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Abstract

Let G be a finite group and u(G) the group of all invertible transformations (polynomial
permutations) of the form x -*• aY xkl a^.-a, x*' ar+1 (at e 6, x runs through G). Continuing
investigations of H. Lausch of groups satisfying u(G) = {x •+ axk b} we show here that this
condition implies that G is the direct product of its {2, 3}-Hall subgroup and its {2, 3}'-Hall
subgroup H where H is nilpotent of class =S 2. Essentially all non-nilpotent groups G of order
2m 3 n are described having the property u{G) = {x -*• ax* b}.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 F 15; secondary 20 B 99.

1. Introduction

In this paper we consider the following problem of H. Lausch. Let G be a finite
group, then the set of all transformations (polynomial functions) of the form

x -*• ax x
kl Oj . . . ar x

kr ar+l

(OiSG, x runs through G) forms a semigroup with identity id: x-*-x. Thus the
invertible transformations (polynomial permutations) form a group u(G). We are
here concerned with groups for which u(G)^{x-*-axkb}. Lausch (1966) showed
that for (o(G), 2) = 1 the condition u(G)^{x-+axkb} implies that G is nilpotent
with Sylow-3-subgroup of class < 3 and Sylow-/>-subgroup (p > 3) of class < 2.
Conversely, if (o(G),6)= 1 and G is nilpotent of class < 2 then all polynomial
permutations are of the form x-+axkb. The case o(G} = 3 n was solved in Kowol
(1978): «(<7) £{*->-ax* ft} holds if and only if G satisfies the second Engel condition
or equivalently if and only if G is a homomorphic image of a subgroup of P x H,
where expP — 3 and H is a 3-group of class < 2.
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190 G. Kowol [2]

Therefore the case 2|o(G) remained unsolved. One result in this direction was
derived in Kowol (1977), where it is shown that G has to be supersolvable. Here
we are able to give a more detailed answer to this problem: First, u(G) £ {x -»• axk b}
implies that G is a direct product of a (supersolvable) group M of order 2m 3 n and
a nilpotent group N,(o(N),6) = 1, of class =$2. Therefore one only has to study
(non-nilpotent) groups of order 2 m 3 n fulfilling the above condition. Under
certain trivial restrictions we can describe all such groups G, namely

G = <a,&i, ....Agio2 = b\ = e,bibi = b^iab^ = e for all i,y>.

All groups considered are finite.

2. General results

First we show a general group theoretical lemma. Let G be a group and H(G)
the subgroup

H(G) = {geG,g~1hg = An(»> for all heG, n(g) suitable in N}.

In Lausch et al. (1966) is proved that H(G) is an abelian characteristic subgroup
of G which contains the centre Z(G) of G.

LEMMA 1. H(G) = E if and only ifZ(G) = E.

PROOF. Because of H(G)~3.Z(G) one direction is trivial. Conversely, let Z(G) = E
and suppose indirectly that there exists a geH(G), g^e. Fix this g. Writing n
instead of n(g) we have g~1hg = hn for all h e G and thus the function x->-xn is
an automorphism of G. Using a result of Baer (1951/52), p. 173, Folgerung 2, we
get hnkn-1 = kn-xhn for all h,keG, which means Jfcn"1eZ(G) for all keG. Now
Z(G) = E implies exp G \ n—1 and thus the relation g-1 hg = hn becomes g-1 hg = h
for all h eG and therefore geZ(G), g^e, a contradiction.

Groups which do not belong to the class considered here, are the following—
a result which we shall need later:

LEMMA 2. Let G be a dihedral group of order o(G) = 2n, (n,2) = 1. Then all
polynomial permutations on G are of the form x-^-ax^b if and only ifn = 3.

PROOF. Under the conditions of Lemma 2 it is shown in Schumacher (1970),
§1.5 that o(u(G)) = 2(wf>(/0)a where <p(ri) denotes Euler's p-function. If we assume,
on the other hand, that u(G)z{x->axkb}, then the proof of Zusatz zu Satz 4 in
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Lausch et al. (1966) implies o(u(G)) = (o(Gjf<p(expG)/o(H(G)). Now

for dihedral groups with (n, 2) = 1, and <p(2n) = <p(n). Furthermore, H(G) = E by
Lemma 1 since Z(G) = E for dihedral groups with («,2)= 1. Using all these
facts we get the equality 2(n<p(n))2 = (2n)2 f>(«) or y>(«) = 2. (n,2) = l implies
the assertion n = 3.

If conversely, G is the dihedral group of order 6, then G is the symmetric group
S3; it is known (see Lausch et al. (1966)) that in this case u{G)
holds.

The next theorem already establishes an important property of certain groups
belonging to our class. For its proof we need the notion of semi-n-abelian groups
(Kowol (1977)). A group G is called semi-n-abelian if for every geG there exists
at least one element a(g)eG, depending only on g, such that

(gh)n = a~Hg )gnhna(g)

for all heG. As shown in Kowol (1977), there is a close connection between
groups satisfying u(G)s{x-*-axkb} and semi-n-abelian groups.

THEOREM 1. Let G be a group such that 3 X °(G) and let u(G) ̂ {x^- axk b}. Then
G is nilpotent.

PROOF. First note that the conditions on G are hereditary to homomorphic
images of G (see Lausch and Nobauer (1973), chapter 5). Using induction, we can
therefore assume indirectly that all homomorphic images of G are nilpotent, G
itself is supersolvable (Satz 18 in Kowol (1977)), but not nilpotent (particularly
2|o(G) by the above-mentioned result of H. Lausch (1966)). Such a group has the
following properties:

(a) Z(G) = E—this is trivial; thus H(G) = Eby Lemma 1;
(b) there exists a unique minimal normal subgroup N of G, which by the super-

solvability of G has order p (>2), where p is the greatest prime divisor of
(KG);

(c) if Mis a maximal non-normal subgroup of G, then r\geaM" = E, evidently;
Ca(N) = Nby Lemma 2, p. 119 of Baer (1957) and (b).

Now u(G)Q{x-+axkb} implies by Lemma 16(b) in Kowol (1977) with m = 3:

(g2h? = glh»g2 and (hg2)3 = g2h3g* for all g,h e G.
8»
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If we compare Lemma 4(d) of Kowol (1977) with these equalities we get
[G4,(?]£Ce(G

s) = Z((?) = £, where Gn = <gn,geG>. Particularly we have
[Nl, G2] = [N, G2] = E or G2£ C^N) = N. Thus exp GjN = 2, o(G) = 2np and G
has elementary abelian Sylow-2-subgroups G2. Now G2 is a maximal subgroup of
G and thus (c) above and Theorem 1, p. 183, of Baer (1957) imply o(G) = 2p and
G is a dihedral group. Since p > 3 by assumption the conditions of Lemma 2 are
satisfied, which shows that not all elements of u(G) are of the form x-+axkb, a
contradiction.

For the next proof we recall the following notations: if G is a group, Gn will
denote an arbitrary Hall w-subgroup (particularly we write Gp for a Sylow-p-
subgroup of G) and if n is a set of primes, IT' means all primes dividing o(G)
which are not elements of n.

THEOREM 2. Let G be a group with u(G)z{x-*axkb}. Then for the hyper centre
ZJG) we have ZJG)^G%z)r—particularly G = G M x 6 { W where G{2j3}. is
nilpotent of class <2.

PROOF. We first prove the second assertion of the theorem. Assume that
Z00(G)2 G{2>3). is already shown. Then by Hilfssatz VI.12.9 in Huppert (1967),
G = HxGp for some subgroup H of G with p > 3. Continuing in this way with H
we get G = G{2)3} x G{2^}.; the last assertion of the theorem then follows by the
theorem of H. Lausch (1966).

To show Zo(6)2Gj2j3)' we can assume by the theorem of Lausch (1966) and
Theorem 1 that 6|o(G/Zoo(G)). Considering G/ZW(G) instead of G we also can
assume without loss of generality that Z(G) = E. Finally we suppose indirectly
that o(G) = 2m3np$».. P?' with r^3, kt>0. We take I = 3p3...pr+2. I satisfies
/<expG and (/,expG)= 1, since / is odd and /=2(mod3). Now G is super-
solvable, thus Gy is a normal subgroup of G. Lemma 16(b) of Kowol (1977)
implies {g2A)' = g*+1 Hg*"1 for all g,heG and Lemma 4(d) of the same paper
further on implies

(1) [Gm+\ G"1"1] <= QtG1) = Z(G) = E.

On the one hand, we get G3 = G ^ s GgT1, since / - 1 = 1 (mod 3), for all Sylow-3-
subgroups of G; on the other hand, by the supersolvability of G we have G^}-"3 G,
thus G{2j3r = (G{2)3}')'

+1g(G2-)'+
1, because l+l^0(modp3...pr) and thus /+1^0

(modexpG{2i3)0. Using both results in (1) we obtain [G3, G{2#y] = -Efor all Sylow-
3-subgroups of G. This means in particular that Gi2Ay normalizes G3. Now
G* = ^3 ̂ {2,3}' by the supersolvability of G. Thus G3 is normal hence characteristic
in G2, and therefore G3<a G. Theorem 1 implies G/G3 is nilpotent (since condition

= {x->axkb} is hereditary to homomorphic images) and so G{2(3)«aG. But
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since G is supersolvable, G^xaG holds too and G = G^ x G^,zy is proved.
Considering G/G^ ^ G{zfly we obtain by using Theorem 1 once more that

is nilpotent and therefore Z(G)^E, in contrast to the assumption.

Theorem 2 allows us to restrict the investigation of groups G with

to the case o{G) = 2m 3n, which will be treated in the next section.

3. The case

We now investigate those groups of order o(G) = 2m 3™ having the property
u(G)^{x^-axkb}. By Satz 18 of Kowol (1977) these groups are necessarily super-
solvable. To get a coherent description of these groups satisfying the above
condition we make the additional assumption Z(G) = E. An example will illustrate
the significance of this restriction; for this we need some results of Scott (1969),
which we recall in the following:

Let p(x) = a1x
kla2...arx

krar+1 be an arbitrary polynomial over G. Then
2j=ifc» = /(/>(*)) is called the length of p(x). Finally, let X(G) be the uniquely
determined positive integer X(G) = minl(q(x)), the minimum taken over all
polynomials q(x) of positive length having the property q(g) = e for all g e G.
Now the following results hold:

(1) Let N be a normal subgroup of G, then (a) X(G/N)\X(G) and (b)
X(G)\ X(G/N) X(N) (Proposition 2.3 of Scott (1969)).

(2) Let G = G1xGi!, then u(G) = u(Gj)xu(G£ if and only if (\(GJ,XG£)\2
(Theorem 2.2 of the same paper).

We now return to the announced example: Let G be a group of order o(G) = 2-3"
satisfying u{G)^{x-^axkb}—it will be shown below that infinitely many (not
nilpotent) groups have this property—and let AT be a 2-group of class ^2 . Evidently
X(K) = 2m, m suitable. To calculate X(G) we choose N<s G of index 2—iV exists
because of the supersolvability of G. Now X(G/N) = 2 and X(N) - 3s, since N
is a 3-group. Thus by the result (1) mentioned above A(G)|2-3*. Therefore
(A(G), X(K)) 12 and we get by (2) u(GxK) = u(G) x u(K).

Now u(G) and u(K) satisfy the condition that all permutation polynomials have
the form x^>axkb by assumption and Satz 4 of Lausch et al. (1966), respectively.
We claim the same for u(GxK); trivially Z(GxK)^E for K^E. Now
{p: x-+axkb,p invertible}£w((7x.flr) and thus

o(u(G x K)) > (o(G x K)f p(exp G x K)/o(H(G x K))
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by Lausch et ah (1966). On the other hand,

o(u(G)) =

and

o{u{K)) = {

Here it is easily seen that ?>(exp GxK) = gj(exp G) • f>(exp K). Furthermore, take an
element heH(GxK), thus h = gk with geG, keK and h~1xh = xr(h) for all
xeGxK. Writing x = yz, yeG, zeKv/e obtain g'1 ygk~xzk = yrzT for all >>eG,
z e ^ which means geH(G) and keH{K) and thus h = gk e H(G) x H(K). It
follows o(#(G x #)) < o(H(G)) • o(H{K)). Combining these formulas we get

o(u(G x K)) = o(u(G) x u(K)) = O(M(G)) • o(u(K))

< (o(G x A:))2 p(exp G x K)/o(H(G x K)).

Consequently we have equality. Thus u(GxK) = {p: x->axkb, p invertible}
actually. Note besides that in this case we have shown also

H{G xK) = H{G) x H(K),

a formula which is not trivial at all.
We thus have proved that one can construct to every group G with Z(G) = E

and u(G)£:{x->-axkb}—we shall see below that such a group necessarily has order
2-3™—new ones satisfying the last condition but having a non-trivial centre.

THEOREM 3. Let G be a group with order o(G) = 2m 3n, m > 2, andu(G)^ {x->axkb}.
Then2\o(Z(G)).

PROOF by induction on n. The case n = 0 is trivial thus we assume n> 1. Since
G is supersolvable there exists a normal subgroup N of G with o(N) = 3. Con-
sidering G/N we obtain by induction that there exists a normal subgroup MjN<i G/N
with o(M/N) = 2. Thus there is a K<\G with o(K) = 6. If, on the one hand, Kis
abelian, then the Sylow-2-subgroup K2 is characteristic in A"-o G. Therefore ^ - a G
and K2^Z(G) trivially.

If, on the other hand, K = S ,̂ the symmetric group, then G = S3xF, since S3

is a complete group (see, for example, p. 278 in Kurosch (1970)). We claim
«(G) = «(iS3) x u(F). For this purpose it suffices to show X(S^) = 2 because of the
result (2) mentioned above. Now 21 A(Sr

3) (6 using the same argument as in the
above example. According to Theorem 3.3 in Scott (1969), 3 divides A(G) if and
only if 31 o(D), where D is a system normalizer of G. But this is not true and so
really \(SJ = 2 and u(G) = u{S^ x u(F). Since G fulfils the condition
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[7] Polynomial permutations on groups 195

so F does, since it is a homomorphic image of G. We get

o{u(G)) =

(expG = expF, since o(F) = 2m-x3n-z (w>2>—if n = 1 we have o(F) = 2m-1Ss2
and 2|o(Z(.F)) = o(Z(G))). On the other hand, we have o(u(S3)) = 72,

o(u(F)) = (0(F))V(exp/-)M^(F)).

The equality u(G) = u(S3) x u(F) thus yields o(H(F)) = 2 • o(H(G)). In particular
2|o(#(.F)). Now #(F) is an abelian characteristic subgroup of/"and therefore

(H (F))2 char H{F) char F o G,

since F is a direct factor of G. We thus have obtained a normal subgroup S of G
of order o(S) = 2', f ̂  1. The supersolvability now implies the existence of T<iG,
o(T) = 2, which means T^

THEOREM 4. Z-e/ G be a group with o(G) = 2-3n and let u(G)
Furthermore, let Z{G) = E. Then the Sylow-3-subgroup G3 of G is abelian.

PROOF. First we show that p{x) = JC2 ex"1 c1 is an element of u(G) for every
ceG3. Assume p(g) = p(h) for g,heG. Now p(x)eu{G3) by Satz 11 of Lausch
et al. (1965), and thus ifg,he G3 it follows g = h. On the other hand, G = (d}G3

with d2 = e and so if geG3 and hedG3 a simple calculation would give deG3, a
contradiction. Therefore we can assume g,he dG3, which means g = dr, h = ds
with r,seG3 and />(#) = />(A). This implies the equation

rdrcr~x = sdscs'1 or equivalently s~1d~1s~1rdr = cs^rc'1.

Multiplying the last equation with r~x s on the left we get

r-1 d ̂ (s-1 r) dr = [s'1 r, c"1],

which means s*1 r is conjugate to [*-1 r, c~x]. First this implies s-1 r e (G3)' = KZ(G3)
and using this we have s^reK^GJ, since every A^Gy is normal (even character-
istic) in G. By induction we derive s^reK^G^) for all ZeN. The nilpotency of
G3 finally gives s~xr = e, and thus s = r what had to be shown.

By assumption u(G)^{x^-axkb) and therefore every function x^-x2cx~1c~1

(ceG3) can be written in the form x-*axkb. Thus we can associate with every
ceG3 elements ac,bceG and an element A:ceN satisfying

p(x) = x2cx~1c1 = acx
k'bc.
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Choosing x=.ewe get bc = cq1, which implies x2cx~1c~1 = a^'a^1. We prove
kc= 1 (mod 6) and ac e G3 for all c e G3. For this we choose N<\ G with o(G/N) = 6
(n = 0, that is o(G) = 2, is impossible since Z(G) = 2? by hypothesis)—such an
iV exists since G is supersolvable. Then Theorem 5.3.3 in Lausch and Nobauer
(1973) yields the equation

where v is the natural homomorphism of G onto G/N. If, on the one hand,
GIN^Z6 (the cyclic group of order 6) we obtain x = xk' and thus kc= 1 (mod 6)
for all ceG3. If, on the other hand, G/N^S3, a simple calculation implies
kc=\ (mod 6) for all ceG3 too—note that v(c)eA3, the alternating group.

To show ac e G3 for all c e G3 we assume that there exists an element ceG3 with
ac = rf/, f eG3—we fix such a c and omit the index c in fc. Choose weZ(G3) with
w3 = e, w#e. We obtain w = dwk'd~x = dwd~x since fcc= 1 (mod 6), which means
weZ(G) = E, a contradiction.

Summarizing we have shown: to every ceG3 there exists an element aceG3 and
an element kceN, fcc=l (mod6) such that

(2) x* ex-1 c"1 = ac x
k° a;\

Next we prove that cace/^(G3) for all ceG3. We put x = y~1 and note that y
runs through all elements of G if x does. We obtain y~*cyc~x = a,.^"*'^1 for
all yeG. On the other hand, inverting equality (2) and putting x = y we get
cyc~xy~^ = acy~k°a~l for all j>eG. Combining both equalities we derive

y~2cyc~x = cyc-1^~2,
that is,

ficyc-1) = (eye-1) y2 for all y e G.

This at once gives ^"(cyc"1) = (eye"1).?20' for arbitrary aeN. Restricting our
considerations to y e G3 we get

(3) yfUcyc-1) = (eje-1)^

for all c,yeG3 and /JeN, since 2a=j3 (mod o(y)) always has a solution (jeG3!).
In particular this means that every element of G3 is commutable with its conjugates,
which by Satz IH.6.5 of Huppert (1967) imphes y(G3)<3 where y(G) denotes the
class of a group G.

Returning to equality (2) we restrict ourselves to the case xeG3. Then we can
use equality (3) to calculate the term x2cx~1c~1:

(3)

= J^C*" 1 ^ 1 = xlxicx-1 c'1)] = x^x-1 c-1 x)]
(3)
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This implies a~1c~1e/7(G3) for every ceG3 and thus ac = c" 1 ^ , hceH(G3), what
we have claimed. Therefore (2) becomes

-1 = c-1hcx
k'h-1c, ceG3, hceH(G£, fcc=l(mod6), xeG.

Putting here x = d(d2 = e) we obtain c2dc~2 = hcdh~x and thus

for every csG3. Now H(G3) char G3char G and so d~xhd (and A"1) is an element
of G3 for every heH(G3). We assert that d~* hdh'1 eZ(G3) for all heH(G3). Let
zeG 3 and h~1zh = zkk with a certain fcfteN. Then evidently hzh~x = z1* where
/AA:A= 1 (modo(G3)). Noting that d~1xdeG3 for all * e G 3 we obtain:

d-1 hd(h~l zh) d-1 h-1 d = d-1 h(dzk" d'1) A"1 d = d~x dzk*» d~l d = z,

which means d~* hdh'1eZ(G3) for all heH(G3).
Concluding the proof of Theorem 4 we note that for every c e G3 we have shown

the existence of an element t;eeZ(G3) such that d^c^dc'2 = gc. This is equivalent
to d~xyd= gyy for all yeG3 since every element ^ e G 3 can be written as c2 for a
certain ce G3. We now get

d-i\y,z]d= frr1i7l*-1£,y£.z = [y,z] for all y,zeG3.

Taking here y e G'3 = AT2(G3) and using y(G3) ^ 3 thus AT3(G3)cZ(G3) we first obtain
[y, z] eZ(G) = E and so K3(G3) = E.Uy is arbitrary in G3 we have [y, z] e G3 £ Z(G3)
and once more Lv,z]eZ(G) = £ for all y,zeG3—that is, G3 is abelian, what we
have claimed.

Now we are able to characterize all groups G with o(G) = 2m-3™, Z(G) = E
having the property «(G) = {x->axkb}.

THEOREM 5. Let G be a group with o(G) = 2m • 3n , Z(G) = E. Then u(G) s{x^- axk b}
if and only ifm = 1, G3 is abelian and exp G3 = 3. In this case G can be described by

G = <d,gv...gs\d
2 = £? = e, gtgj = g;gi,(dgt)

2 = e for all i,j>.

PROOF. If G satisfies u(G)£{x^-axkb} and the assumptions of the theorem,
then by Theorems 3 and 4 we have m = 1, that is G = <^>-G3 with d2 = e and
G3 abelian. We prove d~xgd = g-1 for all g e G3. In fact if d~xgd = h we obtain
£ = d~lhd and therefore d~xghd = hg = gh with g/i e G3 since G3<i G by the super-
solvability of G. Thus gh is centralized by </ and lies therefore in Z(G) = E since
G3 is abelian. We get h = g~l which was claimed.

Suppose now that expG>3. Then we can write G3 = < r ) x ^ where o(z)>3.
The relation d~1gd = g~1 for all geG3 implies iV-aG and we obtain GjN is a
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dihedral group of order 2-3J with /> 1. Now u(G)^{x^-axkb} and so G/N has the
same property, contradicting Lemma 2.

The converse statement of the theorem will not be proved here. The proof is
only technical and runs completely analogous to that given in Schumacher (1970)
for dihedral groups. To give an idea we summarize the method used there. Take
an arbitrary polynomial function p(x) (invertible or not) with coefficients written
in terms of d and gt. Analogously write x in this function in terms of d and gt.
Then use the rules which hold in G to calculate p(x). After a terrible computation
one can derive conditions forp(x) t6 be invertible, which after tedious calculations
yield the exact order of u(G). This order coincides with the number of distinct
invertible polynomial functions of the form x->axkb. It should be mentioned
that all these calculations can only be performed in such simple semi-direct
products as G is.

PROBLEM. We mention that the case o(G) = 2n, u(G)^{x->axkb} still remains
unsolved.
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