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SUMMARY

Mycobacterium bovis causes bovine tuberculosis (bTB) in many mammals including cattle, deer
and brushtail possum. The aim of this study was to estimate the strength of association, using
model selection (AICc) regression analyses, between the proportion of cattle and farmed deer
herds with bTB in New Zealand and annual costs of TB control, namely disease control in
livestock, in wildlife or in a combination of the two. There was more support for curved
(concave up) than linear models which related the proportion of cattle and farmed deer herds
with bTB to the annual control costs. The curved, concave-up, best-fitting relationships showed
diminishing returns with no positive asymptote and implied TB eradication is feasible in
New Zealand.

Key words: Bovine tuberculosis, brushtail possum, diminishing returns, disease control.

INTRODUCTION

Many diseases occur in livestock and wildlife [1].
Bovine tuberculosis (bTB) caused by Mycobacterium
bovis is such a disease. The disease occurs in many
parts of the world including New Zealand where
bTB occurs in cattle and in many wildlife [2] such as
brushtail possum (Trichosurus vulpecula) [3], red deer
(Cervus elaphus) [4] and ferrets (Mustela furo) [5].
Modelling has estimated a threshold possum density
for tuberculosis (TB) eradication [6] implying reducing
and keeping possum density below that threshold den-
sity would lead to TB eradication from possum
populations.

There is evidence of association of bTB in livestock
and wildlife species, such as in cattle and brushtail
possum in New Zealand [7, 8] and in cattle and bad-
gers (Meles meles) in Britain [9, 10]. In New Zealand

and Britain associations between bTB in cattle and
in wildlife have been used as a basis for wildlife con-
trol, in order to reduce or remove TB infection
from cattle herds. Relationships between wildlife dis-
ease control and livestock disease were considered
possible [11].

Control of TB in New Zealand is coordinated
nationally [2] with the then aim of reducing the period
prevalence of herds with TB to less than 0·2% on an
annual basis for 3 years [12] and more recently to eradi-
cate TB from wild animals and have the period preva-
lence in herds below 0·4% during 2011–2026 [13].
The proportion of cattle plus farmed deer herds with
TB, estimated as point prevalence, has declined in
recent years (Fig. 1a). Each year money is spent
on controlling TB in cattle and farmed deer herds
such as by herd testing, culling of reactors, tracing
of reactors and movement controls (Fig. 1b), and
also on controlling wild animal vectors, especially
brushtail possum populations (Fig. 1c). The possi-
bility of re-infection of cattle herds by movement of
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infected livestock can occur, although movement con-
trols reduce such a possibility. Such movement and
re-infection was modelled [14, 15].

In production economics the principle of diminish-
ing returns [16, 17] states, as applied here, that for

each unit increase in inputs (annual costs) there is a
progressively smaller change in the response (herds
with TB). Ongoing possum control in a part of New
Zealand has been shown to be associated with re-
ductions in TB in livestock [8] in a manner consistent
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Fig. 1. (a) Trends in the proportion of cattle and farmed deer herds infected with bovine tuberculosis (bTB) at 30 June
each year (point prevalence) in New Zealand. (b) Annual costs (NZ$M) of disease control in cattle and deer herds in New
Zealand. (c) Annual costs (NZ$M) of possum (vector) control in New Zealand.
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with diminishing returns. Similarly, ongoing control
of TB in white-tailed deer (Odocoileus virginianus) in
Michigan [18] has shown a pattern consistent with
diminishing returns. The principle has implications
for the long-term success of efforts at TB eradication,
namely for the duration and cumulative cost. Dimin-
ishing returns with an asymptote above zero suggests
that as control costs increase there may be no change
in the response variable, i.e. the proportion of herds
with bTB. Hence the control costs would be wasted
if the aim was eradication.

The aim of this study is to evaluate evidence of
diminishing returns and of an asymptotic relationship
to provide guidance on whether bTB eradication is
feasible relative to 1-year costs of TB control; a posi-
tive asymptote implies eradication is not feasible. The
results should aid effective TB control.

METHODS

Data on the cattle and farmed deer herds classified
by the Animal Health Board (AHB) as infected with
bTB at 30 June each year from 1995 to 2008 inclusive
were used to estimate the proportion of herds with TB.
Data on annual costs of disease control in cattle and
farmed deer herds are associated with herd testing,
costs of movement control, investigation of cattle
and deer herd breakdowns and administration. Data
on the costs of each of these components of disease
control were not available so the costs are pooled.
Individual cattle or deer that are positive reactors on
skin test are culled (removed) from a herd. Annual
costs of control of wildlife, mainly brushtail possum,
are associated with extensive control operations some
of which use sodium monofluoroacetate (compound
1080), pest control research, pest monitoring, and
pest control administration. Further details are pro-
vided in annual reports of the Animal Health Board
of New Zealand [12, 13]. Unless otherwise stated, all
dollars herein are in millions of New Zealand dollars
(NZ$M). Aspects of the economic analysis are recog-
nized here as simplistic, as there are no adjustments to
costs associated with inflation, no discounting of
future costs and no explicit lagged effects.

The analysis estimated the strength of evidence for
each of six models, as alternative hypotheses [19], of
the proportion of cattle and farmed deer herds with
TB relative to annual disease control costs and annual
possum control costs when analysed singularly or in
combination. Hence, these analyses estimated the
effects of 1 year’s control. The analysis used Akaike’s

Information Criterion corrected for sample size
(AICc) and Akaike weights (ωi) for assessing relative
strength of evidence [20].

Equilibrium linear and curved models of the re-
lationships (Fig. 2) between the proportion (P) of cattle
plus farmed deer herds with TB at 30 June and annual
disease (D) and possum (V) control costs were derived
(Table 1). The linear model could be stated as a simple
statistical model but was derived here from the cattle-
possum TB model [14]. That TB model described dis-
ease dynamics in two areas, with transmission from
wildlife to livestock in one area. The transmission
rate from wildlife to livestock was described by par-
ameter k. In the present study the proportion (P) of
herds with TB was assumed to be linearly related
to the transmission rate of TB from wildlife (k); P=
c+dk. If the transmission rate from wildlife hosts, k,
was related to annual possum (vector) control costs
(V) so that k= f+gV, then after substitution and re-
arrangement it can be shown that P=a+bV with b
expected to be negative. This is model 1 in the present
study (Table 1). Model 1 is simplistic as it does not
incorporate diminishing returns or have an asymptote.

The curved models had to satisfy two criteria. First,
the curved models must allow for diminishing returns
(Fig. 2), which are an expected pattern in production
economics [16, 17]. The diminishing returns could
occur if disease control starts in locations that are
easier and more efficient for disease control and over
time control moves or extends to locations wherein
control is less effective. Moreover, the sensitivity of
TB testing in individual livestock is 0·67 [15], 0·8
[21] to 0·85 [2], although it would be expected to be
higher if testing occurred at the level of herds, whereas
it currently occurs for all individuals in a herd being
tested. As a result, it may take repeated testing and
several years to remove all infected livestock from
an area. The second criterion was that the curved
models must allow for the possibility of an asymptote
above zero (Fig. 2) which infers that TB eradication is
not feasible. Such an asymptote could occur if high
levels of herd re-infection from other herds occurred,
and such re-infection was included in bTB models
[14, 15].

Model 2 was also derived from the cattle-possum
TB model [14] and the badger TB model [9]. In the
cattle-possum model it is assumed that the trans-
mission rate from wildlife hosts, k, was related to
annual control costs (V) in a power function so that
k=gVh. The shape of the relationship is determined
by the shape parameter, h. After substitution and
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rearrangement it can be shown that P=a+b/V when
b<0 and h=−1. The equation shows diminishing
returns to an asymptote (a) (Table 1). This is model
2 in the present study (Table 1). Other models
(Table 1) were similarly derived for disease control
costs (D) and the sum of vector and disease costs
(V+D). The cattle-badger model was used as follows.
Equations (13) and (14) in the two-host model [9] can
be solved to show that the equilibrium proportion of
infectious cattle is inversely proportional to both the
rate of culling infectious cattle (hc) and to the rate of
culling wildlife (gw badgers). Hence negative, curved
(concave-up) relationships are predicted between the
proportion of cattle that are infectious and each of

the culling rates and these curves would demonstrate
diminishing returns. It is assumed here that the annual
costs of livestock control (D) are positively related to
the livestock culling rate (hc) and the annual costs of
possum (vector) control (V) are positively related to
the wildlife culling rate (gw).

Models (Table 1, Fig. 2) showed linear (models 1, 3,
5) or curved (models 2, 4, 6) relationships between
annual possum control costs (V, models 1 and 2), an-
nual disease control costs (D, models 3 and 4), and
combinations thereof (V+D, models 5, 6). Parameters
were estimated by linear and nonlinear least squares
regression using SAS [22]. Examination of regression
residuals occurred to assess evidence of systematic
bias as can occur when data depart from the assump-
tions of regression analysis. Parameter estimates of
power models of a curved relationship between the
proportion of cattle plus deer herds with TB and
curved annual possum costs and curved annual dis-
ease costs could not be estimated by the SAS software
so are not discussed. The curved models evaluated in
this study are recognized as simplistic as they describe
monotonic, not complex, curves. The latter with
points of inflection were reported in trends in bTB
control in a model buffalo (Bubalus bubalis) popu-
lation [23].

RESULTS

There was most support (ω6=0·551, R2=0·843) for
model 6 which related the proportion of cattle and

Table 1. Models of the equilibrium relationships
between the proportion (P) of cattle plus farmed deer
herds with bovine TB at 30 June each year and annual
possum (V) control costs and annual disease (D)
control costs during the previous 12 months

Number Model
Diminishing
returns? Asymptote?

1 P=a+bV No No
2 P=a+(b/V) Yes Yes (a)
3 P=a+bD No No
4 P=a+(b/D) Yes Yes (a)
5 P=a+b(V+D) No No
6 P=a+(b/(V+D)) Yes Yes (a)

Models 2, 4 and 6 assume that control costs are greater than
0 and show diminishing returns and an asymptote (a).
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Fig. 2. The hypothetical relationships between the proportion of cattle plus farmed deer herds with bovine tuberculosis
(bTB) in New Zealand at 30 June each year and annual costs of TB control.
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farmed deer herds with bTB (P) to the sum of annual
possum control and annual livestock disease control
costs (V+D) in a curved (concave-up) relationship
(Table 2, Fig. 3). However Figure 3 shows evidence
of systematic bias in regression residuals with all
data points below the fitted regression line at inter-
mediate levels ($33–70M) of costs. Model 2 regression
had residuals scattered above and below the fitted line
and so was accepted as the model with more support.
Model 2 had a slightly lower Akaike weight (ω2=
0·339) and a high coefficient of determination (R2=
0·830) and related the proportion of cattle and deer
herds with bTB to annual possum control in a curved
(concave-up) relationship (Table 2, Fig. 4). The
curved relationships (models 2, 4, 6) had virtually all
the support (Σωi=0·952).

Model 2 provides clear evidence of diminishing
returns (Fig. 4). Each curved model (models 2, 4, 6)
did not estimate an asymptote above zero (Table 2),
implying TB eradication was feasible. Model 2 esti-
mated that the proportion of cattle and deer herds

with TB was zero when the annual possum control
costs were $76·7M. Note this is based on solving
the fitted equation for the intercept on the x axis
(i.e. when P=zero); technically eradication in the
long term would occur when the proportion of herds
was equivalent to less than one herd (and remained
less than one herd) in the total number of herds and
so the costs would be slightly lower.

DISCUSSION

The ongoing control of bTB in livestock in New
Zealand is considered to require disease control in
livestock and wildlife [2]. The strength of evidence
analysis presented here suggests the proportion of
herds with TB is related more to annual costs of pos-
sum control than annual livestock disease control.
Model selection analysis of the 1-year possum control
costs estimated $77M for TB eradication. The results
and their interpretation are tentative as it is recognized
they are from an observational, not experimental,

Table 2. Measures of (a) model fit and (b) parameter estimates (and 95% CIs) for models of the proportion
of cattle plus farmed deer herds with bovine TB (P) and annual possum control costs (V) and annual disease
control costs (D)

(a) Model fit

No. Shape Costs RSS K ΔAICc ωi R2

1 L V 0·00041 3 6·810 0·018 0·745
2 C V 0·00027 3 0·973 0·339 0·830
3 L D 0·00044 3 7·982 0·010 0·722
4 C D 0·00034 3 4·387 0·062 0·786
5 L V+D 0·00040 3 6·630 0·020 0·748
6 C V+D 0·00025 3 0 0·551 0·843

(b) Parameter estimates

No. a (95% CI) b (95% CI)

1 0·0339 (0·0249 to 0·0428) −0·0006 (−0·0008 to −0·0004)
2 −0·0077 (−0·0138 to −0·0016) 0·5906 (0·4234 to 0·7578)

[−0·0161 to 0·0007]
3 0·0696 (0·0466 to 0·0925) −0·0038 (−0·0053 to −0·0023)
4 −0·0472 (−0·0667 to −0·0277) 0·8703 (0·5841 to 1·1565)

[−0·0742 to −0·0202]
5 0·0389 (0·0283 to 0·0494) −0·0005 (−0·0007 to −0·0003)
6 −0·0139 (−0·0213 to −0·0065) 1·1857 (0·8635 to 1·5079)

[−0·0241 to −0·0037]

L, Linear; C, curved relationships; RSS, residual sum of squares; K, number of parameters; ΔAICc, difference from the best
model in Akaike’s Information Criterion corrected for sample size; ωi, Akaike weight of model i; R2, coefficient of
determination.
The 99% CIs of parameter a of models 2, 4 and 6 are also shown in square brackets. The model with the lowest AICc is shown
in bold.
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study over years and involve some extrapolation. The
estimated costs are preliminary as they do not correct
for inflation or discounting of future costs, and do not
explicitly include any lagged effects. A modelling
evaluation of TB control discounted future costs at
10% per year [24].

Diminishing returns [16, 17] was demonstrated
by the curved model between a measure of herds
with TB and annual control costs (Fig. 4). It was
demonstrated here that diminishing returns could be

derived from the cattle-possum TB model [14] and
the cattle-badger model [9]. The results complement
those of [8] and [18] that imply diminishing returns
in bTB control. Relationships between wildlife disease
control and livestock disease were considered possible
[11] and the present study reports such a relationship
(Fig. 4). The management implication is that current
TB control efforts can be expected to show progress-
ively smaller changes in TB prevalence for each unit
increase in control costs.
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Fig. 3. The proportion of cattle plus farmed deer herds with bovine tuberculosis (bTB) at 30 June each year in New
Zealand and the sum of the annual possum plus disease control costs (NZ$M) for 1995–2008 inclusive. The fitted
regression is P=−0·0139+ (1·1857/(V+D)).
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Fig. 4. The proportion of cattle plus deer herds with bovine tuberculosis (bTB) at 30 June each year in New Zealand and
the annual possum control costs (NZ$M) for 1995–2008 inclusive. The fitted regression is P=−0·0077+ (0·5906/V).
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The national eradication of TB is possible as shown
by the success achieved in Australia [25]. Eradication
of TB in New Zealand may not be possible if at least
one of several things occur. (1) If control costs stay at
current levels, ∼$75M, or decrease over time eradica-
tion may not occur. (2) If efficiency declines over time,
as may occur with boredom (lack of concentration),
resistance of possums to the poison (compound
1080), or sabotage. Implementing a ‘smart’ payment
system with increasing benefits (payments) for control
over time, may lessen the likelihood of declining con-
centration or interest. (3) Annual TB control could be
disrupted by a severe earthquake, as occurs occasion-
ally in New Zealand and this could disrupt testing and
culling of animals, analogous to the disruption to TB
testing and control in Britain during the
foot-and-mouth disease outbreak in 2001 [26].

The analysis recognizes uncertainty in the support
for any one model. Different managers can respond
differently to such uncertainty and variation in cost
estimates. A risk-averse manager has a preference
for safety [27] so would probably choose the combi-
nation of costs that minimizes TB prevalence. The
estimated costs would then be very high. A
risk-neutral manager would probably use the esti-
mates based on mean costs, and a risk-seeking man-
ager would probably use the estimates based on the
lower annual costs. The risk-seeker would assume
the lowest costs because of optimism that small costs
would achieve the aim of TB eradication.

The analyses reported here do not attempt to evalu-
ate alternative possum and disease control methods.
These analyses should be updated periodically to
allow revision of estimated effects of livestock and
vector control for TB eradication.
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