and yq is the same as the greatest
ancestor of a(x1, yq). In particular, this implies that a(xp, yq) is an ancestor for the entire set A2.
HenceA2 ⊆ I1 and consequently I1 =A1 ∪ B1 is a left comb satisfying condition (3), becauseA1 =
A2 and B1 is an initial segment of B2. Note that I1 is not maximal in this case, since the set I1 ∪
{yq+1} is also a left comb. Thus if I1 is a maximal comb, then it either satisfies (1) or (2). �

3. Stepping-up lemma and our colouring
3.1 Erdős–Hajnal–Rado stepping-up lemma
For instructional purposes, we will briefly go over the stepping-up lemma in [3, 4] using our
notation. For k� 4, let N = Rk−1((n− k+ 4)/2)− 1 and ϕ : [N](k−1) → {0, 1} be a colouring of
the (k− 1)-tuples in [N] with no monochromatic subset of size (n− k+ 4)/2. Our goal is to find
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a colouring ψ : [2N](k) → {0, 1} with no monochromatic subset of size n. This will give us that
Rk(n)> 2N = 2Rk−1((n−k+4)/2)−1.

Fix an edge X = {x1, . . . , xk} ∈ [2N](k) and let δi = δ(xi, xi+1). We describe the colouring ψ by
the structure of TX and the colouring of the vertical projection ϕ of [N] in the following way

ψ(X)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if δk−3 > δk−2 < δk−1

1, if δk−3 < δk−2 > δk−1

ϕ({δ1, . . . , δk−1}), otherwise if |δ(X)| = k− 1

0, otherwise if |δ(X)|< k− 1.

Suppose by contradiction that ψ contains a monochromatic subset Y ⊂ [2N] of size n. We can
use the structure of Y to find a large 1-comb.

Proposition 3.1. There exists an interval I of Y with |I|� (n− k+ 6)/2 such that I is a 1-comb

Proof. We may assume without loss of generality that Y is monochromatic of colour 0. Write
Y = {y1, . . . , yn} and let δYi = δ(yi, yi+1) for 1� i� n− 1. Since all edges in Y are of colour 0,
then for any edge X = {x1, . . . , xk} ∈ Y(k) we do not have that

δ(xk−3, xk−2)< δ(xk−2, xk−1)> δ(xk−1, xk). (3)

In particular, by taking the edge {y�−k+1, . . . , y�}, inequality (3) implies that δY�−3 < δ
Y
�−2 > δ

Y
�−1

does not hold fore every k� �� n. Hence, the sequence {δYi }n−1
i=k−3 has no local maximum.

A standard calculus argument says that between two local minimums there is always a local
maximum. Therefore, the sequence {δYi }n−1

i=k−3 has at most one local minimum, which means
that there exists an interval [p, q] of size (n− k+ 4)/2 such that {δYi }i∈[p,q] is monotone. Thus
by definition the interval I = {xp, xp+1, . . . , xq+1} is a 1-comb of size (n− k+ 6)/2. �

Let I = {z1, . . . , zt} be the 1-comb of Y obtained by Proposition 3.1 and denote δIi = δ(zi, zi+1)
for 1� i� i− 1. Note that because {δIi }t−1

i=1 is a monotone sequence, every edge X ∈ I(k) will be
also a 1-comb. Moreover, for every (k− 1)-tuple Z ∈ δ(I) there exists an edge X ∈ I(k) such that
δ(X)= Z.

Finally, by the definition of the colouring ψ , if X is a 1-comb, then ψ(X)= ϕ(δ(X)). Thus if
I(k) coloured by ψ is monochromatic, then δ(I)(k−1) coloured by ϕ is also monochromatic. This
implies that [N] has a monochromatic set of size (n− k+ 4)/2, which contradicts our assumption
on ϕ.

3.2 Overview of the proof
In order to obtain a lower bound for simple daisies, we will define a variant of the stepping-
up lemma described in the previous subsection. Suppose for a moment that our goal is to
avoid a monochromatic simple (r,m, k)-daisy with in [2N] with |K0| = k0 and |K1| = k1 fixed.
Then for every edge X = {x1, . . . , xk+r} of the daisy, we know that the petal of size r of X is
P = {xk0+1, . . . , xk0+r}. That is, we know the exact location of the petal prior defining the colour-
ing in our stepping-up lemma. In this case a natural way to define the colouring would be to
just assign for every edge X with petal P ⊆ X the colour χ(X)=ψ(P), where ψ(P) is exactly the
stepping-up colouring defined in the previous subsection. Since the petal is the only part of the
edge changing when we run through all edges, a similar proof as in the previous subsection works.

Unfortunately, in the original problem we want to avoid all possible monochromatic simple
(r,m, k)-daisies, which means that we need to avoid simple daisies for all the values of |K0| and
|K1|. The obstruction now is that the location of the petal within the edge is no longer clear to us.
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To fix that we are going to pre-process our potentially monochromatic simple daisy (Lemma 5.1)
to satisfy the following property: Every petal P of an edge X is either a closed interval in X or is
in the “teeth” of a maximal comb in X. This gives us partial information about the location of the
petal. A good strategy then is to define an auxiliary colouring χ0 for every maximal comb in X and
use those colourings to define a colouring for X. This is the content of Section 3.3.

Some technical challenges remain. By Proposition 2.7, the maximal combs in X do not need to
be disjoint. Therefore, it might happen that for the colouring χ different maximal combs inter-
fere with each other. To solve that we need to construct a careful colouring taking the issue into
consideration. In Section 4 we provide an analysis showing that distinct maximal combs do not
interfere with each other in our colouring. Section 5 is devoted to the pre-processing described
in the last paragraph. One of the consequences of the section is that for an edge X the colouring
χ(X) is essentially determined by a unique maximal comb inside of it. Finally, we finish the proof
in Section 6, by showing, similarly as in Subsection 3.1, that a monochromatic simple daisy in [2N]
corresponds to a monochromatic simple daisy in the vertical colouring of [N].

3.3 A variant of the stepping-up lemma
Let N =min0�t�k−1

{
Dsmp
r−1(ck

√
m, t)− 1

}
for r� 4 and ck some constant depending on k to be

defined later and let {ϕi}r−1�i�k+r−1 be a family of colourings such that ϕi : [N](i) → {0, 1} is a
2-colouring of the i-tuples without a monochromatic simple (r − 1, ck

√
m, i− r + 1)-daisy. Note

that by the choice of N is always possible to find such a family.
Given an (k+ r)-tuple X ∈ [2N](k+r) we define

IX = {I ⊆ X : I is a maximal comb in X}
as the set of maximal combs of X. We will construct now an auxiliary colouring χ0 : IX → {0, 1}
depending on the structure of TX and in the family of colourings {ϕt}0�t�k. The colouring is
divided in several cases depending on the type of the maximal comb I.

Remember that a maximal �-comb is always identified with the partition I =A∪ B, where
|A| = � is the handle and B is the set of teeth of the comb. Also write I = {x1, . . . , xs} and let
δIi = δ(xi, xi+1) for 1� i� s− 1. Aiming to simplify the discussion, we will only describe χ0 for
left and broken maximal combs. We define χ0 for right combs by symmetry. Some Figures are
provided to illustrate some of the types (see Figures 7–9).
Type 1: I is broken or left comb, |I| = r and there is no maximal comb I′ =A′ ∪ B′ such that
I =A′.

χ0(I)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if δIr−3 > δ
I
r−2 < δ

I
r−1

1, if δIr−3 < δ
I
r−2 > δ

I
r−1

ϕ|δ(I)|({δI1, . . . , δIr−1}), otherwise if |δ(I)| = r − 1

0, otherwise if |δ(I)|< r − 1

Type 2: I is left comb, |I| = r and there exists a maximal comb I′ =A′ ∪ B′ such that I =A′

χ0(I)= 0

Type 3: I is left comb, �= |A|� r and r + 1� |I|� 2r − 2.

χ0(I)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if δIr−3 > δ
I
r−2 < δ

I
r−1

1, if δIr−3 < δ
I
r−2 > δ

I
r−1

ϕ|δ(I)|({δI1, . . . , δIs−1}), otherwise if |δ(I)|� r − 1

0, otherwise if |δ(I)|< r − 1
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Figure 7. An example of left comb of type 2.

Figure 8. A left comb of Type 4 and its projections.

Figure 9. A left comb of Type 5 and its projections.

Type 4: I is left comb, �= |A|� r and |I|� 2r − 1.

χ0(I)=

⎧⎪⎪⎨
⎪⎪⎩
ϕs−r({δIr , . . . , δIs−1}), if δIr−3 > δ

I
r−2 < δ

I
r−1

1− ϕs−r({δIr , . . . , δIs−1}), if δIr−3 < δ
I
r−2 > δ

I
r−1

ϕ|δ(I)|({δI1, . . . , δIs−1}), otherwise
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10 M. Sales

Type 5: I is left comb, �= |A|> r and |B|� r.

χ0(I)= ϕ|B|(δI�, . . . , δIs−1)
Type 6: All other broken or left maximal combs.

χ0(I)= 0

Finally, the auxiliary colouring χ0 define a colouring χ : [2N](k+r) → {0, 1} as follows:
χ(X)=

∑
I∈IX

χ0(I) (mod 2)

4. Colouring data
Given an edge X and a maximal comb I ⊆ X, one can determine the colour χ0(I) by looking
at the type of the maximal comb I. Some of the types do not use information on the ancestors
to determine its colouring. For instance, if I is of type 2, then its colour will be always 0. The
projection of the ancestors δIi has no influence in defining χ0(I). However, if I is of type 1, then
the colour crucially depends on the projection of the ancestors.

This observation suggests the following definition. Given an edge X ∈ [2N](k+r) and a maximal
comb I ⊆ X, let the colouring data F(I) of I be defined as the ordered set of ancestors whose pro-
jection determine the colouring χ0(I). More explicitly, we can define directly the colouring data of
I by looking its types. We may assume here that I = {x1, . . . , xs} is a broken or left maximal comb.

• Type 1,3 and 4: F(I)= {a(xi, xi+1)}1�i�s−1

• Type 2 and 6: F(I)= ∅
• Type 5: F(I)= {a(xi, xi+1)}��i�s−1

Our first observation is that maximal combs with same data have same colour. We say that two
combs have the same orientation if they are of the same class (e.g., both are left combs).

Proposition 4.1. Let X, X′ ∈ [2N](k+r) be two edges. If I and I′ are maximal combs of same type
and orientation in X and X′, respectively, such that F(I)= F(I′), then χ0(I)= χ0(I′).
Proof. The proof basically consists of checking the consistency of our definition. If F(I)= F(I′)=
∅, then I and I′ are either of type 2 or 6. In both cases χ0(I)= χ0(I′)= 0.

If I = {x1, . . . , xs} and I′ = {x′1, . . . , x′
s′ } are of type 1, 3 or 4, then since a(I)= F(I)= F(I′)=

a(I′) we obtain by Fact 2.1 that s= s′ and a(xi, xi+1)= a(x′i, x′i+1) for every 1� i� s. Therefore
δ(xi, xi+1)= δ(x′i, x′i+1) for every 1� i� s and by the colouring defined in Section 3.3, it follows
that χ0(I)= χ0(I′).

The last case that we need to check is when I =A∪ B= {x1, . . . , xs} and I′ =A′ ∪ B′ =
{x′

1, . . . , x′
s′ } are of type 5, where |A| = � and |A′| = �′. As usual, we assume that I and I′ are

left combs. Since a({x�, . . . , xs})= F(I)= F(I′)= a({x′
�
′ , . . . , x′

s′ }), it follows again by Fact 2.1
that s− �= |B| = |B′| = s′ − �′ and a(xi, xi+1)= a(x′i, x′i+1) for �� i� s− 1. Thus δ(xi, xi+1)=
δ(x′i, x′i+1) for �� i� s− 1 and by the colouring of type 5 we obtain that χ0(I)= χ0(I′). �

Although maximal combs in the same edge do not need to be disjoint, the next result shows
that they do not share the same colouring data.

Proposition 4.2. Let X ∈ [2N](k+r) be an edge. If I =A∪ B and I′ =A′ ∪ B′ are maximal combs
in X, then F(I)∩ F(I′)= ∅.
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Figure 10. A picture of I and {a(xi , xi+1)}�′�i�s−1.

Proof. Suppose without loss of generality that |I|� |I′|. By Proposition 2.7 either I ∩ I′ = ∅ or
I ⊆A′. If I ∩ I′ = ∅, then by the fact that I, I′ are closed we obtain that a(I)∩ a(I′)= ∅. Since
F(I)⊆ a(I) by definition, it follows that F(I)∩ F(I′)= ∅.

Now suppose that I ⊆A′. We may assume that F(I), F(I′) �= ∅ and consequently that I, I′ are of
type 1, 3, 4 or 5. Since maximal combs of types 1, 3, 4 and 5 have size at least r, our assumption
implies that |I′|� |I|� r.

We claim that |A′|> r. Suppose that |A′| = r. Since r� |I|� |A′| we obtain that I =A′ and
|I| = r. The maximality of I implies that it is either a left or right maximal comb (otherwise
we could extend the comb to I ∪ B). However, in this case I is of type 2. Thus F(I)= ∅, which
contradicts our assumption on I. Therefore, |A′|> r and consequently I′ is of type 5. Write
I′ = {x′

1, . . . , x′
s′ } with |A′| = �′ and assume that I′ is a left comb. Then by definition

F(I′)= {a(x′i, x′i+1)}�′�i�s′−1.

Since I ⊆A′ we obtain that F(I)⊆ a(A′). By the structure of a left comb (see Figure 10) we have
that

δ(x′
1, x′

�
′)> δ(x′

�
′ , x′

�
′+1)> δ(x

′
�
′+1, x

′
�
′+2)> . . . > δ(x

′
s′−1, x

′
s′).

Thus a(I)∩ {a(x′i, x′i+1)}�′�i�s′−1 = ∅ and consequently F(I)∩ F(I′)= ∅. �

5. Pre-processing
As discussed in Subsection 3.2, we now turn our focus to show that a simple daisy H can be pre-
processed in a smaller simple subdaisy H′ with the property that for every edge X with petal P we
have that either P is a closed interval in X or is part of the “teeth” of a maximal comb in X.

Lemma 5.1. For any simple (r,m, k)-daisy H with vertex set V(H)⊆ [2N], K0 <M<K1, |K0 ∪
K1| = k and |M| =m, there exists a subset M′ ⊆M of size |M′| = 1

2k
−1/2m1/2 such that the simple

(r, 12k
−1/2m1/2, k)-daisy H′ =H[K0 ∪M′ ∪K1] satisfies one of the following (see Figure 11):

1. M′ is a closed interval in V(H′).
2. There exists a maximal comb I =A∪ B in V(H′) such that M′ ⊆ B.

Proof. Let V := V(H). Given a closed interval I ⊆V , by condition (ii) of Definition 2.2 there
exists a vertex u ∈ a(I) such that I =V(u). Consider the partition of I given by I = IL ∪ IR, where
IL =VL(u) are the left descendants of u and IR =VR(u) are the right descendants of u. Let uL be
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12 M. Sales

Figure 11. An example of H′ satisfying statement (1) and (2).

Figure 12. Partition of a closed interval into two other closed intervals.

the left child of u and uR be the right child. Hence, IL =V(uL) and IR =V(uR) and consequently
I = IL ∪ IR is a partition of a closed interval in V into two non empty closed intervals in V (see
Figure 12).

We will construct our set M′ iteratively. This is done in two stages. In the first stage we start
with the closed interval Y0 =V and proceed recursively as follows: For a closed interval Yi ⊆V ,
let Yi = YL

i ∪ YR
i be the partition described above in two closed intervals. The choice of Yi+1 is

determined by the conditions below

(P1) Set Yi+1 := YL
i if |YL

i ∩M|� |YR
i ∩M|.

(P2) Set Yi+1 := YR
i if |YL

i ∩M|< |YR
i ∩M|.

We stop the process whenever Yi ∩K0 = ∅ or Yi ∩K1 = ∅. Note that since YL
i and YR

i are non
empty, at each iteration of the process the size of |(K0 ∪K1)∩ Yi| reduces at least by one. Thus, in
a finite amount of time the process terminates. Let Y be the closed interval obtained in the end.
We may assume without loss of generality that Y ∩K1 = ∅. Write Y =KY ∪MY , where KY ⊆K0
andMY ⊆M. It is not hard to check by the construction that |MY |�m/2.

For the second stage, let Z0 = Y . Given a closed interval Zi ⊆V , let Zi = ZL
i ∪ ZR

i be the par-
tition into two non empty closed intervals. By definition we have that ZL

i < ZR
i . We say that a

partition ZL
i ∪ ZR

i is of type A if ZR
i ∩K0 = ∅ and of type B if ZR

i ∩K0 �= ∅. The choice of Zi+1 will
depend on the type of partition as follows:
Type A: ZR

i ∩K0 = ∅.

(A1) Set Zi+1 := ZL
i if |ZR

i |< 1
2k

−1/2m1/2.
(A2) Set Zi+1 := ZR

I if |ZR
i |� 1

2k
−1/2m1/2 and stop the process.
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Figure 13. Sequence of closed intervals ZRj , . . . , Z
R
j+m′−1.

Type B: ZR
i ∩K0 �= ∅.

(B) Set Zi+1 := ZR
i .

We terminate the process if we either reach condition (A2) or if Zi+1 is a singleton. Since
|Zi+1|< |Zi|, the process is finite. Let Z be the closed interval obtained at the end. We split into
two cases.

If the process terminates after some instance of condition (A2), then it means that Z = ZR
i is a

closed interval in V with |Z|� 1
2k

−1/2m1/2 for some index i. Because we are in a partition of type
Awe also obtain that Z ⊆M. Thus, if we setM′ = Z the simple subdaisyH[K0 ∪M′ ∪K1] satisfies
condition (1) of the statement.

Now suppose that the process terminates with |Z| = 1. Then it means that for every partition
of type A we had an instance of condition (A1). If Zi+1 is a set obtained after condition (A1),
then |Zi+1 ∩M|> |Zi ∩M| − 1

2k
−1/2m1/2 and |Zi+1 ∩K0| = |Zi+1 ∩K0|. That is, condition (A1)

removes less than 1
2k

−1/2m1/2 element of M from Zi and no elements of K0 from it. Moreover, if
Zi+1 is obtained after condition (B), then |Zi+1 ∩M| = |Zi ∩M| and |Zi+1 ∩K0|< |Zi ∩K0|. That
is,M remains unaffected, but K0 loses at least one element from Ki to Ki+1.

Consider the sequence of operations applied to Z0 in order to obtain Z. Since we start with a
set Z0 = Y with |Z0 ∩M| = |MY |�m/2, we obtain that during our process we had at least

m
2

1
2k−1/2m1/2

= k1/2m1/2

instances of condition (A1) in the sequence. Similarly, since |Z0 ∩K0| = |KY |� k, we obtain that
we had at most k instances of condition (B) in the sequence. Hence, by the pigeonhole prin-
ciple there exists a sequence of consecutive applications of condition (A1) of length at least
m′ = k1/2m1/2/(k+ 1)� 1

2k
−1/2m1/2.

Let Zj, Zj+1, . . . , Zj+m′ be the closed intervals involved in the sequence. That is, Zi+1 is obtained
from Zi by a condition (A1) for every j� i� j+m′ − 1. By the algorithm, we obtain closed
intervals ZR

j , . . . , Z
R
j+m′−1 ⊆M all of them with size less than 1

2k
−1/2m1/2 (Figure 13). For every

j� i� j+m′ − 1, choose a point zi ∈ ZR
i .

Set M′ = {zj, . . . , zj+m′−1}. We claim that M′ is a set satisfying condition (2) of the state-
ment. Let H′ =H[K0 ∪M′ ∪K1] and V ′ =V(H′). To see that condition (2) is satisfied we just
need to find a maximal comb I =A∪ B⊆V ′ such thatM′ ⊆ B. Let K ′ =K0 ∩ Zj+m′ and consider
the interval I′ =K ′ ∪M′ in V ′. By construction, the intervals K ′ and K ′ ∪ {zj+i, . . . , zj+m′−1} are
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closed in V ′ for every 0� i�m′ − 1. Therefore, by condition (a3∗) of Definition 2.4, the inter-
val I′ =A′ ∪ B′ is a left comb and M′ ⊆ B′. Since every comb can be extended to a maximal one,
there exists a maximal left comb I =A∪ B with A=A′ and B′ ⊆ B such that M′ ⊆ B and we are
done. �

One of the main consequences of our pre-processing is that it allows us to identify certain
closed and non-closed intervals in an arbitrary edge of H′. To be more precise, given an edge
X ∈ E(H′) with petal P and V ′ =V(H′), let

CV′,M′ = {I : I is an interval inV ′ and eitherM′ ⊆ I orM′ ∩ I = ∅}
CX,P = {I : I is an interval in X and either P ⊆ I or P ∩ I = ∅}

be the set of intervals in V ′ and X such that the intervals either contain or are disjoint of M′ and
P, respectively. The next proposition shows that there is a one-to-one correspondence between
CV′,M′ and CX,P preserving the property of being closed.
Proposition 5.2. For a given edge X ∈ E(H′) with petal P, there exists a bijection	 : CV′,M′ → CX,P
given by

	(I)= I ∩ X
such that I is a closed interval in V ′ if and only if 	(I) is a closed interval in X.

Proof. If I ∈ CV′,M′ is such that I ∩M′ = ∅, then either I ⊆K0 or I ⊆K1. Since X =K0 ∪ P ∪K1

for some P ∈M′(r), we obtain that 	(I)= I ∩ X = I. This shows that 	 is a bijection from the
intervals of V ′ disjoint ofM′ to the intervals of X disjoint of P.

Now suppose that I ∈ CV′,M′ is such thatM′ ⊆ I. Then I can be written as I =KI ∪M′ withKI ⊆
K0 ∪K1. Thus 	(I)= I ∩ X =KI ∪ P. Since KI �=KI′ for I �= I′, we obtain that 	 is an injection
from the intervals of V ′ containing M′ to the intervals of X containing P. To check surjectivity,
just notice that KI ∪ P is an interval if and only if KI ∪M′ is an interval.

It remains to prove that I is closed if and only if 	(I) is closed. Throughout the rest of the
proof, for a set S⊆V we define

xS =min (S), yS =max (S), uS = a(xS, yS).
Note that the backwards direction is straightforward from the definition of being closed.

Proposition 5.3. If I is closed in V ′, then I ∩ X is closed in X.

Proof. Suppose by contradiction that I ∩ X is not closed in X. Then by condition (��) of
Definition 2.2, there exists y ∈ X \ I such that uI∩X is an ancestor of y. Since I ∩ X ⊆ I, we have
that uI is an ancestor of uI∩X . Therefore, y ∈ X \ I ⊆V ′ \ I is an ancestor of uI which contradicts
the fact that I is closed in V ′. �

The following observation will be useful for the rest of the proof.

Fact 5.4. Let W =V(uW) be a closed interval in V. If x and y are two vertices such that x ∈W and
y /∈W, then a(x, y)= a(y, uW) (see Figure 14).

In particular, Fact 5.4 applied to W =M′ says that an element y /∈M′ have the same common
ancestor with any x ∈M′.We split the proof of the forward implication depending on the structure
of H′ given by Lemma 5.1.
Case 1:M′ is a closed interval in V ′.

The proof of Case 1 is slightly different depending on the location of the interval I in V ′.
Case 1.1: I ∈ CV′,M′ such that I ∩M′ = ∅.

As seen before, we have that 	(I)= I. By condition (��) of Definition 2.2 there is no vertex
x ∈ X \ I such that uI is an ancestor of x. If there is a descendant of uI inV ′ \ I, then the descendant
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Figure 14. A picture of Fact 5.4.

is in the set V ′ \ X =M′ \ P. Since I ∩M′ = ∅, Fact 5.4, applied to the closed intervalM′, implies
that for every y ∈ I′ and x ∈M′ we have a(x, y)= a(y, uM′). Thus, if uI is an ancestor of some
x ∈M′, then uI is an ancestor of uM′ . This implies that uI is an ancestor for the entire setM′ and
in particular of P, which contradicts the fact that I is closed in X. Therefore, I is a closed interval
in V ′.
Case 1.2: I ∈ CV′,M′ such thatM′ ⊆ I.

Suppose that I =KI ∪M′ is a interval inV ′ containingM′.We need to prove that I =KI ∪M′ is
closed in V ′ if	(I)= I ∩ X =KI ∪ P is closed in X. If KI = ∅, then I =M′ which is by assumption
closed in V ′. Otherwise, we claim that uI = u	(I). That is I and 	(I) have the same common
ancestor.

The assumption that KI �= ∅ gives us that either xI <min (M′) or yI >max (M′). Assume with-
out loss of generality that yI >max (M′). Thus, yI ∈KI and we have that yI = y	(I) =max (KI).
If xI /∈M′, then similarly we have xI = x	(I) and consequently uI = a(xI , yI)= a(x	(I), y	(I))=
u	(I). Now if xI ∈M′, then xI /∈KI . This implies that x	(I) ∈ P ⊆M′. Since both xI , x	(I) ∈
M′ and yI = y	(I) /∈M′, by Fact 5.4 we obtain that uI = a(xI , yI)= a(uM′ , yI)= a(uM′ , y	(I))=
a(x	(I), y	(I))= u	(I). Hence, I =KI ∪M′ and	(I)=KI ∪ P have the same common ancestor.

To finish the proof note that by condition (��) of Definition 2.2 there are no descendants of
u	(I) in X \	(I). Since uI = u	(I) and V \ I′ =K \KI = X \	(I), we conclude that there are no
descendants of uI in V ′ \ I and consequently I is closed in V ′.
Case 2:M′ ⊆Q for some maximal comb Q=AQ ∪ BQ in V ′ withM′ ⊆ BQ.

We may assume without loss of generality that Q is a maximal left comb. Let KQ
0 =K0 ∩Q

andKQ
1 =K1 ∩Q. Clearly,Q=KQ

0 ∪M′ ∪KQ
1 withKQ

0 <M′ <KQ
1 . Moreover,Q=AQ ∪ BQ with

AQ < BQ and M′ ⊆ BQ (Figure 15). Thus, AQ ⊆KQ
0 and by condition (a3∗) of Definition 2.4, we

obtain that KQ
0 is closed in V ′. As in the first case, we split into two cases depending on the type of

the interval.
Case 2.1: I ∈ CV′,M′ such that I ∩M′ = ∅.

Suppose that I is a closed interval in X. We claim that V ′(uI)∩M′ = ∅, i.e., the descendants of
uI are disjoint ofM′. Applying Proposition 2.3 to the closed interval V ′(uI) and maximal comb Q
gives us that either V ′(uI)∩Q= ∅,V ′(uI)⊆Q orQ⊆V ′(uI). IfV ′(uI)∩Q= ∅, then we immedi-
ately obtain thatV ′(uI)∩M′ = ∅, sinceM′ ⊆Q. IfQ⊆V ′(uI), thenM′ ⊆V ′(uI) and consequently
P =M′ ∩ X ⊆V ′(uI)∩ X = X(uI). This implies that X(uI) �= I, which contradicts I being closed
in X.

Thus, we may assume that V ′(uI)⊆Q and M′ �⊆V ′(uI). Then, by Proposition 2.7, we have
that V ′(uI)=AV′(ui) ∪ BV

′(uI) where either V ′(uI)⊆AQ or AV′(ui) =AQ and BV
′(uI) ⊆ BQ. For

the first case, note that AQ ∩M′ = ∅ and therefore V ′(uI)∩M′ = ∅. For the second case, note
that sinceM′ �⊆V ′(uI), thenM′ �⊆ BV

′(uI). This implies that V ′(uI)⊆K0 ∪M′. Together with the
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Figure 15. Maximal comb Q and sets KQ0 and K
Q
1 .

fact that I ∩M′ = ∅ and I ⊆V ′(uI), we obtain that I ⊆KQ
0 . Since K

Q
0 is closed in V ′, we have that

the common ancestor uKQ
0

= a(min (KQ
0 ), max (KQ

0 )) is an ancestor of the entire I and therefore

of uI . Hence, V ′(uI)⊆KQ
0 , which implies that V ′(uI)∩M′ = ∅. The fact that I is closed in V ′ now

follows because V ′(uI)= X(uI)= I.
Case 2.2: I ∈ CV′,M′ such thatM′ ⊆ I.

Let I =KI
0 ∪M′ ∪KI

1 be an interval in V ′ containing M′ with KI
0 ⊆K0 and KI

1 ⊆K1. Suppose
that ψ(I)=KI

0 ∪ P ∪KI
1 is closed in X. Since KQ

0 ∪M′ is closed, by the same argument of Case
1.2 (by considering KQ

0 ∪M′ instead ofM′), we can show that if xI <min (KQ
0 ) or yI >max (M′),

then uI = a(xI , yI)= a(x	(I), y	(I))= u	(I) and consequently I is closed in V ′.
Now suppose that min (KQ

0 )� xI �min (M′) and yI =max (M′). Since bothM′ and P are not
closed intervals in their respective ground sets, we have that xI �=min (M′) and consequently
x	(I) = xI and y	(I) =max (P). Hence, in this case, KI

0 ⊆KQ
0 and KI = ∅, which implies that

I =KI
0 ∪M′ and 	(I)=KI

0 ∪ P. Because Q is a maximal left comb with M′ ⊆Q, then both sets
KQ
0 and KQ

0 ∪M′ are closed in V ′. Therefore, by Proposition 5.3 the intervals KQ
0 and KQ

0 ∪ P
are closed in X. Fact 5.4 applied to KQ

0 gives us that a(z, y	(I))= a(z′, y	(I)) for every z, z′ ∈KQ
0 .

This implies that u	(I) = a(x	(I), y	(I))= a(min (KQ
0 ), y	(I)), i.e., KQ

0 ∪ P and	(I)=KI
0 ∪ P have

u	(I) as the same common ancestor. Since KQ
0 ∪ P and KI

0 ∪ P are both closed in X, we obtain that
KQ
0 =KI

0. Thus I =KQ
0 ∪M′, which is closed in V ′.

The next result shows that we can always find in an edge the location of the maximal comb
with colouring data containing a(P). This will be extremely important, since the comb will be the
only maximal comb such that colouring data changes while we run through different edges ofH′.
Proposition 5.5. Let H′ be a fixed pre-processed daisy obtained by Lemma 5.1.There exists a unique
interval J ⊆ [k+ r] such that for every edge X =K0 ∪ P ∪K1 = {x1, . . . , xk+r} in H′, the interval
XJ = {xj}j∈J is a maximal comb of type depending only on H′ with

a(P)⊆ F(XJ).

Moreover, writing XJ =AXJ ∪ BXJ we have one of the following:

1. If H′ satisfies statement (1) of Lemma 5.1, then AXJ ⊆ P and XJ is the smallest maximal
comb containing P with non-empty colouring data.

2. If H′ satisfies statement (2) of Lemma 5.1, then XJ = I ∩ X, where I =A∪ B is the maximal
comb in V ′ such that M′ ⊆ B, and XJ satisfies P ⊆ BXJ .
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Proof. The idea of the proof is to identify certain maximal combs in V ′ with maximal combs in
an edge X. Because the structure of those maximal combs inV ′ only depends onH′, we will obtain
the same for the corresponding combs in X. Proposition 5.2 will be useful here, since by condition
(a3∗) and (b3∗) of Definition 2.4 a comb can be defined by looking at certain closed subintervals.
The proof is split into cases depending on the structure of the tree TV′
Case 1:M′ is a closed interval in V ′.

We will construct a maximal comb in X by looking at a maximal comb in V ′ containing M′.
Write K0 = {x1, . . . , xk0}, M′ = {y1, . . . , ym′ } and K1 = {z1, . . . , zk1}. There are two possibilities
here:
Case 1.1: EitherM′ ∪ {z1} is a closed interval in V ′ orM′ ∪ {xk0} is a closed interval in V ′.

Suppose without loss of generality that M′ ∪ {z1} is closed in V ′. In this case M′ ∪ {z1} is
a left comb. Let M′ ∪ {z1, . . . , zt} be the maximal left comb obtained by extending M′ ∪ {z1}.
We will assume during the entire proof that t< k1. For t = k1, the same proof work by remov-
ing any claims and sets involving zt+1. By condition (a3∗) of Definition 2.4 and Definition 2.6,
M′ ∪ {z1, . . . , zt} being a maximal left comb is the same as saying that the intervals M′ and
M′ ∪ {z1, . . . , zi} are closed for every 1� i� t, but the intervalM′ ∪ {z1, . . . , zt+1} is not closed.

Set J = {k0 + 1, . . . , k0 + r + t}. Let X be an edge of H′ with petal P. We claim that XJ is a
maximal left comb in X with AXJ ⊆ P. To see that consider the intervals

Ji = {k0 + 1, . . . , k0 + r + i}, 0� i� t + 1.

In particular Jt = J. Note that XJ0 =M′ ∩ X = P and XJi = (M′ ∩ {z1, . . . , zi})∩ X for
1� i� t + 1. Thus, by applying Proposition 5.2 with I =M′ and I =M′ ∪ {z1, . . . , zi}, we
obtain that XJi is closed in X for 0� i� t and XJt+1 is not closed in X. Hence, by condition
(a3∗) of Definition 2.4 and Definition 2.6, we have that XJ = XJt is a maximal left comb.
Since P = XJ0 ⊆ XJ1 ⊆ . . .⊆ XJt = XJ are all closed intervals, we have that AXJ ⊆ P. Thus,
|AXJ |� |P| = r and we have that either XJ is a maximal comb of type 3 or type 4 depending on the
size of |XJ | = r + t. Because t is a parameter that depends on the size of the maximal comb in V ′,
i.e., on the structure ofH′, we conclude that the type of XJ is independent of our choice of edge X.

It remains to show that a(P)⊆ F(XJ) and XJ is the smallest maximal comb containing P with
non-empty data colouring. For the first, note that F(XJ)= a(XJ) because XJ is of type 3 or 4. Thus,
a(P)⊆ a(XJ)= F(XJ). For the latter, note that the only potential maximal comb smaller than XJ
containing P is P itself. However, if P is a maximal comb, then it is a comb of type 2 and therefore
F(P)= ∅. Hence, XJ is the smallest maximal comb containing P with non-empty colouring data.
Case 1.2: BothM′ ∪ {z1} andM′ ∪ {xk0} are not closed in V ′.

By Definition 2.6, M′ is a maximal comb. Set J = {k0 + 1, . . . , k0 + r}. Note that XJ = P. By
Proposition 5.2, the set P =M′ ∩ X is closed in X and P ∪ {z1} = (M′ ∪ {z1})∩ X and P ∪ {xk0} =
(M′ ∪ {xk0})∩ X are not closed in X. Thus, P is a maximal comb in X. It is clear that AXJ ⊆ XJ = P.
Since |P| = r and P ∪ {z1}, P ∪ {xk0} are not closed, we have that XJ = P is of type 1. Therefore,
the type of XJ does not depend on X. Moreover, the fact that XJ is of type 1 gives us that a(P)=
a(XJ)= F(XJ). The minimality of XJ is immediate from the fact that all combs with non-empty
data has size at least r.
Case 2:M′ ⊆ B for a maximal comb I =A∪ B in V ′.

Suppose without loss of generality that I =A∪ B is a maximal left comb. Let A=
{xk0−p−�+1, . . . , xk0−p}, B∩K0 = {xk0−p+1, . . . , xk0} and B∩K1 = {z1, . . . , zt}. Set J = {k0 − p−
�+ 1, . . . , k0 + r + t}. Let X be an edge ofH′ with petal P (see Figure 16). Clearly, XJ = I ∩ X. We
claim that XJ is a maximal left comb with P ⊆ BXJ . By Definition 2.4 and 2.6 we have that A is a
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Figure 16. Case 2 of Proposition 5.5.

closed interval in V ′, A \ {xk0−p} and I ∪ {zt+1} are not closed in V ′ and

δ(xk0−p, xk0−p+1)> . . . > δ(xk0−1, xk0 )> δ(xk0 , y1)> δ(y1, y2)> . . . > δ(ym′−1, ym′)

> δ(ym′ , z1)> δ(z1, z2)> . . . > δ(zt−1, zt).
Let P = {yi1 , . . . , yir }. By Proposition 5.2, the set A=A∩ X is closed in X and the sets

A \ {xk0−p} = (A \ {xk0−p})∩ X and XJ ∪ {zt1} = (I ∪ {zt+1})∩ X are not closed in X. Moreover,
since P ⊆M′, we have that

δ(xk0−p, xk0−p+1)> . . . > δ(xk0−1, xk0 )> δ(xk0 , yi1 )> δ(yi1 , yi2 )> . . . > δ(yir−1 , yir )

> δ(yir , z1)> δ(z1, z2)> . . . > δ(zt−1, zt).

Thus, by Definition 2.4 and Definition 2.6, the interval XJ is a maximal left comb in X with AXJ =
A and |BXJ | = r + t + p. Since A⊆K0, we obtain that P ⊆ BXJ . Note that to determine the type
of XJ we need to know the sizes of XJ , AXJ and BXJ . None of this parameters depends on the
choice of X. Hence, the type of XJ is independent of X. Finally, because |BXJ |� |P|� r, we obtain
that |XJ |� r + 1 and consequently the comb XJ is of type 3, 4 or 5. If it is of type 3 or 4, then
a(P)⊆ a(XJ)= F(XJ). If it is of type 5, then a(P)⊆ a( max (AXJ )∪ BXJ )= F(XJ). �

To finish the section we prove that the maximal comb determined by the set J is the comb that
essentially determines the colour of the entire edge.

Proposition 5.6. Let X = {x1, . . . , xk+r}, X′ = {x′
1, . . . , x′

k+r} be two edges in H′ and let XJ =
{xj}j∈J , X′J = {x′j}j∈J . If χ(X)= χ(X′), then χ0(XJ)= χ0(X′J).
Proof. Let P, P′ ⊆M′ be the petals of X and X′, respectively. By definition, χ(X)= χ(X′) implies
that ∑

I∈IX
χ0(I)=

∑
I′∈I

X′
χ0(I′) (mod 2).

By the definition of colouring data, if F(I)= ∅, then χ0(I)= 0. Thus, we may rewrite the equality
above as ∑

I∈IX
F(I)�=∅

χ0(I)=
∑

I′∈I
X′

F(I′)�=∅

χ0(I) (mod 2). (4)
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We claim that if I =A∪ B is a maximal comb ofX with F(I) �= ∅, then either I ∩ P = ∅ or P ⊆ I.
Note that, in the colouring defined in Subsection 3.3, whenever F(I)= ∅, we have that |I|� |P| = r.
By Lemma 5.1, the daisyH′ satisfies one of the following conditions: EitherM′ is a closed interval
in V ′ := V(H′) or there exists a maximal comb Q=AQ ∪ BQ such that M′ ⊆ BQ. If M′ is closed
in V ′, then by Proposition 5.2 the petal P =M′ ∩ X is a closed interval in X. Thus, Proposition 2.3
applied to the closed intervals I and P gives the desired result that either I ∩ P = ∅ or P ⊆ I. Now
suppose that we are in Condition (2) of Lemma 5.1. By Proposition 5.5, we have that P ⊆ BXJ ,
where BXJ is the “teeth” part of the comb XJ =AXJ ∪ BXJ . Thus, Proposition 2.7 applied to the
maximal combs I and XJ implies that I ∩ XJ = ∅, I ⊆AXJ or XJ ⊆A⊆ I. In the first two cases we
obtain I ∩ P = ∅, while in the latter we have P ⊆ I.

The idea of the proof of Proposition 5.6 is to show that there exists a bijection between {I ∈
IX : F(I) �= ∅} and {I′ ∈ IX′ : F(I′) �= ∅} such thatXJ is sent toX′J and every I �= XJ is sent to an I′ �=
X′J with χ0(I)= χ0(I′). Hence, after some cancellation, we obtain from equation (4) that χ0(XJ)=
χ0(X′J). Based on the last paragraph, we construct such a bijection by splitting {I ∈ IX : F(I) �= ∅}
into two parts:
Case 1: I ∈ IX is a maximal comb of X with F(I) �= ∅ and I ∩ P = ∅.

We claim that I ∈ IX′ is a maximal comb in X′ of the same type and consequently χ0(I) is the
same in X and X′. Assume without loss of generality that I ⊆K0. Let x be the element preceding
min (I) in X (In the case that such x does not exists, we simply take x=min (I)). Let y be the
element after max (I) in X. Similarly, define x′ as the element before min (I) in X′ and y′ as the
element after max (I) in X′. Since I ⊆K0, clearly x= x′. However, y and y′ are not necessarily
the same. By conditions (a3∗) and (b3∗) of Definition 2.4 and Definition 2.6, to prove that I ∈ IX′
is enough to check that I ∪ {x}, L⊆ I, I ∪ {y} are closed intervals in X if and only if I ∪ {x′}, L⊆ I
and I ∪ {y′} are closed intervals in X′, respectively. Since F(I)=�= ∅, we have that I is of type 1, 3,
4 or 5. Note that one can distinguish between this types by determining the size of the “handle”
and ‘teeth” of I. Thus, by checking the properties above, we also obtain that I have the same type
in X and X′.

For an interval L⊆ I, by Proposition 5.2 we have that L= L∩ X is a closed interval in X if and
only if it is a closed interval inV ′. Another application of Proposition 5.2 gives us that L= L∩ X′ is
a closed interval if it is closed inV ′. Hence, L is closed inX if and only if it is closed inX′. Similarly,
the same argument works for I ∪ {x} and I ∪ {x′}, because x= x′ /∈M′. Moreover, if y ∈K0, then
y′ = y /∈M′ and we also obtain that I ∪ {y} is closed in X if and only if I ∪ {y′} is closed in X′.
Hence, the only case remaining is when y /∈K0, i,e, y=min (P) and y′ =min (P′).

We split the argument into two cases depending on the structure given by Lemma 5.1. Suppose
that M′ is closed in V ′ and let u= a(min (M′), max (M′)) be the common ancestor of M′. By
Fact 5.4, we have that a(z, y)= a(z, y′)= a(z, u) for every z ∈ I. Therefore, the entire set M′ is
descendant of the common ancestors of I ∪ {y} and I ∪ {y′}, which by condition (ii∗) of Definition
2.2 implies that both sets are not closed. Now suppose that M′ ⊆ BQ for some maximal comb
Q=AQ ∪ BQ. Since I is a closed interval in X, then by Proposition 5.2 it is a closed interval in
V ′. Thus, by Proposition 2.3, applied to I and the maximal comb Q, one of the following three
possibilities holds: I ∩Q= ∅, I ⊆Q or Q⊆ I. Clearly, the last possibility cannot hold, since P ⊆Q
and I ∩ P = ∅. Suppose that I ∩Q= ∅. By Proposition 5.2, the intervalQ∩ X is a closed interval in
X. Since (I ∪ {y})∩ (Q∩ X)= {y} �= ∅ and {y} �=Q∩ X, we obtain by Proposition 2.3 that I ∪ {y}
is not closed in X. Similarly, I ∪ {y′} is not closed in X′.

Now we handle with the case that I ⊆Q. By Proposition 2.7, either I ⊆AQ or I =A∪ B is
a comb with A=AQ and B⊆ BQ. Since I ⊆K0, we have that Q is a maximal left comb. Let
KQ
0 =K0 ∩Q, BQ = {z1, . . . , zb} and let Qzi =AQ ∪ {z1, . . . , zi} be the subcomb of Q ending in

zi. By condition (a3∗) of Definition 2.4, we have that AQ and Qz are closed in V ′ for every
z ∈ BQ. Moreover, note that min (I) ∈AQ. Let v= a(min (AQ), max (AQ) and w= a(min (I), y) be
the common ancestor of AQ and I ∪ {y}, respectively. By Fact 5.4 applied to AQ, we have that
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a(min (I), x)= a(v, x)= a(min (AQ), x) for every x ∈M′. Thus, X(w)=V ′(w)∩ X =Qy ∩ X =
KQ
0 ∪ {y}, which implies that I ∪ {y} is a closed interval inX if and only if I =KQ

0 . Similarly, I ∪ {y′}
is a closed interval in X′ if and only if I =KQ

0 . Hence, I ∪ {y} is closed in X if and only if I ∪ {y′} is
closed in X′.
Case 2: I ∈ IX is a maximal comb of X with F(I) �= ∅, P ⊆ I and I �= XJ .

In this case, by Proposition 4.2 and Proposition 5.5, we have that F(I)∩ a(P)= ∅ and con-
sequently F(I) �= a(I). Thus, by our colouring, we obtain that I is of type 5, i.e., I =A∪ B is
a maximal left/right comb with |A|> r and |B|� r. We may assume that I is a maximal left
comb. Hence, F(I)= a({max (A)} ∪ B) and the fact that F(I)∩ a(P)= ∅ implies that P ⊆A. Write
A=KA ∪ P with KA ⊆K0 ∪K1. We claim that I′ =KA ∪ P′ ∪ B is a maximal comb of type 5 with
set of “teeth” B′ = B and “handle” A′ =KA ∪ P′.

Write B= {y1, . . . , yt}. Let x=max (A), x′ =max (A′) and let z be the element coming after
B in V ′ (In case that such element does note exist, we take z =max (B)). By condition (a3∗) of
Definition 2.4 and Definition 2.6 to prove that I =A′ ∪ B′ is a maximal comb of type 5 with A′ =
KA ∪ P and B′ = B it is enough to prove that A′ and A′ ∪ {y1, . . . , yi} are closed in X′ for every 1�
i� t, A′ \ {x′} is not closed in X′ and A′ ∪ {y1, . . . , yt , z} is closed if and only if A∪ {y1, . . . , yt , z}
is closed in X. Applying Proposition 5.2 with X and V ′ and then V ′ and X′ gives us that A, A∪
{y1, . . . , yi} and A∪ {y1, . . . , yt , z} are closed in X if and only if A′, A′ ∪ {y1, . . . , yi} and A′ ∪
{y1, . . . , yt , z} are closed in X′, respectively. Since I is a maximal comb in X, this implies that A′,
A′ ∪ {y1, . . . , yi} are closed in X′ for 1� i� t. If x /∈ P, then x= x′ and by the same argument
A′ \ {x′} is not closed in X′.

It remains to deal with the case that x ∈ P, i.e., x=max (P) and x′ =max (P′). The proof is split
into two cases depending on the structure of H′ given by Lemma 5.1. IfM′ is a closed interval in
V ′, then by Proposition 5.2 the interval P′ is closed in X′. The intersection A′ \ {x′} is proper since
|A′| = |A|> r = |P′| and x′ ∈ P′. Therefore, by Proposition 2.3, we have that A′ \ {x′} is not closed
in X′.

Now suppose that M′ ⊆ BQ for some maximal comb Q=AQ ∪ BQ. By Proposition 5.5, the
maximal combs XJ and X′J satisfies P ⊆ BXJ and P′ ⊆ BX

′
J . Applying Proposition 2.7 to the max-

imal combs I and XJ gives us that either I ⊆AXJ or XJ ⊆A. Since P ∩AXJ = ∅, it follows that
XJ ⊆A. Because x=max (A) ∈ P, we have that max (KA)<min (P). This implies that XJ is a
maximal left comb. Hence, by Proposition 5.5 both Q and X′J are maximal left combs.

We claim that A′ \ {x′} ∩ X′J is a proper intersection. Since |X′J | = |XJ |� |A| = |A′|, by
Proposition 2.3 applied to A′ and X′J , we have that X′J ⊆A′. Note that we already proved for
1� i� t thatA′ andA′ ∪ {y1, . . . , yi} are closed inX′. Hence, by themaximality ofX′J we have that
A′ �= X′J (otherwise we could extend to the left comb X′J ∪ B). Thus, X′J is strictly contained inA′,
which implies that KA \ X′J �= ∅. This concludes that A′ \ {x′} ∩ X′J is proper and by Proposition
2.3 the interval A \ {x} is not closed in X′.

Therefore, the interval I′ =A′ ∪ B′ is a maximal left comb in X′ of type 5 with A′ =KA ∪ P′
and B′ = B. It is not difficult to check (by Proposition 5.2) that the correspondence between I
and I′ is a bijection. Moreover, since A=KA ∪ P is closed in X, we obtain by Proposition 5.2
that KA ∪M′ is closed in V ′. It follows by Fact 5.4 that a(x, y1)= a(x′, y1) and consequently thar
F(I)= a(B∪ {x})= a(B′ ∪ {x′})= F(I′). Hence, by Proposition 4.1 we have χ0(I)= χ0(I′). �

6. Main proof
The proof of Theorem 1.3 follows by a simple induction of the following stepping up theorem.

Theorem 6.1. Let m� 100kr2, N =min0�j�k{Dsmp
r−1(

1
5k

−1/2m1/2, j)} be integers and let
{ϕi}r−1�i�k+r−1 be a family of colourings ϕi : [N](i) → {0, 1} without a monochromatic copy
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of a simple (r − 1, 15k
−1/2m1/2, i− r + 1)-daisy. Then, the colouring χ : [2N](k+r) → {0, 1}

described in Subsection 3.3 does not contain a monochromatic simple (r,m, k)-daisy.

Proof. Suppose by contradiction that there exists a monochromatic simple (r,m, k)-daisy H in
[2N](k+r) with kernel K =K0 ∪K1 of size k, universe of petals M of size m and K0 <M<K1.
By Lemma 5.1, we obtain a monochromatic simple (r, 12k

−1/2m1/2, k)-daisy H′ with same kernel
and universe of petals M′ = {y1, . . . , ym′ } ⊆M of size m′ = 1

2k
−1/2m1/2 satisfying that either M′

is a closed interval in V ′ =V(H′) or M′ is part of the “teeth” of a maximal comb I =A∪ B, i.e.,
M′ ⊆ B.

Note that every edge X ∈H′ can be written in the form X =K0 ∪ P ∪K1 where P ∈ (M′)(r) is a
petal of H′. Since H′ is monochromatic, we have that

χ(X)=
∑
I⊆IX

χ0(I) (mod 2)

is constant, for every X ∈H′. Thus, by Propositions 5.5 and 5.6, there exists a unique interval
J ⊆ [k+ r] such that for every X ∈ E(H′) the interval XJ = {xj}j∈J is maximal comb with colour
χ0(XJ) constant.

As in the proof give in Subsection 3.1, our goal is to use the fact that the combs XJ are
monochromatic with respect to χ0 to find a large 1-comb. Let t = |J| − r and let G be the sim-
ple (r, 12k

−1/2m1/2, t)-daisy constructed by taking as edges the combs XJ for every edge X ∈H′. To
be more precise, let KJ be the subset of t vertices of K0 ∪K1 in the interval J. Note that every comb
XJ can be partitioned into XJ =KJ ∪ P, where P ⊆M′ is the petal of X. We define G as the simple
(r, 12k

−1/2m1/2, t)-daisy given by

V(G)=KJ ∪M′

G= {XJ : X ∈H′}
As discussed in the last paragraph the (t + r)-graph G is monochromatic under the colouring χ0.
The following lemma is a variant of Proposition 3.1 for simple daisies.

Proposition 6.2. If M′ is a closed interval in V(H′) and G is monochromatic with respect to the
colouring χ0, then there exists an interval M′′ ⊆M′ of size |M′′|� (|M′| − r + 6)/2 such that M′′
is a 1-comb in V ′.
Proof. By Proposition 5.5, all the edges XJ of G are combs of the same type. Thus we may assume
without loss of generality that XJ is either a broken comb or a �-left comb in X. SinceM′ is closed,
by the same proposition we obtain that AXJ ⊆ P and consequently KJ ⊆ BXJ for every edge X ∈H′.
Therefore, we either have KJ = ∅ (and XJ is a broken comb) or P<KJ for every X, which implies
that KJ ⊆K1, i.e.,M′ <KJ . Moreover, if XJ is an �-left comb, then AXJ ⊆ P implies that �� r. This
implies that XJ is either of type 1, 3 or 4.

We split the proof into two cases according to the size of t = |KJ |. Write M′ = {y1, . . . , ym′ },
KJ = {ym′+1, . . . , ym′+t} (if KJ �= ∅) and δGi = δ(yi, yi+1) for 1� i�m′ + t − 1.
Case 1: 0� t� r − 2.

Since |XJ | = r + t� 2r − 2, we obtain that XJ is either of type 1 or 3. The proof follow the
same lines of the proof of Proposition 3.1. Write P = {yi1 , . . . , yir } ⊆M′ for indices 1� i1 < . . . <
ir �m′. Suppose without loss of generality that G is monochromatic of colour 0, i.e., χ0(XJ)= 0
for every XJ ∈G. Thus, by the definition of χ0 for combs of type 1 and 3, we do not have that
δGir−3

< δGir−2
> δGir−1

. In particular, because XJ is arbitrary, this implies that there are no indices
r − 3� p< q< s�m′ − 1 such that δGp < δGq > δGs . That is, the sequence {δGi }m′−1

i=r−3 has no local
maximum.
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Now the same argument as in Proposition 3.1 gives that there exists an interval M′′ =
{yp, . . . , yq} ⊆M′ such that {δGi }q−1

i=p is monotone and |M′′|� (|M′| − r + 6)/2. By the definition
given in Example 2.5, it follows thatM′′ is a 1-comb.
Case 2: t� r − 1.

In this case XJ is a left comb of type 4 for every XJ ∈G, since |XJ | = |P| + |KJ | = r + t�
2r − 1. Suppose without loss of generality that G is monochromatic of colour 0 and that
ϕt({δGm′ , . . . , δGm′+t−1})= 0. Let u= a(min (M′), max (M′)). Fact 5.4 applied to M′ gives us that
δ(z, ym′+1)= δ(u, ym′+1) for every z ∈M′. In particular, this implies that δ(z, ym′+1)= δGm′ for
every z ∈M′.

Write P = {yi1 , . . . , yir } ⊆M′ with 1� i1 < . . . < ir �m′ and XJ = P ∪KJ =
{yi1 , . . . , yir , ym′ , . . . , ym′+t−1}. Since χ0(XJ)= 0, δ(yij , ym′+1)= δGm′ for every 1� j� r and
ϕt({δGm′ , . . . , δGm′+t−1})+ 1= 1 we obtain by the definition of χ0 for combs of type 4 that the
inequality δGir−3

< δGir−2
> δGir−1

cannot hold. Because XJ is arbitrary, we have that there are no
indices r − 3� p< q< s�m′ − 1 such that δGp < δGq > δGs . Hence, similarly as in Case 1 we find
an intervalM′′ ⊆M′ of size at least (|M′| − r + 6)/2 such thatM′′ is a 1-comb in V ′. �

To finish the proof of Theorem 1.3 we are going to show now that if G is monochromatic with
respect to χ0, then there exists a monochromatic simple (r − 1, 15k

−1/2m1/2, j)-daisy in δ(G)⊆ [N]
with respect to some colouring ϕj+r−1. The proof is split into several cases depending on the
structure of H′ given by Lemma 5.1 and on the possible types of XJ .
Case 1:M′ is a closed interval in V ′.

As usual, we may assume that an edge of G is either a broken comb or a left comb. By
Proposition 6.2, there exists an interval M′′ ⊆M′ of size h= (|M′| − r + 6)/2 such that M′′ is
a 1-comb. Consider the colouring χ0 over the monochromatic subdaisy G′ := G[KJ ∪M′′]⊆G.
As in the proof of Proposition 6.2, we have that either XJ is a broken comb and t = |KJ | = 0 or XJ
is an �-left comb with �� r and M′ <KJ . Write M′′ = {yi1 , . . . , yih} with 1� i1 < . . . < ih <m′,
KJ = {ym′+1, . . . , ym′+t} (if KJ �= ∅) and δGi = δ(yi, yi+1).

Let XJ = P ∪KJ = {x1, . . . , xr} ∪ {ym′+1, . . . , ym′+t} be an arbitrary edge from G′ with P ⊆
(M′′)(r). Note that since M′′ is a 1-comb, then δ(xr−3, xr−2), δ(xr−2, xr−1), δ(xr−1, xr) forms a
monotone sequence. Moreover, as discussed in Proposition 6.2, the comb XJ is of type 1, 3 or 4.
Thus, by the colouring defined in Subsection 3.3, we have χ0(XJ)= ϕr+t−1(δ(XJ)), i.e., the colour
of XJ is determined by its full projection on the levels [N].

Let u= a(min (M′), max (M′)). Note that since M′ is closed, by Fact 5.4 we have that
a(xr , ym′+1)= a(u, ym′+1)= a(ym′ , ym′+1). Consequently, we have that δ(xr, ym′+1)= δGm′ , which
implies that δ(XJ)= {δ(x1, x2), . . . , δ(xr−1, xr)} ∪ {δGm′ , . . . , δGm′+t−1}. Therefore the projection
of all the edges of XJ forms a simple (r − 1, h− 1, t)-daisy D⊆ [N] with universe of petals
δ(M′′) an kernel KD = {δGm′ , . . . , δGm′+t−1} satisfying KD < δ(M′′) (see Figure 17). By the fact
that G′ is monochromatic with respect to χ0, we have that D is a monochromatic simple
(r − 1, h− 1, t)-daisy with respect to the colouring ϕr+t−1. This leads to a contradiction since
h− 1� (m′ − r + 4)/2� 1

5k
−1/2m1/2 for m� 100kr2 and ϕr+t−1 has no monochromatic simple

(r − 1, 15k
−1/2m1/2, t)-daisy.

Case 2: There exists a maximal comb I =A∪ B in V(H′) such thatM′ ⊆ B
We may assume without loss of generality that I =A∪ B is a left comb. Write A=

{y1, . . . , y�}, B0 = B∩K0 = {y�+1, . . . , y�+p}, M′ = {y�+p+1, . . . , y�+p+m′ } and B1 = B∩K1 =
{y�+p+m′+1, . . . , y�+p+m′+t} (as in Figure 18). By Proposition 5.5, V(G)= I and all the edges
XJ =AXJ ∪ BXJ ∈G are maximal left comb of same type with AXJ =A, BXJ = B0 ∪ P ∪ B1 and
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Figure 17. Case 1 of Theorem 6.1.

Figure 18. Auxiliary tree of G in Case 2.

A< B0 < P< B1. In particular, this implies that |BXJ |� r and XJ is of type 3, 4 or 5. We
split the cases depending on the type of XJ . Let δGi = δ(yi, yi+1) for 1� i� �+ p+m′ + t − 1.
For an arbitrary edge XJ ∈G, write XJ = {x1, . . . , x�+p+r+t} with xi = yi for 1� i� �+ p, P =
{x�+p+1, . . . , x�+p+r} ⊆M′ and x�+p+r+i = y�+p+m′+i for 1� i� t and let δXJ

i = δ(xi, xi+1) for
1� i� �+ p+ r + t − 1.
Case 2.1: XJ is of type 3.

Recall that if XJ is of type 3, then |AXJ |� r and r� |XJ | = |AXJ | + |BXJ |� 2r − 2. Because
|BXJ |� r, we obtain that |AXJ |� r − 2. This implies that {xr−1, xr} ⊆ BXJ and consequently
δ
XJ
r−3 > δ

XJ
r−2 > δ

XJ
r−1. Therefore, by the fact that |δ(XJ)|� |δ({x�, . . . , x�+p+r+t})| = p+ r + t� r,

we obtain that χ0(XJ)= ϕ|δ(XJ )|(δ(XJ)).
Note that

δ(XJ)= {δG1 , . . . , δG�+p−1} ∪ {δXJ
�+p, . . . , δ

XJ
�+p+r−1} ∪ {δG�+p+m′ , . . . , δG�+p+m′+t−1}

= δ(A∪ B0)∪ {δXJ
�+p, . . . , δ

XJ
�+p+r−1} ∪ δ({y�+p+m′ } ∪ B1).

Hence, the projection of the edges of G is a simple (r,m′, |δ(A∪ B0)| + t)-daisy with kernel
δ(A∪ B0)∪ δ({y�+p+m′ } ∪ B1) (as in Figure 19). Since G is monochromatic with respect to χ0,
we obtain that δ(G)⊆ [N] is monochromatic with respect to the projection colouring, which is
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Figure 19. Case 2.1 of Theorem 6.1.

a contradiction because any simple (r,m′, |δ(A∪ B0)| + t)-daisy contains a simple (r − 1,m′ −
1, |δ(A∪ B0)| + t + 1)-subdaisy andm′ − 1� 1

5k
−1/2m1/2.

Case 2.2: XJ is of type 4.
If XJ is of type 4, then |AXJ |� r and |XJ | = |AXJ | + |BXJ |� 2r − 1. We split the proof into two

subcases depending on the sequence formed by {δXJ
r−3, δ

XJ
r−2, δ

XJ
r−1}:

Case 2.2.a: Either δXJ
r−3 > δ

XJ
r−2 < δ

XJ
r−1 or δ

XJ
r−3 < δ

XJ
r−2 > δ

XJ
r−1.

Suppose without loss of generality that δXJ
r−3 > δ

XJ
r−2 < δ

XJ
r−1. Hence, by the colouring definition,

we have χ0(XJ)= ϕ�+p+t({δXJ
r , . . . , δXJ

�+p+r+t−1}). Thus, we just need to look at the projection
{δXJ

r , . . . , δXJ
�+p+r+t−1} for every XJ ∈G. Note that δXJ

r−3 > δ
XJ
r−2 < δ

XJ
r−1 implies that |AXJ |� r − 1.

Indeed, by the same argument made in Case 2.1, if |AXJ |� r − 2, then δXJ
r−3 > δ

XJ
r−2 > δ

XJ
r−1, which

is a contradiction. So, it follows that r − 1� |AXJ | = �� r.
Suppose that |AXJ | = r − 1 and B0 = ∅, i.e., �= r − 1, p= 0 andM′ = {yr, . . . , yr+m′−1}. Then

the projection of the relevant part of an edge XJ can be written as

{δXJ
r , . . . , δXJ

�+p+r+t−1} = {δXJ
r . . . . , δXJ

2r−2} ∪ {δGr+m′−1, . . . , δ
G
r+m′+t−2}

= δ(P)∪ {δGr+m′−1, . . . , δ
G
r+m′+t−2},

since δXJ
2r−1+i = δ

XJ
�+p+r+i = δG

�+p+m′+i = δG2r+m′−1+i for 0� i� t − 1. Therefore, the projection
of the edges XJ is a simple (r − 1,m′ − 1, t)-daisy with kernel {δGr+m′−1, . . . , δ

G
r+m′+t−2} (see

Figure 20). Because G is monochromatic under χ0, the projection is also monochromatic under
ϕr+t−1, which is a contradiction.

Now suppose that |AXJ ∪ B0| = �+ p� r. The relevant projection of XJ in this case would be

{δXJ
r , . . . , δXJ

�+p+r+t−1} = {δGr , . . . , δG�+p−1} ∪ {δXJ
�+p, . . . , δ

XJ
�+p+r−1}

∪ {δG�+p+m′ , . . . , δG�+p+m′+t−1},
where the set {δGr , . . . , δG�+p−1} is empty for �+ p= r. Since {δXJ

�+p, . . . , δ
XJ
�+p+r−1} = δ({y�+p} ∪ P),

we obtain that the projection of all edges XJ is a simple (r,m′, �+ p+ t − r)-daisy with kernel
{δGr , . . . , δG�+p−1} ∪ {δG

�+p+m′ , . . . , δG�+p+m′+t−1}. Because every simple (r,m′, �+ p+ t − r)-daisy
contains an (r − 1,m′ − 1, �+ p+ t − r + 1)-daisy and the projection is monochromatic with
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Figure 20. Case 2.2 of Theorem 6.1 when |A| = r− 1.

Figure 21. Case 2.3 of Theorem 6.1.

respect to ϕ�+p+t−1, we obtain a monochromatic simple (r − 1, 15k
−1/2m1/2, �+ p+ t − r +

1)-daisy, which is a contradiction.

Case 2.2.b: Either δXJ
r−3 < δ

XJ
r−2 < δ

XJ
r−1 or δ

XJ
r−3 > δ

XJ
r−2 > δ

XJ
r−1.

In this case we obtain that χ0(XJ)= ϕ|δ(XJ )|(δ(XJ)), i.e., the colouring of χ0 is just the colouring
of the projection of XJ . The proof now follows similarly as in Case 2.1.
Case 2.3: XJ is of type 5.

If XJ is of type 5, then |AXJ |> r and |BXJ | = p+ r + t� r. By the colouring definition, we have
χ0(XJ)= ϕp+r+t({δXJ

� , . . . , δXJ
�+p+r+t−1}). The projection here can be rewritten as

{δXJ
� , . . . , δXJ

�+p+r+t−1} = {δG� , . . . , δG�+p−1} ∪ {δ({y�+p} ∪ P)

∪ {δG�+p+m′ , . . . , δG�+p+m′+t−1}.
Thus, the relevant projection over all edges XJ is a simple (r,m′, p+ t)-daisy with kernel

{δG� , . . . , δG�+p−1} ∪ {δG
�+p+m′ , . . . , δG�+p+m′+t−1} (see Figure 21). Therefore, by the same argument

did in the previous cases, we reach a contradiction since there is no monochromatic simple
(r − 1, 15k

−1/2m1/2, p+ t + 1)-daisy in the colouring ϕp+r+t . �
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Proof of Theorem 1.3. We will prove by induction on the size of r that there exists an absolute
positive constants c and c′ not depending on k and r such that

Dsmp
r (m, k)= tr−2(c′(5

√
k)2

5−r−4m24−r
)� tr−2(ck2

4−r−2m24−r
)

holds for k� 1 and m� (25k)2r−1. For r = 3, the result follows by the next proposition given
in [5].

Proposition 6.3 ([5], Proposition 1.2). There exists a positive constant c′ not depending on k such
that

D3(m, k)� 2c
′m2

holds for m> 3.

Now suppose that r� 4 and that for any integer � < r the induction hypothesis is satisfied, i.e.,

Dsmp
� (m, k)� t�−2(c′(5

√
k)2

5−�−4m24−�)

form� (25k)2�−1 and k� 1. LetN =min0�i�k−1 D
smp
r−1(

1
5k

−1/2m1/2, i). For i= 0, by equation (2)
we have that

Dsmp
r−1

(
1
5
k−1/2m1/2, 0

)
� Rr−1

(
1
5
k−1/2m1/2

)
� tr−2(c1k−1m)

for a positive constant c1. Sincem� (25k)2r−1, we obtain that 1
5k

−1/2m1/2 � (25k)2r−1−1. Thus, by
induction hypothesis we also have that

Dsmp
r−1

(
1
5
k−1/2m1/2, i

)
� tr−3

(
c′(5

√
i)2

6−r−4
(
1
5
k−1/2m1/2

)25−r)
,

for i� 1. Therefore,

N �min

{
tr−2(c1k−1m), min

1�i�k

{
tr−3

(
c′(5

√
i)2

6−r−4
(
1
5
k−1/2m1/2

)25−r)}}

� tr−3(c′(5
√
k)2

5−r−4m24−r
).

Finally, Theorem 6.1, applied tom� (25k)2r−1 � 100kr2, gives us that

Dsmp
r (m, k)� 2N � tr−2(c′(5

√
k)2

5−r−4m24−r
).
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