
16 
Gluon emission via the 
bremsstrahlung process 

16.1 Introduction 

Bremsstrahlung emission is an inherent property of all gauge field theories. 
It can be understood even within classical mechanics, at least for the soft 
part of the spectrum. Suppose that we consider a charge surrounded by its 
Coulomb field, which necessarily is extended in space outside the charge. 
Then suppose that there is a sudden change in the state of motion of the 
charge itself. The result will be that the outlying field will need some time 
to readjust to the new situation. 

Therefore there will be, as in all other situations of sudden change 
in physics, a brief interlude of compressions and extensions in the field 
before it comes back to a stable state. The ensuing radiation field, to be 
described below, is a bremsstrahlung field. Its properties depend upon the 
way in which the charge distribution is changed. For a single charge with 
a sudden momentum transfer, or for the situation when a charge and 
anticharge suddenly emerge, the bremsstrahlung is essentially of a dipole 
character. This approximation means that the current contains a direction, 
the dipole axis, but the size of the interaction region is neglected. We will 
consider a 'classical' current with these properties. 

Some warning is needed against taking the classical picture too far. We 
have shown in Chapter 2 how the method of virtual quanta describes 
the Coulomb field of a fast-moving charge. In particular we have shown 
that the virtual field quanta have a distribution in rapidity and transverse 
momentum. In this chapter we will meet this again, as the bremsstrahlung 
distribution. 

If we make a measurement on the field that really interacts with one 
of the quanta then the field will change. This will in turn (i.e. causally) 
also affect the current-charge itself. Therefore the bremsstrahlung process 
is difficult to visualise in a classical scenario, i.e. it is not possible to say 
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16.2 The matrix element for dipole emission 303 

whether the field quanta exist before a measurement is made on them or 
whether they come to existence because of the measurement. We will in 
this chapter consider the bremsstrahlung process in some detail. We derive 
the cross section from first principles and express it in different ways in 
order to stress different properties. 

Dipole bremsstrahlung contains coherence conditions, i.e. inside some 
regions the waves stemming from the different parts of the current will 
interfere constructively and in other destructively. In order to take coher­
ence into account it is necessary to carefully preserve gauge invariance. 
If the interference diagrams are all taken into account then it is pos­
sible to use any gauge to evaluate the result. It turns out that in the 
emission of coherent dipole bremsstrahlung there is a close connection 
between the regions with positive interference and the regions allowed 
by energy-momentum conservation. As in many other cases the laws of 
nature ensure consistency. In this case one is evidently not allowed to emit 
more radiation energy than the energy carried by the charge! 

These conditions imply that bremsstrahlung emission may only occur 
inside a chacteristic emission region, which can be expressed in terms of 
the transverse momenta and rapidities of the emitted quanta. In order 
that the conditions should be valid in any Lorentz frame these vari­
ables are most conveniently expressed in terms of Lorentz invariants. The 
bremsstrahlung spectrum from unpolarised charges must be independent 
of the azimuthal angle around the dipole axis in the rest frame. Together 
with the requirements on rapidity and transverse momentum this require­
ment translates into certain allowed conar emission regions in a moving 
frame. As long as one considers the emission from the full dipole these 
regions are easily traced. 

The total bremsstrahlung from the dipole is in many models, e.g. HER­
WIG [94] and JETSET [105], subdivided into contributions from the 
individual charges. This is, of course, an allowed operation as long as one 
avoids double counting, i.e. the total coherence conditions are invoked. We 
will derive a condition referred to as the strong angular ordering condition, 
[59], in this connection. 

We will also indicate that a too-literal application of strong angular 
ordering means that some, usually soft, emission will be displaced in phase 
space. Clever model builders, like the authors of the two Monte Carlo 
models mentioned above, have taken some precautions in this respect. 

16.2 The matrix element for dipole emission 

We will use a semi-classical picture and assume that the electromagnetic 
current j is suddenly changed, e.g. by an external agent. As a simple model 
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for such a current distribution we assume the shape 

j(x, t) = gv(t)<5(x - x(t)), 
dx 

v(t) = dt (t) (16.1 ) 

We also assume that v(t) suddenly changes at t = 0 from v( -<5) = L to 
v(+<5) = v+ so that we are in effect considering the case where a charged 
particle (charge g) moves in a pointlike way along some straight line x(t) 
(with velocity v(t) = dx/dt) and suddenly during a very short time interval 
-<5 < t < +<5 changes to another straight-line orbit. 

The number of quanta, i.e. photons, emitted with energy-momentum 
vector k is as usual given by Fermi's Golden Rule. By means of the 
methods we have used several times before we obtain, cf. Eq. (3.104) 

w IAI2 Vd3k dk 2 2 
dny = ~ I1t = 2V w (2n)3 = (2n)3 <5(k )IAI (16.2) 

The transition matrix element A is given by 

A = J dtd3xj(x, t) . A(x, t) (16.3) 

The vector potential A describes a free photon with polarisation vector e, 
i.e. it corresponds to a transverse wave 

A = eexp(ikx), k = (w,wo), e' 0 = 0 (16.4) 

Note that the normalisation factor 1/ ,J2V w already has been used in 
connection with Eq. (16.2). We will sometimes write the polarisation e as 
a four-vector. 

Under these assumptions we can immediately obtain a result for A, by 
means of an integration over time: 

A = J dtgv . e exp[iw(t - n . x(t))] 

J gV'e 
= . (1 ) id[w(t - n . x(t))] exp[iw(t - n' x(t))] 

lW - n' v 

J . dX . = dtlgTt(t) exp[lw(t - n . x(t))] (16.5) 

where we have neglected a surface term in the integral corresponding to 
times well before or well after the emission and have written 

X(t) = e . v(t) (16.6) 
w(l - n' v(t)) 

In the second line ofEq. (16.5) we have changed the integration variable in 
an obvious way. The dipole approximation corresponds to the assumption 
that the quantity X changes much faster than the exponential in the last 
line of Eq. (16.5) so that we may take the exponential phase factor outside 
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Fig. 16.1. The emission of bremsstrahlung either before or after the encounter 
with an external-momentum-transfer producing agent at time t = O. 

p y k 
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+ 

(a) (b) 

Fig. 16.2. The production of a pair at t = 0 and the ensuing bremsstrahlung 
from each of the charges. 

the integral and write 

.A = exp(i<I>)[X( +b) - X( -b)] (16.7) 

We will from now on ignore the unobservable phase factor exp(i<I». The 
two terms in Eq. (16.7) can be written, incorporating the assumptions on 
v, as 

X(±b) == X± = gk~:;' p(±) = (E±, E± v(±)) (16.8) 

In order to obtain this formula we have multiplied by the energies E_ and 
E+ of the current particle before and after the emission in the numerators 
and denominators of the two terms, respectively. 

The result is rather easy to interpret in terms of Feynman graphs (see 
Figs. 16.1 and 16.2). In Fig. 16.1(a) we see a particle coming in on-shell 
with energy-momentum p_, suddenly changing during the encounter with 
the external agent to a virtual particle with momentum pi = p+ + k, and 
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with propagator proportional to 

1 1 
(p+ + k)2 - m2 2p+k 

(16.9) 

and finally emitting the photon. In Fig. 16.1 (b) the particle emits the 
photon before it meets the external agent, thereby becoming virtual with 
propagator proportional to 

1 -1 
(p_ - k)2 - m2 2p_k 

(16.10) 

Similarly we may interpret Figs. 16.2 as an emission from a produced pair 
with charges ±g and with energy-momenta P±, 

(16.11) 

The appearance of the numerator gEp, i.e. a coupling between the particle 
momentum times the charge and the polarisation vector of the radiated 
photon, corresponds to the QED current-vector-potential interaction in 
Eq (16.3). The four-vector potential A is determined up to a gradient (cf. 
Chapter 2) owing to the freedom to perform local gauge transformations. 
Thus we may make the change (for an arbitrary A) 

e ~ E+A(k)k (16.12) 

It is essential to have a difference between X+ and X- because then 
each term will obtain the same contribution A(k), which vanishes in 
the difference. Thus in order that th~ matrix element Jt should be gauge­
invariant the contributions must occur with a relative minus sign. 

We have evidently obtained the same gauge-invariant result whether we 
imagine a sudden change in the equations of motion of a single particle 
with charge g, or the equally sudden production of a pair of particles 
with charges ±g. In both cases the Coulomb field changes, in the first 
by rebuilding and in the second by starting up. We will come back to 
this picture again in Chapter 20. For now we note that the result that 
the matrix elements of the two processes are the same is a general one in 
relativistic quantum field theory, corresponding to the property of crossing 
symmetry for the S-matrix. 

A final remark at this point is that it is often dangerous to make 
too-literal interpretations of Feynman graph techniques. According to the 
discussion in Chapter 3 the Feynman propagator is completely satisfactory 
with respect to the requirements of Lorentz covariance, causality and the 
quantum conditions put up by the Heisenberg indeterminacy relations. In 
that case, however, the interpretations are well defined. 
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Fig. 16.3. The two different situations when bremsstrahlung y's are emitted either 
(a) from a single charge bouncing back (the Breit frame) or (b) in connection 
with the production of a pair in the ems. 

16.3 The dipole cross section 

1 The dependence on energy and rapidity 

We will provide several forms for the cross section in Eq.(16.2) in order to 
stress different properties of the process. We will start with a description 
in terms of the photon's energy wand rapidity y: 

Y= ~log(:~~:) = ~log(~~~::~) =logcot(O/2) (16.13) 

where 0 is the angle between the dipole (3-)axis and the photon direction 
n. We will for now work in a Lorentz frame in which the two particle 
momenta, p(±), are along the 3-axis, equal in size and oppositely directed. 

This means that when there is a sudden momentum transfer to bring 
the incoming state particle with p(+) to the final state p(_) this momentum 
transfer must be directed oppositely to the particle's momentum so that it 
comes in and bounces back again (in the Breit frame). For the case when a 
pair, (p(+), p(_)), is produced the two particles move in opposite directions 
along the 3-axis (see Fig. 16.3). The rapidities of the two particles will be 
called ±Yo. 

We next choose two independent directions to describe the polarisation 
vector E. For simplicity we choose one of them to be in the plane of n 
and the 3-axis and the other out of this plane. Therefore we will only 
obtain a contribution to the matrix element from the one in the plane. 
That contribution is given by 

1 
E· v(+) = ±tanhyo-h- (16.14) 

- cos Y 

where we have used the formula 

sinO = 2 sin(O/2)cos(O/2) 
sin2( 0 /2) + cos2( 0 /2) 

1 
coshy 

(16.15) 
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(An exercise for the reader: prove that one may chose the two polarisation 
directions in any orthogonal way and still obtain the same result!). 

For the denominators in the matrix element we obtain directly 

w(1 - n· v(±)) = w(1 =+= tanh Yo tanhy) (16.16) 

using a similar trick to express cos e in terms of the rapidity variable y. 
Putting it together we obtain the result of summing over the polarisation 
directions: 

IAI2 = 2 cosh 2yo cosh2 y 
w2 cosh(y + Yo) cosh(y - Yo) 

(16.17) 

The size of a phase-space element is 

dk~(k2) = ~wdwd</> sin ede (16.18) 

where </> is the azimuthal angle (over which we can evidently integrate 
to give 2n) and where the e-dependence easily transforms to a rapidity 
dependence: 

sin ede = dY2 (16.19) 
cosh y 

Therefore the number of y's per unit energy and unit rapidity is 

dn = ( g2 ) dw dy cosh(yo + Yo) 
Y 4n2 w cosh(y + Yo) cosh(y - Yo) (16.20) 

The somewhat fancy way we have used to write the arguments in 
the hyperbolic sine and cosine functions is made in order to exhibit the 
Lorentz invariance of the formula: it only depends upon the rapidity 
differences Yo - (-yo) and y - (±Yo). Therefore it is the same in any 
Lorentz frame obtained by boosting along the dipole axis. 

A closer examination of the rapidity-dependent factor also reveals that 
it is basically a constant for rapidities 

Iyl < IYol (16.21) 

and that it falls off exponentially fast outside this region. Therefore the 
spectrum is, to a good approximation 

dn = (20!) dw dy (16.22) 
Y n w 

where the requirement in Eq. (16.21) must be incorporated. We have 
here as usual introduced the fine structure constant O! = g2 /4n under 
the assumption that we are dealing with electrons and positrons. We will 
shortly come back to the difference when we consider color-charged q­
and q-particles. 
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If we rewrite the energy dependence in terms of a transverse momentum 
dependence for fixed rapidity, 

kl. == cosine = ~ 
coshy 

(16.23) 

we obtain the formula found in connection with the method of virtual 
quanta in Chapter 2: 

(16.24) 

(we may of course also make the change dy ~ dx/x in the same way). 
Consequently, the bremsstrahlung spectrum arising from a change in the 

current distribution is equivalent to the flux of virtual quanta which can 
be used to describe the electromagnetic field around a fast-moving charge. 
Quantum mechanics does not tell you before you measure what you may 
find in your detector! 

2 The invariant cross section for dipole emission 

If we neglect the particle masses we may write for the two denominators 
in Eq. (16.8), using the conventional notation and so calling the positive 
charged particle's energy-momentum p(+) == P1, that of the negative charge 
p(-) == P3 and that of the emitted photon k == P2: 

p(+)k == S~2, p(_)k == S~3 (16.25) 

where we have introduced the squared masses of the particle pairs. 
Squaring the matrix element and summing over the polarisation direc­

tions we obtain for the polarisation sum (cf. Eq. (4.40)) 

k·kl L €j€l = (5jl - ~2 
polarisation 

(16.26) 

There will then be three terms in the squared matrix element. The first 
one can be written as (using y"k2 == co) 

4 [(pt}2 - (P1 . k)2/k2] 1 4E1 
-----"------,.------=- = -- + --st2 co2 COS12 

(16.27) 

The second term is the same but with the obvious exchange of index 
1 ~ 3. The third becomes 

2 8P1P3 4E1 4E3 -+-----­
co2 S12S23 COS12 COS23 

(16.28) 
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so that the total result is 

polarisation 

lu#I2 = 4S13 

S12S23 
(16.29) 

For the phase-space factors we obtain, by fixing the two squared masses 
S12 and S23, 

J 2 n 
dkE>(k )E>(2kpl - sn)E>(2kp3 - S23) = -2 

S13 
(16.30) 

Then the total y-multiplicity is given by 

d _ (~) dS12 ds23 ny -
n S12S23 

(16.31) 

Although the result in Eq. (16.31) is derived by semi-classical methods 
it agrees in detail with the results of a complete quantum mechanical 
calculation for soft y-radiation. But when it comes to hard bremsstrahlung, 
i.e. when S13 ~ S12 andlor S23, there are corrections. The formula used 
for the current, cf. Eq. (16.1), in the calculation of the matrix element 
does not account for the fact that the electrons and positrons are spin 
1/2 particles. There are then, just as in connection with the Rutherford 
scattering matrix elements in section 5.5, also contributions from the spin 
structure. Further, the treatment of the phase space in Eq. (16.2) leading 
to Eq. (16.31) is also too simple. As subsequently we will need a formula 
also for the hard radiation we will briefly exhibit the steps necessary to 
obtain a more precise formula. 

Firstly, the current in Eq. (16.1) should be changed as follows: 

~ pE>(x - x(t)) ~ ~ (p + li x V)E>(x - x(t)) (16.32) 

(we have for simplicity written v == dx(t)/dt = pIE) with li describing the 
spin (cf. section 4.4) of the fermions. It is an axial vector, which means 
that the term li x V corresponds to a proper vector, as is p, and therefore 
it is an 'allowed' contribution to the current in a parity conserving theory. 
Further for a massless fermion the helicity can only take on two values 
(±1/2) corresponding to spin 'along' and 'opposite to' the direction of 
motion and we must sum over the two values in the final squared matrix 
element if we have unpolarised fermions. 

It is evident that this extra contribution will change the result in Eq. 
(16.8) into 

x = _€ _. -=(p_+_ili_X_k_) 
pk 

(16.33) 

(with appropriate indices). When we square the matrix element using this 
expression for the X -factors we obtain extra terms as compared to Eq. 
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(16.29), which, after summing over the photon polarisations according to 
Eq. (16.26), will be 

!?& (+) = (u(±) X k)2 
1 - (p(±)k)2 

!?&2 = -2 [u(+) x k] . [u(_) x k] 
(p(+)k )(p(_)k) 

(the remaining interference terms, as e.g. those proportional to 

p(±) . [u(±) x k] 

(16.34) 

vanish because p(±) x u(±) = 0 as we mentioned above). The result in 
Eq. (16.34) should then be summed over the possible values of u(+); only 
the two quantities Lspins !?&1(±) ~ k]j[P(±)k]2 are nonvanishing (~ith ki 
defined in Eq. (16.39) below). Therefore the result in Eq. (16.29) is changed 
as follows: 

4S13 4S13 2S12 2S23 
--~--+-+- (16.35) 
S12 S23 S12 S23 SS23 SS12 

For soft radiation the last two terms are negligible compared to the first 
term. 

Secondly, the phase-space factor in Eq. (16.2) should be exchanged 
for the three-particle phase space we obtained in Eq. (4.14) (with the 
modification that we have defined this phase space with a factor (2n)3 
too large according to Eq. (4.4)). Putting it all together (with the right 
numerical factors) and introducing the squared pair-masses in terms of 
the xrvariables: 

2E· 
X - } 

j - JS' (16.36) 

For example, we have for S12 

S12 = (PI + k)2 = (Ptot - P3)2 = S - 2PtotP3 = s(1- X3) (16.37) 

We obtain after straightforward algebra (note that 2(1- X2) + (1- xt}2 + 
(1 - X3)2 = xi + x~) 

(16.38) 

The introduction of the fermion spin means that we exchange 1 for 
(xi + x~)/2 but the new factor is in general close to unity because of the 
two pole factors in Eq. (16.38). In section 17.7, when we consider collinear 
bremsstrahlung, we will discuss the results of this modification. 

We end this subsection with a few comments. We firstly note that, while 
the spin (for massless particles) is along (or opposite to) the direction of 
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motion, the polarisation of the current, i.e. the added cross-product in Eq. 
(16.33), is transverse to this direction. This is the same behaviour as for 
the electromagnetic fields. 

A vector product a x b is not a true vector but instead describes the 
components of an antisymmetric tensor (which has the same transforma­
tion properties with respect to rotations as a vector but is different with 
respect to space reflections). There is a single 3-tensor ejlm = ±1, depend­
ing upon whether the permutation jIm among the numbers 123 is even 
or odd (e.g. 231 is even and 213 is odd); the axial vector (a x b)j can be 
written as ejlmalbm with a sum over repeated indices. Actually this latter 
quantity can also be described as the Jl = 0 (the 'time') component of the 
antisymmetric 4-tensor e JlV(J},., which is defined in the same way in terms 
of the four indices 0123. It is interesting to note that the relationship to 
the electromagnetic fields can in this way be taken even further because 
the polarisation term of the current is then eOjlm(J/ V m. The polarisation 
of the electromagnetic field is conventionally taken along the electric field 
~j; this is likewise the OJ-component of the field tensor. 

The use of an axial vector to describe the polarisation also means some 
loss of gauge and Lorentz invariance (although these symmetries may be 
restored by a more elaborate formalism). But while the current term based 
upon the true vector (p,E) ex (dx(t)/dt, l)b(x - x(t) may easily be seen to 
fulfil a Lorentz-invariant current conservation requirement, Vj + a jo/ at = 
0, the added axial vector term obeys only space-current conservation 
Vj = 0 as well as the corresponding invariance under 'transverse' gauge 
transforms e . j == (e + ikA) . j. Nevertheless we may use the shape of the 
current we have introduced above to derive the tensors (Tl + T2)Jlv ex 
Lspins (01 jJl lkl,k2) (kl,k21 jv 10), which we discussed in section 4.4. (What 
are the necessary normalisation factors?) 

3 The invariant transverse momentum, the rapidity and phase space 

It is useful to introduce the invariant transverse momentum and rapidity 
for the photon, 

2 S12 S23_ 
k J.. = -- = s(l - xd(l - X3) 

s 

y = ! log (1 - Xl) 
2 1- X3 

(16.39) 

in terms of which we may obtain the inclusive photon multiplicity distri­
bution from Eq. (16.31), 

(16.40) 
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- log W 10gW 

Fig. 16.4. The phase space for photon emission in terms of the logarithmic 
variables K and y described in the text. 

i.e. the same result as in Eq. (16.24). This time it is, however, expressed in 
terms of invariants. 

The total phase space is, in terms of the invariants kl. and y (we will 
from now on only use the variables in that sense so we drop the word 
invariant), 

s ~ S12 + S23 = 2kl...JS cosh y 

which can be conveniently approximated by 

Iyl ::;; (L - K)/2 

(16.41) 

(16.42) 

with K = log(k]jso) and L == K(ki = s). Here So is some scale which is 
not determined by our present considerations. We note that the phase 
space has in this way changed to the interior of a triangle (Fig. 16.4). The 
meaning of the cross section is evidently now that there is a density of 
photons given by rxln inside the triangular phase space because the cross 
section is dny = rxdKdy I n. 

We will use this picture extensively in the following. The energy­
momentum conservation requirement in Eqs. (16.41) and (16.42) is ev­
idently very similar to the results from the coherence calculations in Eq. 
(16.21). In that case we found that radiation is only allowed inside a 
certain (pseudo )rapidity region determined by the rapidity of the emitters. 

The result in Eq. (16.41) is valid for massless emitters. For massive ones, 
there should be a region, close to the rapidity endpoints for the massless 
case, where there is suppression for photon emission. Although we will 
not consider this situation we note that dipole emission is only allowed 
within an angular cone which is characteristic for the dipole. 

It is worthwhile to note that the kl. -variable in Eq. (16.39), although 
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defined in a rather abstract way, is nevertheless a reasonable measure 
of the 'true' transverse momentum of the photon with respect to some 
dynamical axis. This is in particular so if the photon is soft. We will now 
show that there is always a direction e such that the transverse component 
of the ems momentum of the y with respect to e is equal to kl... If the angle 
between the y's momentum direction and e is e we obtain the requirement 

Ei sin2 e = ki = s(l - xt}(l - X3) 

Using the relation in Eq. (16.36) to express X2 we obtain 

2 e 4(1 - xt}(l - X3) 
tan = -----'------,-----'---'---~-----'--

(Xl - X3)2 

(16.43) 

(16.44 ) 

This means that e.g. when the electron and positron afterwards have the 
same energies then the direction of e is at an angle n/2 to the y's direction 
and the whole y-momentum is transverse to e. Note, however, that in 
order to conserve momentum the charged emitters will afterwards also 
move at an angle to the e-axis (for the recoil problems in the emissions, 
cf. section 17.8). 

We have in Chapter 4 described the changes necessary when we go from 
QED to QCD. The number of color configurations which contribute for 
a color-(3, 3) dipole is Nc -1/ Nc with Nc = 3 the number of colors. There 
is also the unfortunate definition of the QCD charge to take into account 
so that we should change rxQED to (Nc - 1/ Nc)rxs/2; all in all this leads to 

(16.45) 

16.4 The antenna pattern of dipole emission 

In this section we will describe the physics corresponding to the strong 
angular ordering condition [59]. We assume that the dipole is boosted 
transversely to its axis as described by Figs. 16.5(b) and (c). This means 
that the angle between the directions of motion of the charges is no longer 
n as in the rest frame but 2tp, with v = cos tp as the relative velocity of 
the frames. 

From Eqs. (16.2) and (16.29) we may obtain an angular emission pattern, 
which is called the antenna pattern in [27]. When this is expressed in 
angular variables (or rather in the scalar products betwen unit vectors) we 
obtain, using e.g. S12 = 2E1k(1- n1 . n2), the following angular dependence 
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(a) (b) (c) 

Fig. 16.5. (a) The angular emittance cones around the partons i and j and the 
region 0 with no emission according to the strong angular condition. (b) A gluon 
with a certain kt is emitted at an angle nl2 - () from a dipole in its ems. (c) The 
system is boosted to a frame with velocity v = cos 1p, for the notation see the text. 

on the gluon direction (note dkb+(k2) = kdk sin e ded¢ /2): 

a13 
Wl,3(O) =­

ala2 
aij = 1 - 0i . OJ, ai2 == ai, i = 1,3 (16.46) 

The angular distribution W1,3 contains a dependence both on the relative 
angle between the two emitters 1 and 3, to be called e13 , and on the polar 
and azimuthal angles e and ¢ of the emitted g, see Fig. 16.5(a). It can be 
written as a sum of two terms: 

(16.47) 

We can calculate the polar angle e with respect to either the i-direction or 
the j-direction; an index on e will indicate which one we are using. For 
the expression Ui,j we note that if we fix ei and eij the only azimuthal 
angular dependence is that of the second term in the bracket. 

The numerator of the second term is 2[sin2(eij/2) - sin2(ed2)]. This 
provides a positive or negative contribution depending upon whether ei 

is smaller or larger than eij. It is useful for the reader to check for 
himself/herself that the partitioning is done in such a way that this 
numerator will have no pole in Ui,j if e j = O. 

The expression for Ui,j is therefore only large when the emitted g is 
close in angle to the parton i. The same is evidently also valid for the 
corresponding term Uj,i with respect to the parton j. 
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One may integrate Ui,j over all values of ¢ and obtain 

(16.48) 

This means that the average emission from the term Ui,j is the same as if 
there had only been emission from the parton i inside a cone such that the 
following angular relation in the E)-distribution is fulfilled: 

e·· > e· IJ - I (16.49) 

Thus the two terms in Ui,j turn out to give equal and opposite contributions 
outside this 'mother' cone. This makes it possible to interpret the dipole 
emission formula as terms of independent emission from either the i- or 
the j-parton. 

We will now investigate the way in which such an angular condition 
works. We consider Fig. 16.5 and first concentrate on the condition for 
emission from the parton i. The condition in Eq. (16.49) then means that 
i can emit inside the upper angular cone around the direction i. Similarly 
j can emit inside the lower angular cone around j. 

Therefore both can emit in the region between them and neither can 
emit in the region indexed O. Due to the partitioning above we also know 
that the amount which is lost inside the region 0 is gained in between the 
partons. Thus a literal use of the angular condition means that some, in 
general soft, gluon radiation is 'misplaced' in phase space. 

In order to inform ourselves about the size of this problem we will 
make the following calculation. We assume that in its rest frame a dipole 
emits a gluon at an angle nj2-e to the dipole axis; see Fig. 16.5(b). Then 
in a coordinate system in which the dipole moves with velocity v = cos lp 
transverse to its axis and at an azimuthal angle n with respect to the 
gluon, (see Fig. 16.5(c)) all those gluons with e ~ emax, where 

e cos lp - cos 3lp 
cos max = ----'----'--

1 - cos lp cos 3lp 
(16.50) 

will be forbidden by the strong angular condition. 
This means that when v -+ 1 then emax -+ 0.64 while emax = 0 for 

v = 0.5. The strong angular condition is an inclusive statement in the sense 
that if all possible gluon emissions are allowed then the errors compensate. 
In a Monte Carlo simulation of single events the errors can be appreciable 
event for event, however. 

A clever model builder can to some extent compensate for the error. 
In particular the most popular Monte Carlo models on the market, 
JETSET [105], HERWIG [94] and ARIADNE [92] implement the full 
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dipole matrix element in the first emission (in different ways). While 
in ARIADNE emission continues according to the dipole formula, in 
the other programs the conar conditions are applied later on in the 
cascades. If the conar conditions are neglected, however, then there will 
be considerable double-counting and far too many gluons emitted. 
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