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Quasi-elementary contractions of Fano manifolds

Cinzia Casagrande

Abstract

Let X be a smooth complex Fano variety. We study ‘quasi-elementary’ contractions of
fiber type of X, which are a natural generalization of elementary contractions of fiber
type. If f : X → Y is such a contraction, then the Picard numbers satisfy ρX � ρY + ρF ,
where F is a general fiber of f . We show that, if dimY � 3 and ρY � 4, then Y is smooth
and Fano; if moreover ρY � 6, then X is a product. This yields sharp bounds on ρX when
dimX = 4 and X has a quasi-elementary contraction of fiber type, and other applications
in higher dimensions.
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1. Introduction

A Fano manifold is a smooth complex projective variety X with ample anticanonical class. These
varieties have a rich structure, and play an important role in higher dimensional geometry from the
viewpoint of Mori theory, because they appear as fibers of Mori contractions of fiber type of smooth
projective varieties.

After [Cam92, KMM92] we know that X is rationally connected and simply connected. More-
over, smooth Fano varieties of dimension n form a limited family, so they have only a finite number
of possible topological types. However, in general, very little is known about their topological in-
variants.

In particular, we consider here the second Betti number b2 of X, which coincides with the Picard
number ρX .

Recall that a Del Pezzo surface S has ρS � 9. Fano 3-folds have been classified by Iskovskikh,
Mori, and Mukai (see [IP99] and references therein). Thus we know that a Fano 3-fold X has
ρX � 10. In fact, more is true: as soon as ρX � 6, X is a product of a Del Pezzo surface with P1

(see [MM81, Theorem 2]).
Starting from dimension 4, we do not have a bound on ρX . The known examples with largest

Picard number are just products of Del Pezzo surfaces with Picard number 9, which gives ρX = 9
2n.
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C. Casagrande

Optimistically, one could think that Fano varieties with large Picard number are simpler, maybe
a product of lower dimensional varieties. This would yield a linear bound (in the dimension n)
for ρX ; in fact one could expect precisely ρX � 9

2n (see [Deb03, p. 122]).
This is actually what happens in the toric case: ifX is a smooth toric Fano variety of dimension n,

then ρX � 2n, and equality holds if and only if n is even and X is (S)n/2, S the blow-up of P2 in
three non-collinear points (see [Cas06]).

Let us also recall that there is a class of Fano varieties for which a stronger linear bound on ρX
is expected. These are Fano varieties that do not contain curves of anticanonical degree 1, e.g. Fano
varieties of index at least 2. In this case it is expected that ρX � n, with equality only for (P1)n.
This is a generalization of a conjecture by Mukai, and has been proved in dimension n � 5 and in
the toric case, see [BCDD03, ACO04, Cas06].

A strategy in this direction is to look for a contraction f : X → Y of fiber type on X, and try
to bound ρX in terms of ρY and ρF , where F is a general fiber. There are (at least) two difficulties
in this approach. First, Y may not be Fano, so that we do not know how to bound ρY . Second,
surely F is Fano, but in general ρF is much smaller than ρX − ρY (for instance, any Del Pezzo
surface S admits a contraction S → P1 with general fiber P1). This problem could be avoided by
considering only elementary contractions of fiber type, for which ρX = 1 + ρY . However, this is not
very satisfactory, because we do not necessarily expect a Fano variety with large Picard number to
have an elementary contraction of fiber type (think of a product of Del Pezzo surfaces).

This was our motivation to introduce the notion of ‘quasi-elementary’ contraction of fiber type.
This is a contraction of fiber type as above, such that, if i : F ↪→ X is a general fiber, then the image
of i∗ : N1(F ) → N1(X) contains all numerical classes of curves contracted by f (see Definition 3.1).
This implies that ρX � ρY + ρF . In particular, any elementary contraction of fiber type is quasi-
elementary. If a contraction is a smooth morphism (such as a projection Y × F → Y ), then it is
quasi-elementary (see Lemma 3.3).

We study several properties of quasi-elementary contractions of smooth Fano varieties, in par-
ticular when the target has small dimension. The following is our main result.

Theorem 1.1. Let X be a smooth complex Fano variety, f : X → Y a quasi-elementary contraction
of fiber type, and F a general fiber.

(i) Suppose that dimY = 2. Then Y is a smooth Del Pezzo surface, f is equidimensional, and
ρX � ρY + ρF � 9 + ρF . If moreover ρY � 3, then X ∼= Y × F and f is the projection on the
first factor.

(ii) Suppose that dimY = 3. Then ρX � ρY +ρF � 10+ρF . If moreover ρY � 4, then Y is smooth
and Fano. If ρY � 6, then X ∼= S ×W and Y ∼= S × P1, where S is a Del Pezzo surface, and
W a smooth Fano variety with a quasi-elementary contraction onto P1.

In the case dimX = 3, part (i) has been shown in [MM81, Proposition 8] under the more general
assumption that f : X → Y is an equidimensional contraction onto a surface. See the end of § 7
herein for examples concerning the sharpness of the statement.

The following are some applications to Fano 4-folds and 5-folds.

Corollary 1.2. Let X be a smooth complex Fano 4-fold.

(i) If X has a non-trivial quasi-elementary contraction of fiber type, then ρX � 18, with equality
if and only if X ∼= S1 × S2, where Si are Del Pezzo surfaces with ρSi = 9.

(ii) If X has an elementary contraction onto a surface S and ρX � 4, then X ∼= P2 × S.

(iii) If X has an elementary contraction onto a 3-fold and ρX � 7, then either X ∼= P1 ×P1 ×S, or
X ∼= F1 × S, with S a Del Pezzo surface.
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Corollary 1.3. Let X be a smooth complex Fano 5-fold.

(i) If X has two distinct elementary contractions of fiber type, then ρX � 12.
(ii) If X has an elementary contraction onto Y with dimY � 3, then ρX � 11.
(iii) Suppose that X has an elementary contraction f : X → Y with dimY = 4. If X has another

elementary contraction ϕ of type (3,0), (4,0), (4,1), or such that f(Exc(ϕ)) = Y , then ρX � 12.

Finally we give an application to Fano varieties with two quasi-elementary contractions.

Corollary 1.4. Let X be a smooth complex Fano variety of dimension n. Let f1 : X → Y1 and
f2 : X → Y2 be two quasi-elementary contractions of fiber type with NE(f1)∩NE(f2) = {0}. Let Fi
be a general fiber of fi. Then dimF1 + dimF2 � n, and moreover:

(i) dimF1 + dimF2 = n implies that ρX � ρF1 + ρF2 ;
(ii) dimF1 + dimF2 = n− 1 implies that ρX � ρF1 + ρF2 + 1;
(iii) dimF1 + dimF2 = n− 2 implies that ρX � ρF1 + ρF2 + 9; and

(iv) if dimF1 + dimF2 = n− 3 and f2 is elementary, then ρX � ρF1 + 11.

If fi is elementary one can replace ρFi by 1 in the statement, see Remark 7.1. These corollar-
ies should be compared to the following result by Wísniewski, involving an arbitrary number of
elementary contractions of fiber type.

Theorem 1.5 [Wís91a, Theorem 2.2]. Let X be a smooth complex Fano variety of dimension n.
Suppose that X has k distinct elementary contractions of fiber type, and let F1, . . . , Fk be the
general fibers. Then

∑
i dimFi � n, and moreover:

(i)
∑

i dimFi = n implies that ρX � k; and

(ii)
∑

i dimFi = n− 1 implies that ρX � k + 1.

In particular k � n, and if k � n− 1 then ρX � n.

Our main tool is Mori theory; in particular we use many properties of contractions of Fano
varieties shown in [Wís91a].

In § 2 we recall some basic notions and properties. In § 2.5 we show that, when a variety Y is the
target of a contraction f : X → Y where X is Fano, Y shares with X a good behavior with respect
to Mori theory; see Lemma 2.6.

In § 3 we define quasi-elementary contractions of fiber type f : X → Y and give some related
properties and examples. We study the singularities of Y in Lemma 3.10, generalizing results known
in the elementary case and using in particular results from [ABW92]. Then in § 3.12 we study
elementary contractions of Y by means of their liftings to X. This is a key ingredient in the proof
of Theorem 1.1. Finally in § 3.15 we show that if X is Fano, dimY � 3 and Y contains a prime
divisor D with ρD = 1, then ρY � 3, so ρX � 3 + ρF where F is a general fiber of f . This is a
generalization of results from [Tsu06] and [BCW02].

In § 4 we apply results from [BCD07] to deduce that some contractions of X always induce con-
tractions of Y . This is needed in the proof of Theorem 1.1(i); moreover, it extends the applicability
of Theorem 1.1 (see § 7).

Section 5 contains the proof of Theorem 1.1(i), which relies on the results of §§ 3 and 4.
In § 6 we show Theorem 1.1(ii). This is based on a detailed analysis of the possible elementary

contractions of the target Y . We need the classification of smooth Fano 3-folds by Mori and Mukai,
and we imitate the strategy for the classification of imprimitive smooth Fano 3-folds (see [MM81,
IP99]) to get some results about the singular case. We also use the existence of a smoothing of a

1431

https://doi.org/10.1112/S0010437X08003679 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003679


C. Casagrande

terminal Fano 3-fold Z shown in [Nam97], and some relations among Z and its smoothing shown
in [JR06], see Lemma 6.10.

Finally in § 7 we prove Corollaries 1.2, 1.3, and 1.4, and we give some other applications and
related examples.

2. Preliminaries

We work over the field of complex numbers.
Let X be a normal projective variety of dimension n. We denote by Xreg the smooth locus of X.
Let N1(X) be the vector space of 1-cycles in X with real coefficients, modulo numerical equiv-

alence. The dimension of N1(X) is equal to the Picard number ρX of X. Inside N1(X) we denote
by NE(X) the convex cone generated by classes of effective curves, and by NE(X) its closure. If
C ⊂ X is a curve, its numerical class is [C] ∈ N1(X).

If Z is a closed subset of X, call i : Z ↪→ X the inclusion, and consider the linear map

i∗ : N1(Z) −→ N1(X).

We denote by N1(Z,X) the image of i∗ in N1(X). Thus we have

dimN1(Z,X) � ρZ and dimN1(Z,X) � ρX .

A contraction of X is a surjective morphism with connected fibers f : X → Y onto a projective
and normal variety Y . The push-forward of 1-cycles defined by f gives a surjective linear map

f∗ : N1(X) −→ N1(Y ),

so that ρX − ρY = dimker f∗. We also consider the convex cone NE(f) in N1(X) generated by
classes of curves contracted by f , that is

NE(f) = NE(X) ∩ ker f∗.

The contraction f is determined (up to isomorphism) by NE(f), see [Deb01, Proposition 1.14].
We say that f is of fiber type if dimY < dimX, otherwise f is birational. When f is of fiber
type, we say that f is non-trivial if dimY > 0. We denote by Exc(f) the exceptional locus of f ,
i.e. the locus where f is not an isomorphism. We say that f is divisorial if Exc(f) is a divisor,
small if Exc(f) has codimension bigger than 1. More generally we say that f is of type (a, b) if
dimExc(f) = a and dim f(Exc(f)) = b. Finally f is elementary if ρX − ρY = 1.

We will need to work with singular varieties; we refer the reader to [Deb01, KM98] for the
definitions and properties of terminal and canonical singularities. We say that X is Q-factorial if
every Weil divisor is Q-Cartier.

Suppose that X has canonical singularities (in particular KX is Q-Cartier). We say that f : X →
Y is a Mori contraction if it is a contraction and moreover −KX · C > 0 for every curve C ⊂ X
contracted by f . We recall two important properties of Mori contractions:

(2.1) dim NE(f) = dim ker f∗ = ρX − ρY , namely ker f∗ is the linear subspace generated by NE(f);

(2.2) for any L ∈ PicX one has L ∈ f∗(PicY ) if and only if L · C = 0 for every curve C ⊂ X
contracted by f .

(See [KM98, Theorem 3.7(4)] for the second statement, which implies the first one.)
Suppose that NE(X) is closed and polyhedral. By a face of NE(X) we just mean a face in the

geometrical sense. For any contraction f of X, NE(f) is a face of NE(X). An extremal ray is a
one-dimensional face, with no assumptions on the intersection of KX with its elements. We will use
greek letters α, β, etc. to denote faces of NE(X). If α is an extremal ray and D a Q-Cartier divisor
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on X, we will say that D · α > 0, D · α = 0, or D · α < 0 if respectively D · v > 0, D · v = 0, or
D · v < 0 for a non-zero element v ∈ α. We denote by Locus(α) ⊆ X the union of all curves in X
whose numerical class is in α.

Let X be a projective variety with canonical singularities and KX Cartier. We say that X
is Fano if −KX is ample. If so, the cone NE(X) is closed and polyhedral, and any contraction of
X is a Mori contraction. Moreover, for any face α of NE(X) there exists a contraction f of X such
that α = NE(f). This follows from the contraction theorem, see [KM98, Theorem 3.7].

Remark 2.3. Let X and Y be factorial projective varieties, and σ : X → Y the blow-up of a smooth
subvariety A ⊂ Yreg. Suppose that X is Fano and let C ⊂ Y be an irreducible curve such that
C �⊂ A and C ∩A �= ∅. Let C̃ be the proper transform of C in X. Then

−KX · C̃ < −KY · C,
in particular −KY · C � 2.

In fact, if E = Exc(σ), we have C̃ �⊆ E and C̃∩E �= ∅, so C̃ ·E > 0. Moreover KX = σ∗(KY )+aE
where a = codimA− 1, so

−KX · C̃ = −KY · C − aE · C̃ < −KY · C.

Remark 2.4. Let X be a normal and Q-factorial projective variety and f : X → Y an elementary
divisorial contraction. Then Exc(f) is an irreducible divisor and Exc(f) · NE(f) < 0.

In fact, let E be an irreducible component of Exc(f); then E ·NE(f) < 0 (see for instance [KM98,
Lemma 3.39] applied to B = −E). Now if C ⊂ X is an irreducible curve contracted by f , we have
E · C < 0, thus C ⊆ E. Hence E = Exc(f).

2.5 Targets of contractions of smooth Fano varieties
Let X be a smooth Fano variety and f : X → Y a contraction. Consider the push-forward f∗ : N1(X)
→ N1(Y ). We observe that

f∗(NE(X)) = NE(Y ),
namely NE(Y ) is the linear projection of NE(X) from the face NE(f). This simple remark implies
many properties of NE(Y ). For instance, it is closed and polyhedral, since NE(X) is. Moreover, faces
of NE(Y ) are in bijection (via f∗) with faces of NE(X) containing NE(f). In fact this description
is the same as the one involving the ‘star of a cone’ in toric geometry, see [Ful93, p. 52].

Let us consider a face α of NE(Y ), and let α̂ be the unique face of NE(X) containing NE(f) and
such that f∗(α̂) = α. Then dim α̂ = dimα+ dimNE(f). Since NE(f) is a face of α̂, we can choose
another face α̃ of α̂ with the properties:

dim α̃ = dimα and α̃ ∩ NE(f) = {0}.
Observe that the choice of α̃ will not be unique in general, and that it can very well be α̃+NE(f) � α̂.

When α is an extremal ray, α̃ is an extremal ray of NE(X), and f∗(α̃) = α. There is a rational
curve C ⊂ X such that [C] ∈ α̃, hence f(C) is a rational curve in Y with numerical class in α.

Since X is Fano, there exist contractions ϕ : X → W and h : X → Z such that α̃ = NE(ϕ) and
α̂ = NE(h), as shown below.

X

f
��

h

���
��

��
��

�
ϕ �� W

Y Z
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Now by rigidity (see for instance [Deb01, Lemma 1.15]) there exist contractions ψ : Y → Z and
g : W → Z that make the following diagram commute.

X

f
��

h

���
��

��
��

�
ϕ �� W

g

��
Y

ψ
�� Z

It is not difficult to check that NE(ψ) = α and that dim kerψ∗ = dimα. We will say that ϕ : X →W
is a lifting of ψ. Summing up, we have proved the following result.

Lemma 2.6. Let X be a smooth Fano variety and f : X → Y a contraction. Then NE(Y ) is a closed
polyhedral cone, and every extremal ray contains the class of some rational curve.

Moreover for every face α of NE(Y ) there exists a contraction ψ : Y → Z such that NE(ψ) = α
and ρY − ρZ = dimα.

3. Quasi-elementary contractions

Let X be a smooth variety and f : X → Y a Mori contraction of fiber type. Recall that

ρX − ρY = dimNE(f) = dimker f∗.

Let F be a general fiber and consider N1(F,X) ⊆ N1(X). We have

N1(F,X) ⊆ ker f∗,

hence dimN1(F,X) � ρX − ρY .

Definition 3.1. We say that f is quasi-elementary if

N1(F,X) = ker f∗,

equivalently if dimN1(F,X) = ρX − ρY . Since dimN1(F,X) � ρF , if f is quasi-elementary we get

ρX � ρY + ρF .

Example 3.2. Let f : X → Y be a Mori contraction of fiber type.

(a) If f is elementary, then it is also quasi-elementary. This is because 1 � dimN1(F,X) �
dim ker f∗ = 1.

(b) Suppose that dimX − dimY = 1. Then f is quasi-elementary if and only if it is elementary.
(c) Suppose that X is Fano and f is quasi-elementary. If ψ : Y → Z is an elementary contraction

of fiber type, then the composition ψ ◦ f : X → Z is quasi-elementary. In fact, since ψ is
elementary, we have dim ker(ψ ◦ f)∗ = dim ker f∗ + 1. Let G be a general fiber of ψ ◦ f , then
G ⊃ F , hence ker(ψ ◦ f)∗ ⊇ N1(G,X) ⊇ N1(F,X) = ker f∗. Choosing a curve C ⊂ G not
contracted by f shows that N1(G,X) � N1(F,X), so N1(G,X) = ker(ψ ◦ f)∗ and ψ ◦ f is
quasi-elementary.

Let us show that the notion of quasi-elementary is related to smoothness.

Lemma 3.3. Let X be a smooth variety and f : X → Y a Mori contraction of fiber type. Let
Y0 ⊆ Yreg be an open subset over which f is smooth, and set X0 := f−1(Y0). If codim(X �X0) � 2
and Y is Q-factorial, then f is quasi-elementary.

We remark that the converse to Lemma 3.3 does not hold (take, for instance, a smooth Fano
3-fold X with an elementary contraction X → P1 that is not a smooth morphism). Moreover the
hypothesis of Q-factoriality on Y is necessary, see the contraction f : V → Y in Example 7.9.
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Proof. Set f0 := f|X0
: X0 → Y0. Following the notation of [KMM87, § 0-1], consider

NE(X0/Y0) ⊂ N1(X0/Y0).

Since f0 is a Mori contraction, NE(X0/Y0) is closed and polyhedral by the relative version of the
cone theorem, see [KMM87, Theorem 4-2-1].

On the other hand N1(X/Y ) = ker f∗ ⊆ N1(X), and the inclusion X0 ↪→ X induces a natural
injective homomorphism

N1(X0/Y0) ↪→ ker f∗.
With a slight abuse of notation, we will consider N1(X0/Y0) as a subspace of N1(X).

For every y ∈ Y0 we have i∗(NE(Fy)) ⊆ NE(X0/Y0). Consider an extremal ray α of NE(X0/Y0).
Then [Wís91b, Proposition 1.3] says that Locus(α) dominates Y0 via f , hence α ⊆ i∗(NE(Fy)) for
every y ∈ Y0. Repeating this for every extremal ray of NE(X0/Y0), we get

i∗(NE(Fy)) = NE(X0/Y0)

for every y ∈ Y0, in particular

N1(Fy ,X) = N1(X0/Y0) ⊆ ker f∗ ⊆ N1(X). (3.4)

The homomorphism dual to the inclusion N1(X0/Y0) ↪→ ker f∗ is

r :
(PicX) ⊗ R

f∗(PicY ) ⊗ R
−→ (PicX0) ⊗ R

f∗0 (PicY0) ⊗ R

induced by the restriction PicX → PicX0 (see [KMM87, § 0-1 and Lemma 3-2-5(2)]). Clearly r is
surjective.

Let L ∈ PicX be such that L|X0
= f∗0 (M0) for some M0 ∈ PicY0. Since Y is Q-factorial,

there exists M ∈ PicY such that M|Y0
= M⊗l

0 , l ∈ Z�1. Then L⊗l ⊗ f∗(M)⊗(−1) is trivial on X0,
and by our hypothesis trivial on X. Thus r is an isomorphism. Dually, this is gives N1(Fy ,X) =
N1(X0/Y0) = ker f∗, so f is quasi-elementary.

Remark 3.5. Observe that (3.4) shows that N1(Fy,X) does not depend on y ∈ Y0, so that the
condition N1(Fy,X) = ker f∗ can be checked for an arbitrary y ∈ Y0.

Remark 3.6. If f : X → Y is quasi-elementary, then N1(F0,X) = ker f∗ for every fiber F0 of f (with
the reduced structure).

In fact we have N1(F0,X) ⊆ ker f∗. Moreover if f0 : X0 → Y0 is as in the proof of Lemma 3.3,
NE(X0/Y0) has dimension ρX−ρY . For any fixed extremal ray α of NE(X0/Y0), we know by [Wís91b,
Proposition 1.3] that Locus(α) dominates Y0. Then taking a family of curves whose class is in α
and their degenerations, we see that α ⊂ N1(F0,X). This implies that N1(F0,X) = ker f∗.

Remark 3.7. Suppose that X is smooth and Fano, f : X → Y a contraction of fiber type, and F
a general fiber. In general the push-forward i∗ : N1(F ) → N1(X) does not need to be injective: for
instance, there are smooth Fano 3-folds that have an elementary contraction onto P1, with fibers
Del Pezzo surfaces with ρ > 1. This is related to the monodromy of the fibration f .

Consider an open subset Y0 as in Lemma 3.3 and let y ∈ Y0. The dimension of N1(Fy,X) is
equal to the dimension of the image of the restriction

(PicX) ⊗ Q = H2(X,Q) −→ H2(Fy,Q) = (PicFy) ⊗ Q.

In turn this is equal to the dimension of the linear subspace of H2(Fy ,Q) which is invariant for the
monodromy action of π1(Y0, y) (see for instance [Voi02, ch. 15]). Hence dimN1(Fy ,X) = ρF if and
only if the monodromy action is trivial.
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Example 3.8. Let X be a smooth Fano variety, f : X → Y a non-trivial contraction of fiber type
with Y smooth, and F a general fiber. Suppose that f is smooth outside a finite number of points
of Y , and that there are no fibers of codimension 1. Then Y is Fano, f is quasi-elementary, and
ρX = ρY + ρF .

In fact Y is Fano by [Miy93, Theorem 3]; in particular it is simply connected, and dimY � 2.
Then Y � {y1, . . . , ym} stays simply connected, so the monodromy action on H2(F,Q) is triv-
ial, and dimN1(F,X) = ρF . On the other hand f is quasi-elementary by Lemma 3.3, so ρX =
dimN1(F,X) + ρY = ρF + ρY .

The following two lemmas give some basic properties of quasi-elementary contractions.

Lemma 3.9. Let X be a smooth variety and f : X → Y a quasi-elementary Mori contraction of
fiber type.

(i) If D is a prime divisor in X such that f(D) � Y , then f(D) is a Cartier divisor, and D =
f∗(f(D)).

(ii) The locus where f is not equidimensional has codimension at least 3 in Y .

Proof. Since f is quasi-elementary and D is disjoint from the general fiber, we have D · C = 0 for
every curve C ⊂ X contracted by f . By property (2.2) of Mori contractions, there exists an effective
Cartier divisor D′ on Y such that D = f∗(D′). Moreover D′ is supported on f(D), so there exists
m ∈ Z>0 such that D′ = mf (D).

Set U := f−1(Yreg) and observe that X�U has codimension at least 2 in X. In Yreg the intersec-
tion f(D) ∩ Yreg is a (non-trivial) Cartier divisor and D|U = (f|U)∗(mf(D))|Yreg

= m(f|U )∗(f(D) ∩
Yreg). Since X is smooth, there exists an effective divisor D′′ in X such that D′′

|U = (f|U )∗(f(D) ∩
Yreg). Then D|U = mD′′

|U , so D = mD′′ and m = 1 because D is prime.

Let us show part (ii). Let K ⊂ Y be an irreducible closed subset such that the general fiber of
f over K has dimension at least dimX − dimY + 1. Then

dimX − 1 � dim f−1(K) � dimX − dimY + 1 + dimK,

so dimK � dimY − 2. If by contradiction dimK = dimY − 2, then dim f−1(K) � dimX − 1.
Consider a prime divisor D contained in f−1(K): we have f(D) ⊆ K, which contradicts (i).

We generalize to quasi-elementary contractions some known properties of elementary contrac-
tions of fiber type. In particular part (ii) below is shown in [ABW92] in the elementary case.

Lemma 3.10. Let f : X → Y be a Mori contraction of fiber type, with X smooth.

(i) If f is quasi-elementary, then Y is factorial and has canonical singularities.

(ii) If Y is a surface and f is equidimensional, then Y is smooth.

(iii) If Y is a surface and f is quasi-elementary, then f is equidimensional and Y is smooth.

(iv) If dimY = 3 and f is quasi-elementary, then Y has isolated singularities.

Proof. (i) Let D be a prime Weil divisor in Y and let D′ be a prime divisor in X such that
f(D′) = D. Then Lemma 3.9(i) yields that D is Cartier.

Thus Y is factorial, in particular KY is Cartier. It is known that Y has rational singularities,
see [Kol86, Corollary 7.4]. Then Y also has canonical singularities, see [KM98, Corollary 5.24].

(ii) When f is elementary, this is [ABW92, Proposition 1.4.1]. In general, observe that Y is a
normal surface with rational singularities; in particular it is Q-factorial and has isolated singularities.

We want to show that in fact Y has quotient singularities, using results from [Wat80] and [FZ03].
More precisely, let y0 ∈ Y be a singular point. In [Wat80, Definition 1.4] and [FZ03, Definition 1.25]
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one can find the definition of the plurigenera δm(Y, y0) of Y in y0, for m ∈ Z>0. Since f is equidimen-
sional, then it is ‘non-degenerate’ in the sense of [FZ03, Definition 1.14]. Then [FZ03, Corollary 1.27]
gives δm(Y, y0) = 0 for every m ∈ Z>0. This is equivalent to saying that y0 is a quotient singularity
by [Wat80, Theorem 3.9].

Hence Y has quotient singularities, and we can apply [ABW92, Proposition 1.4] to deduce that
Y is actually smooth. Observe that in [ABW92] the contraction f is assumed to be elementary,
but the proof works word for word in the case of an equidimensional Mori contraction. Let us also
remark that, by the definition of quotient singularities, we can cover Y by open subsets in the
complex topology which are quotients of an open subset of C2 by a finite group. Hence in the proof
of [ABW92, Proposition 1.4] one has actually to work in the analytic category; however everything
works in the same way.

(iii) This follows immediately from Lemma 3.9 and part (ii).
(iv) By Lemma 3.9, f can have at most isolated fibers of dimension n−2. Let S ⊂ Y be a general

hyperplane section and D := f−1(S). Then S is a normal surface (see [KM98, Lemma 5.30]) and
f|D : D → S is equidimensional. Moreover D is general in a base point free linear system, so it is
smooth. Since D is disjoint from the general fiber of f and f is quasi-elementary, we have D ·C = 0
for every curve C ⊂ X contracted by f . In particular, if C ⊂ D we get

−KD · C = −KX · C > 0,

so f|D is an equidimensional Mori contraction. Then S is smooth by part (ii), and this yields
dim SingY = 0.

Thus the target of a quasi-elementary contraction has reasonable singularities. The following
simple remark will be very useful.

Remark 3.11. Let X be a smooth Fano variety and f : X → Y a quasi-elementary contraction,
so that Y is factorial and has canonical singularities by Lemma 3.10. Then Y is Fano if and only
if −KY · α > 0 for every extremal ray α of NE(Y ). Equivalently, Y is Fano if and only if every
elementary contraction ψ : Y → Z is a Mori contraction.

This is a straightforward consequence of Lemma 2.6.

3.12 Elementary contractions of the target
Let X be a smooth projective variety and f : X → Y a quasi-elementary Mori contraction of fiber
type. Recall that Y is factorial with canonical singularities by Lemma 3.10.

Let ψ : Y → Z be a contraction. We say that ψ has a lifting if there exist a Mori contraction
ϕ : X → Y such that NE(ϕ) ∩ NE(f) = {0}, ρX − ρW = ρY − ρZ , and a commutative diagram as
below.

X

f
��

ϕ �� W

g

��
Y

ψ
�� Z

(3.13)

We will also say that ϕ is a lifting of ψ.
Notice that ψ is elementary if and only if ϕ is elementary. We are interested in comparing

properties of ϕ and ψ.
When X is Fano, any contraction ψ : Y → Z has a lifting, as explained in § 2.5. Conversely, in

Theorems 4.1 and 4.4 we will give conditions on a Mori contraction ϕ : X → W to be a lifting of
some ψ.
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Theorem 3.14. Let X be a smooth projective variety and f : X → Y a quasi-elementary Mori
contraction of fiber type.

Let ψ : Y → Z be a birational elementary contraction with fibers of dimension at most 1. Assume
that ψ has a lifting ϕ : X → W as in (3.13). Then the following hold:

(i) W is smooth and ϕ is the blow-up of a smooth subvariety of codimension 2;

(ii) g is a quasi-elementary Mori contraction and Z is factorial with canonical singularities;

(iii) ψ is divisorial, Exc(ϕ) = f∗(Exc(ψ)), and −KY · NE(ψ) � 0;

(iv) if dimY = 3, then ψ is the blow-up of a smooth curve C ⊂ Zreg; and

(v) if dimY = 2, then

(v.a) Y and Z are smooth, ψ is the blow-up of z0 ∈ Z, and g has smooth fiber F0 over z0;
(v.b) ϕ is the blow-up of F0, Exc(ϕ) ∼= P1 × F0, and f|Exc(ϕ), ϕ|Exc(ϕ) are the two projections;
(v.c) if X is Fano, then W is Fano.

Proof. Let F be a non-trivial fiber of ϕ. Then f is finite on F and f(F ) is contained in a non-trivial
fiber of ψ, hence f(F ) ⊆ Exc(ψ) and dimF = 1. Since Exc(ϕ) is covered by non-trivial fibers of
ϕ, we get f(Exc(ϕ)) ⊆ Exc(ψ). In particular, ϕ is birational with fibers of dimension at most 1,
so [Wís91a, Theorem 1.2] yields that W is smooth and ϕ is the blow-up of a smooth subvariety of
codimension 2.

Let E ⊂ X be the exceptional divisor of ϕ, then f(E) is contained in Exc(ψ) and it is a divisor
by Lemma 3.9(i). Hence ψ is elementary and divisorial, and Exc(ψ) is irreducible by Remark 2.4,
that is Exc(ψ) = f(E). Then again Lemma 3.9(i) gives E = f∗(Exc(ψ)).

We have

KX = ϕ∗(KW ) + E.

Let C be an irreducible curve contracted by g and C̃ an irreducible curve in X such that ϕ(C̃) = C.
Then ϕ∗(C̃) = mC with m ∈ Z>0. Moreover f(C̃) is a point, so C̃ ·E = 0. Then

m(−KW · C) = −KW · ϕ∗(C̃) = (−KX − E) · C̃ = −KX · C̃ > 0,

so g is a Mori contraction.
We have dim ker f∗ = ρX − ρY = ρW − ρZ = dimker g∗. Moreover NE(ϕ) is an extremal ray of

NE(X) not contained in NE(f), hence kerϕ∗ ∩ ker f∗ = {0}. Then dimϕ∗(ker f∗) = dimker g∗; on
the other hand, ϕ∗(ker f∗) ⊆ ker g∗, so equality holds.

Observe that ϕ is an isomorphism over the general fibers of f and g. Let F1 be a general fiber
of f , so that N1(F1,X) = ker f∗ because f is quasi-elementary. Then ϕ(F1) is a general fiber of g,
and N1(ϕ(F1),W ) = ϕ∗(N1(F1,X)) = ϕ∗(ker f∗) = ker g∗. Thus g is quasi-elementary.

Then Z is factorial with canonical singularities by Lemma 3.10(i). Let us show that −KY ·
NE(ψ) � 0. Write KY = ψ∗(KZ) + rExc(ψ) with r ∈ Z, and let C1 ⊂ Y be a curve contracted
by ψ. Then Exc(ψ) · C1 < 0 by Remark 2.4, and −KY · C1 = r(−Exc(ψ) · C1). Hence we have to
show that r � 0. Let h : Y ′ → Y be a resolution of singularities of Y , and consider the composition
ψ ◦ h : Y ′ → Z. Call E′ the proper transform of Exc(ψ) in Y ′. Then r is the coefficient of E′ in
KY ′ − (ψ ◦ h)∗(KZ), thus r � 0 because Z has canonical singularities.

Assume now that dimY = 3 and set S := Exc(ψ).
Let us first notice that Sreg = S ∩ Yreg. This is because, if y0 ∈ Sreg, then y0 must be smooth

for Y too, because S is a Cartier divisor in Y . On the other hand, let y1 ∈ Yreg and let h ∈ OY,y1

be a local equation for S in y1. Since E = f∗(S), f∗(h) is a local equation for E near the fiber
over y1. Take x1 in this fiber. Since E is smooth, the differential dx1(f

∗(h)) is non-zero, and since
dx1(f

∗(h)) = dy1h ◦ dx1f , the differential dy1h must be non-zero too. Thus S is smooth at y1.
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Recall that Y has rational singularities, in particular it is Cohen–Macaulay (see [Kol86, Corol-
lary 7.4] and [KM98, Theorem 5.10]). Since S is a Cartier divisor in Y , it is Cohen–Macaulay too.
On the other hand, Lemma 3.10(iv) implies that Y and S have isolated singularities. Then S is
normal by Serre’s criterion.

By Lemma 3.9 f can have at most isolated fibers of dimension n − 2. Let us show that f is
equidimensional over S. If F0 ⊂ E is an irreducible component of a fiber of f with dimF0 = n− 2,
then ϕ(F0) ⊆ ϕ(E) and dimϕ(F0) = n− 2 = dimϕ(E), hence ϕ(F0) = ϕ(E). This gives

ψ(S) = ψ(f(E)) = g(ϕ(E)) = g(ϕ(F0)) = ψ(f(F0)) = pt ,

a contradiction.
Now E is smooth, S is normal, and f|E : E → S has connected fibers. As in the proof of

Lemma 3.10(iv) we see that f|E is a Mori contraction, and by Lemma 3.10(ii) the surface S is
smooth, so that S ∩ Sing(Y ) = ∅.

The general fiber l of ψ|S : S → ψ(S) is a rational curve, and it is smooth because S is, hence
−KS · l = 2.

Let l̃ be a fiber of ϕ such that f(l̃) = l. Then

−1 = l̃ · E = l̃ · f∗(S) = f∗(l̃) · S,

which gives l · S = −1 and −KY · l = −KS · l + S · l = 1.
This shows also that ψ|S : S → ψ(S) is a P1-bundle. Therefore ψ is the blow-up of a smooth

curve contained in the smooth locus of Z, and Z has the same singularities as Y .
Finally, let us suppose that dimY = 2. Then Y and Z are smooth by Lemma 3.10(iii), and f

and g are equidimensional. Hence ψ is the blow-up of a point z0 ∈ Z. We have

E = f−1(Exc(ψ)) = ϕ−1(g−1(z0)),

so the center of ϕ is ϕ(E) = g−1(z0) = F0.
Since E = f∗(Exc(ψ)), E is the (schematic) fiber of ψ ◦ f over z0, and it is reduced. Thus g ◦ ϕ

has reduced fiber over z0, and the same must hold for g. Now g is an equidimensional morphism
between smooth varieties, whose fiber F0 over z0 is reduced and smooth. This implies that g is
smooth over z0, and hence the normal bundle of F0 in W is trivial. Since E is the exceptional
divisor of the blow-up of F0, we deduce that E ∼= P1 ×F0, and f|E and ϕ|E are the two projections.

Suppose that X is Fano and W is not. Then [Wís91a, Proposition 3.4] says that there exists an
extremal ray α of NE(X), different from NE(ϕ), such that α · E < 0. This implies that α is not
contained in NE(f), because C · E = 0 for every curve C contracted by f . However E ∼= P1 × F0,
so every curve in E is numerically equivalent to a linear combination with coefficients in Q�0 of a
curve in NE(f) and a curve in NE(ϕ). Thus no curve in E can have numerical class in an extremal
ray α not contained in NE(f) ∪ NE(ϕ), and we have a contradiction. This completes the proof of
Theorem 3.14.

3.15 Divisors D with small dim N 1(D, X)
Let X be a smooth Fano variety of dimension n, and D a prime divisor in X. If D is simple, e.g. if
ρD is very small, then one can hope to deduce information on X itself. For instance, in [BCW02]
the authors classify the possible pairs (X,D) when D ∼= Pn−1 and ND/X

∼= OPn−1(−1). This is
equivalent to asking that X is obtained by blowing up a smooth variety in a point.

This classification has been generalized in [Tsu06] to the case D ∼= Pn−1 and ND/X
∼= OPn−1(−a)

with a ∈ Z�1.

1439

https://doi.org/10.1112/S0010437X08003679 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003679


C. Casagrande

With the same techniques, [Tsu06, Proposition 5] shows that, if X contains a prime divisor D
with ρD = 1 and dimX � 3, then ρX � 3. The proof of [Tsu06, Proposition 5] can be generalized
in order to obtain the following result.

Proposition 3.16. LetX be a smooth Fano variety, and let f : X → Y be either a quasi-elementary
contraction of fiber type or an isomorphism.

Suppose that dimY � 3 and that there exists a prime divisorD ⊂ Y such that dimN1(D,Y ) =1.
Then ρY � 3.

In the case where f is an isomorphism, this says that if dimX � 3 and X contains a prime
divisor D with dimN1(D,X) = 1, then ρX � 3. In particular, if dimX = n � 3 and X has an
elementary contraction of type (n− 1, 0), then ρX � 3.

Proof. Recall that Y is factorial by Lemma 3.10(i). Moreover NE(Y ) is closed and polyhedral, and
every extremal ray can be contracted, by Lemma 2.6.

Let us assume that ρY > 1. There exists at least one extremal ray α1 of NE(Y ) such that
α1 · D > 0; let ψ1 : Y → Z1 be its contraction. Then dimZ1 > 0 and D must intersect every
non-trivial fiber of ψ1.

If α1 ⊂ N1(D,Y ), then every curve in D has numerical class contained in α1, hence ψ1(D) is a
point. Then ψ1 cannot be of fiber type (otherwise Z1 is a point), so ψ1 is birational andD ⊆ Exc(ψ1).
This implies that D · α1 < 0 by Remark 2.4, a contradiction.

Hence α1 �⊂ N1(D,Y ). Consider a non-trivial fiber F of ψ1. Then F ∩D �= ∅; on the other hand
dim(F ∩D) = 0 otherwise we would get a curve in D with numerical class in α1. Since Y is factorial,
we get

0 = dim(F ∩D) � dimF − 1,
so F has dimension 1.

If ψ1 is of fiber type, then

(ψ1)∗|N1(D,Y ) : N1(D,Y ) −→ N1(Z1)

is surjective, so ρZ1 = 1 and ρY = 2.
Assume that ψ1 is birational and consider a lifting of ψ1 as in § 2.5.

X
h

���
��

��
��

�
ϕ1 ��

f

��

W1

g

��
Y

ψ1

�� Z1

Since X is Fano, ϕ1 is a Mori contraction, and Theorem 3.14 applies. Thus g is a quasi-elementary
Mori contraction, W1 is smooth, ϕ1 is a blow-up, ψ1 is divisorial, Z1 is factorial, and Exc(ϕ1) =
f−1(Exc(ψ1)).

Since ψ1 is finite on D, D2 := ψ1(D) is a Cartier divisor in Z1. Moreover

(ψ1)∗|N1(D,Y ) : N1(D,Y ) −→ N1(D2, Z1)

is surjective, hence dimN1(D2, Z1) = 1. Recall also that D intersects every non-trivial fiber of ψ1,
hence D2 ⊃ ψ1(Exc(ψ1)).

Again by Lemma 2.6, NE(Z1) is closed and polyhedral, and every extremal ray can be contracted.
Thus consider an extremal ray α2 of NE(Z1) such that α2 ·D2 > 0, and let ψ2 : Z1 → Z2 be the

associated contraction.
As before, we see that if ψ2 is of fiber type then ρZ1 � 2 and ρY � 3.
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If ψ2 is birational, then α2 �⊂ N1(D2, Z1) and again every non-trivial fiber of ψ2 has dimension 1.
We show that this case leads to a contradiction.

Let α̂2 be the unique extremal face of NE(X) such that α̂2 contains NE(h) and h∗(α̂2) = α2

(see § 2.5). Notice that NE(ϕ1) is an extremal ray of NE(h).
Let us make an easy remark on convex polyhedral cones. If σ ⊂ Rd is a convex polyhedral cone,

γ is a proper face of σ, and ρ is an extremal ray of γ, then there exists an extremal ray ρ2 of σ,
not contained in γ, and such that ρ+ ρ2 is a face of σ. The reader who is not familiar with convex
geometry may easily prove this by induction on dimσ.

Applied to our situation, this says that there is an extremal ray β̃ of α̂2 such that β̃ �⊂ NE(h)
and β̃ + NE(ϕ1) is a face of α̂2.

Then β = (ϕ1)∗(β̃) is an extremal ray of NE(W1), whose contraction ϕ2 : W1 → W2 yields the
following commutative diagram.

X
h

���
��

��
��

�
ϕ1 ��

f

��

W1

g

��

ϕ2 �� W2

��
Y

ψ1

�� Z1 ψ2

�� Z2

Observe that NE(ψ2 ◦ h) = α̂2 and NE(ϕ2 ◦ ϕ1) = β̃ + NE(ϕ1) ⊆ NE(ψ2 ◦ h), so the morphism
W2 → Z2 exists by rigidity (see § 2.5). Since ψ2 is birational and has fibers of dimension at most 1,
it is easy to see that the same holds for ϕ2.

Suppose that there exists a non-trivial fiber C of ϕ2 contained in ϕ1(Exc(ϕ1)). Let C̃ be an
irreducible curve in Exc(ϕ1) such that ϕ1(C̃) = C. Then f(C̃) ⊂ f(Exc(ϕ1)) = Exc(ψ1) and
h(C̃) ⊆ ψ1(Exc(ψ1)) ⊂ D2.

On the other hand, since ϕ2(C) is a point, ψ2(h(C̃)) must also be a point, namely the numerical
class of h(C̃) must be in α2 = NE(ψ2). But this contradicts α2 �⊂ N1(D2, Z1).

Therefore if C is a non-trivial fiber of ϕ2, we have C �⊆ ϕ1(Exc(ϕ1)), and this implies that
−KW1 · C > 0.

Thus ϕ2 is a Mori contraction, and Theorem 3.14 yields that W2 is smooth, ϕ2 is the blow-
up of a smooth subvariety of codimension 2 in W2, and Exc(ϕ2) = g−1(Exc(ψ2)). In particular,
−KW1 · C = 1.

Now using Remark 2.3 we see that any non-trivial fiber C of ϕ2 cannot intersect ϕ1(Exc(ϕ1)),
hence

Exc(ϕ2) ∩ ϕ1(Exc(ϕ1)) = ∅.
Recall that Exc(ϕ1) = f−1(Exc(ψ1)), which gives ϕ1(Exc(ϕ1)) = g−1(ψ1(Exc(ψ1))). Therefore

∅ = g−1(Exc(ψ2)) ∩ g−1(ψ1(Exc(ψ1))) = g−1(Exc(ψ2) ∩ ψ1(Exc(ψ1))),

namely Exc(ψ2) ∩ ψ1(Exc(ψ1)) = ∅.
Notice that dimψ1(Exc(ψ1)) = dimY − 2 � 1, so there exists a curve C2 ⊆ ψ1(Exc(ψ1)), and

C2 · Exc(ψ2) = 0.
On the other hand ψ1(Exc(ψ1)) ⊂ D2 and dimN1(D2, Z1) = 1. This implies that C ′

2 ·Exc(ψ2) = 0
for every curve C ′

2 ⊂ D2. But this is impossible, because D2 and Exc(ψ2) are distinct prime divisors
with non-empty intersection. This completes the proof of Proposition 3.16.

Remark 3.17. More precisely we have shown that in the hypotheses of Proposition 3.16, either
ρY = 1, or one of the following occurs:
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(a) ρY = 2 and Y has an elementary contraction of fiber type with one-dimensional fibers; or
(b) ρY = 3 and Y has a divisorial elementary contraction such that every fiber has dimension at

most 1.

4. Existence of contractions after [BCD07]

Let X be any normal projective variety. Consider an irreducible closed subset V of Chow(X) such
that:

(a) for v ∈ V general, the corresponding cycle Cv ⊂ X is an irreducible, reduced, and connected
rational curve; and

(b) every point of X is contained in Cv for some v ∈ V .

We call V a covering family of rational curves in X. Such a family induces an equivalence relation
on X (as a set), called V -equivalence, as follows. Two points x, y ∈ X are V -equivalent if there
exist v1, . . . , vm ∈ V such that Cv1 ∪ · · · ∪ Cvm is connected and contains x and y. This notion was
originally introduced by Campana [Cam81] and is by now well known; see [Kol96, § IV.4], [Deb01,
§ 5], and [Cam04]. We refer specifically to [BCD07] for the set-up and for precise references.

In particular it is known that there exist an open subset X0 that is closed under V -equivalence,
a normal quasi-projective variety Y0, and a proper, equidimensional morphism q : X0 → Y0, such
that every fiber of q is a V -equivalence class. In general, there are no morphisms defined on the
whole X that extend q.

If f : X → Y is a Mori contraction of fiber type, then one can find a family V as above such
that q = f|X0

(see the proof of Theorem 4.1). Using the properties of this family, we can apply the
results of [BCD07] to deduce the following result.

Theorem 4.1. Let X be a smooth variety of dimension n and consider two Mori contractions

X

f
��

ϕ �� W

Y

where f is elementary of fiber type and NE(f) ∩ NE(ϕ) = {0}. Let kf and kϕ be the dimensions
of the general fibers of f and ϕ|Exc(ϕ) respectively. Assume that we are in one of the following
situations:

(i) ϕ is quasi-elementary of fiber type, and kf + kϕ � n− 3;
(ii) ϕ is elementary and divisorial, and dimY � 3; or

(iii) ϕ is elementary and divisorial, f(Exc(ϕ)) = Y , and kϕ � dimY − 3.

Then there exists a commutative diagram

X
ϕ ��

f
��

h

���
��

��
��

� W

g

��
Y �� Z

(4.2)

where g : W → Z is an elementary Mori contraction and dimZ � 3.

Let us point out that we do not know whether the hypotheses on kf + kϕ, dimY , and kϕ
respectively are really necessary for the statement to hold.

Proof. In the first part of the proof we will just assume that f is quasi-elementary and that NE(f)∩
NE(ϕ) = {0}.
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We first construct a suitable covering family V of rational curves in X, such that f is the quotient
for V -equivalence over an open subset of X.

Let F be a general fiber of f , then F is a smooth Fano variety of dimension kf . In particular F
is rationally connected, and there exists a smooth rational curve C0 ⊂ F that is very free, namely
with ample normal bundle in F (see [Deb01, §§ 4.3 and 5.6]):

NC0/F
∼=

⊕
i

OP1(ai), ai ∈ Z>0 for every i.

Since NF/X is trivial, we have

NC0/X
∼= O⊕(n−kf )

P1
⊕

⊕
i

OP1(ai),

hence C0 is a free curve in X. This means that the deformations of C0 cover the whole X: by [Deb01,
Proposition 4.8] there exists a covering family V of rational curves in X such that C0 = Cv0 for
some v0 ∈ V .

Clearly all curves parametrized by V are numerically equivalent in X, and their numerical class
is contained in NE(f), because f(C0) is a point. Since NE(f) is a face of NE(X), we deduce that
every irreducible component of every curve parametrized by V is contained in some fiber of f . This
implies that every V -equivalence class is contained in some fiber of f .

Consider the quotient for V -equivalence q : X0 → Y0; let F0 be a general fiber, and Cv ⊂ F0 a
general curve of the family. Then Cv ∼= P1 and we have

NCv/X
∼= O⊕(n−dimF0)

P1
⊕NCv/F0

.

On the other hand, by [Kol96, II.3.9.2] the number of trivial summands in NCv/X is at most the
number of trivial summands in NC0/X , so that n− dimF0 � n− kf and dimF0 � kf .

This implies that dimF0 = kf and hence all fibers of f of dimension kf are V -equivalence classes.
We observe that V induces in a natural way a covering family of rational curves on W . First of

all, the hypothesis NE(f)∩NE(ϕ) = {0} implies that ϕ does not contract any irreducible component
of any curve of V .

Consider now the incidence diagram associated to V , shown below.

C

��

�� X

V

We proceed as in [BCD07, proof of Lemma 2]. Let C̃ be the normalization of C and C̃ → Ṽ be the
Stein factorization of the composite map C̃ → C → V . Then Ṽ is normal, the general fiber of C̃ → Ṽ
is P1, and the composite map

C̃ �� C �� X
ϕ �� W

yields a family of 1-cycles in W , thus a morphism Ṽ → Chow(W ). We call V ′ the image of this
morphism. By the construction, for every irreducible component C of a curve parametrized by V ,
the image ϕ(C) is a component of some curve parametrized by V ′, and conversely. In particular, if
x, y ∈ X are V -equivalent, then ϕ(x), ϕ(y) ∈W are V ′-equivalent.

Claim. Let T ⊆ W be a general V ′-equivalence class. Then codimT � n − kf , and codimT �
n− (kf + kϕ) if f(Exc(ϕ)) = Y .

Observe that the second case always holds if ϕ is of fiber type.
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Proof of the claim. The inverse image ϕ−1(T ) is closed for V -equivalence. Let F be a general V -
equivalence class contained in ϕ−1(T ), so that F is a fiber of f . Since ϕ is finite on F and ϕ(F ) ⊆ T ,
we have dimT � dimF = kf , while dimW � n, which gives the first statement.

If ϕ is of fiber type, then dimW = n− kϕ, so the same argument gives codimT � n− (kf + kϕ).
Let us assume that ϕ is birational and that Exc(ϕ) dominates Y via f . Then F ∩ Exc(ϕ) �= ∅,

so T ∩ϕ(Exc(ϕ)) �= ∅, and since T is general, every V ′-equivalence class intersects ϕ(Exc(ϕ)). This
means that ϕ−1(T ) contains a general fiber N of ϕ|Exc(ϕ). Let N0 be an irreducible component of N
with dimN0 = kϕ.

There exists a non-empty open subset U0 of f(N0) such that every fiber of f over U0 is an
irreducible V -equivalence class. Then f−1(U0) is irreducible of dimension kf + kϕ, and it must be
contained in ϕ−1(T ) because ϕ−1(T ) is closed for V -equivalence. Moreover ϕ|f−1(U0) is birational,
so dimT � kf + kϕ. This completes the proof of the claim.

Consider now the linear subspaces HV of N1(X) and HV ′ of N1(W ) generated by the numerical
classes of all irreducible components of all curves in V and V ′ respectively. Then we have ϕ∗(HV ) =
HV ′ ; and moreover N1(F,X) ⊆ HV and N1(T,W ) ⊆ HV ′ by [Kol96, Proposition IV.3.13.3] (see
also [BCD07, Remark 1]).

Since f is quasi-elementary, we get ker f∗ = N1(F,X) ⊆ HV ⊆ ker f∗, hence N1(F,X) = HV =
ker f∗. Then we have

N1(T,W ) ⊆ HV ′ = ϕ∗(HV ) = ϕ∗(N1(F,X)) = N1(ϕ(F ),W ) ⊆ N1(T,W ),

hence

N1(T,W ) = HV ′ = ϕ∗(N1(F,X)) = ϕ∗(ker f∗). (4.3)

We observe that ϕ is either elementary and divisorial, or quasi-elementary of fiber type. Then
in any case W is Q-factorial and has canonical singularities, by Lemma 3.10 and [Deb01, Proposi-
tion 7.44].

Let us assume now that f is an elementary contraction. Then dimHV = dimHV ′ = 1, and this
means that V and V ′ are quasi-unsplit in the sense of [BCD07]. Moreover, using the claim we see that
in any case the general V ′-equivalence class has codimension at most 3. Hence [BCD07, Theorem 2]
yields the existence of an elementary Mori contraction g : W → Z such that every fiber of g is a
V ′-equivalence class. Then dimZ � 3, and by rigidity (see for instance [Deb01, Lemma 1.15]) there
exists a morphism Y → Z as in the statement. The completes the proof of Theorem 4.1.

We observe that, with a slight modification of the argument, we can prove a different version of
the previous theorem. Namely we can allow f to be quasi-elementary instead of elementary, if we
impose a stronger condition on kf and kϕ.

Theorem 4.4. Let X be a smooth variety of dimension n and consider two Mori contractions
f : X → Y and ϕ : X →W such that NE(f)∩NE(ϕ) = {0} and f is quasi-elementary of fiber type.
Let kf and kϕ be the dimensions of the general fibers of f and ϕ|Exc(ϕ) respectively. Assume that
we are in one of the following situations:

(i) ϕ is quasi-elementary and kf + kϕ � n− 2;

(ii) ϕ is elementary and divisorial, and dimY � 2; or

(iii) ϕ is elementary and divisorial, f(Exc(ϕ)) = Y , and kϕ � dimY − 2.

Then there exists a commutative diagram as (4.2) where h : X → Z is a contraction, dimZ � 2,
and ρX − ρZ � (ρX − ρY ) + (ρX − ρW ) (equality holds except possibly in (i)).
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Proof. We perform the same construction as in the previous proof, so that W is a normal and
Q-factorial projective variety, and V ′ is a covering family of rational curves in W . Moreover by
the claim and the assumptions, we see that now the general V ′-equivalence class has codimension
at most 2 in W . On the other hand, V ′ is not quasi-unsplit if f is not elementary. However (4.3)
implies the following property.

Let D be a Weil divisor in W whose support is disjoint from the general V ′-equivalence
class. Then D · C = 0 for every irreducible component of every curve in V ′.

We claim that we can apply [BCD07, Proposition 1] to the family V ′ on W , even if V ′ is not
quasi-unsplit. Indeed the quasi-unsplit assumption is used in the proof of this proposition uniquely
to deduce the property above. One can think that the property above generalizes the quasi-unsplit
property, in the same way as quasi-elementary contractions generalize elementary contractions of
fiber type.

Now as in the proof of [BCD07, Theorem 1], we get the existence of a normal projective variety
Z and a surjective morphism g : W → Z such that every fiber of g is a V ′-equivalence class (even if
g is not necessarily a Mori contraction).

As before this implies the existence of the diagram (4.2) by rigidity, and h := g◦ϕ is a contraction.
Moreover, it is clear that ker g∗ = HV ′ and

ker h∗ = (ϕ∗)−1(HV ′) = (ϕ∗)−1(ϕ∗(ker f∗)) = ker f∗ + kerϕ∗.

Observe that the hypothesis NE(f)∩NE(ϕ) = {0} does not imply that ker f∗∩kerϕ∗ = {0}, unless
we know that one of f or ϕ is elementary, as in (ii) or (iii). Thus dimker h∗ � dim ker f∗+dimkerϕ∗,
and equality holds except possibly in (i).

Remark 4.5. In both Theorems 4.1 and 4.4, we have in fact proved that dimZ � dimY in case (ii),
and dimZ � n − (kf + kϕ) = dimY − kϕ in cases (i) and (iii). Thus the contraction Y → Z is of
fiber type in case (i), and elementary of fiber type in case (iii).

5. Fano manifolds with a quasi-elementary contraction onto a surface

In this section we show Theorem 1.1(i). So let us consider a smooth Fano variety X of dimension
n � 3, and a quasi-elementary contraction f : X → Y onto a surface. We know by Lemma 3.10(iii)
that f is equidimensional and Y is smooth. Moreover, Y is rational, for instance because X is
rationally connected.

Remark 5.1. Let ψ : Y → Z be a birational elementary contraction. Then Z is smooth, ψ is the
blow-up of a point z0 ∈ Z, and there exists a diagram

X

f

��

ϕ �� W

g

��
Y

ψ �� Z

where W is a smooth Fano variety, g is a quasi-elementary contraction with smooth fiber F0 over
z0, ϕ is the blow-up of F0, Exc(ϕ) ∼= P1 × F0, and f|Exc(ϕ), ϕ|Exc(ϕ) are the two projections.

In fact ψ has a lifting as explained in § 2.5, which gives the diagram above. Since X is Fano, ϕ
is a Mori contraction. Then Theorem 3.14(v) gives the statement.

Notice moreover that the lifting ϕ is uniquely determined by ψ, because Exc(ϕ) = f−1(Exc(ψ)) ∼=
P1 × F0 and NE(ϕ) is determined by the curves P1 × {pt} in X. As described in § 2.5, every choice
of an extremal ray α̃ in NE(ψ ◦ f) such that α̃ �⊆ NE(f), gives rise to a lifting of ψ. We deduce that
such an extremal ray α̃ = NE(ϕ) is unique, and that NE(ψ ◦ f) = α̃+ NE(f).
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Proof of Theorem 1.1(i). If ρY = 1 then Y ∼= P2, so we can assume that ρY > 1. In order to show
that Y is Del Pezzo, it is enough to show that any elementary contraction of Y is a Mori contraction,
see Remark 3.11.

Let us fix such a contraction ψ : Y → Z. If ψ is birational, then Remark 5.1 says that Z is
smooth and ψ is a blow-up, hence a Mori contraction.

Let us consider the case where ψ is not birational, so that dimZ � 1. Since we have assumed
that ρY > 1, we have dimZ = 1, and Y is a smooth rational surface with ρY = 2. Thus Y is a
Hirzebruch surface and Z ∼= P1. If we consider the other elementary contraction of Y , we find two
possibilities: either it is again a contraction over P1 and Y ∼= P1 × P1, or it is birational. In this
case, by Remark 5.1 it must be a smooth blow-up, so Y ∼= F1.

Hence Y is a Del Pezzo surface, and we have the first part of the statement.
Let us assume that ρY � 3 and prove the second part of the statement. Since Y is Del Pezzo,

there is a morphism Y → P2 that is a blow-up of ρY − 1 distinct points pi. Thus we can apply
Remark 5.1 to each blow-up and get a smooth Fano variety X0 with a quasi-elementary contraction
f0 : X0 → P2, such that X is obtained from X0 by blowing up the fibers of f0 over pi.

Therefore it is enough to prove the statement in the case ρY = 3, where Y is the blow-up of
P2 in two points p1 and p2. Call C1 and C2 the two corresponding exceptional curves, and C3 the
proper transform in Y of the line through p1 and p2 in P2 (see diagram below).

C1 C2

C3

These are all the (−1)-curves in Y . Call αi the extremal ray of NE(Y ) containing the numerical
class of Ci; then NE(Y ) = α1 + α2 + α3 is simplicial.

Let us make a preliminary remark on the cone NE(X). The surface Y has three elementary
contractions, which are blow-ups with exceptional curves C1, C2, and C3. Recall from Remark 5.1
that the lifting of each of these blow-ups is unique. This means that for every i = 1, 2, 3 there is a
unique extremal ray α̃i of NE(X) such that α̃i + NE(f) is a face of NE(X) and f∗(α̃i) = αi.

Let us show that X has no small elementary contraction ξ : X → V such that NE(ξ) �⊆ NE(f).
By contradiction, let ξ : X → V be such a contraction. Since f is finite on fibers of ξ, these fibers
have dimension at most 2. If F0 is an irreducible component of a fiber of ξ with dimF0 = 2, then
f(F0) = Y , so

(f∗)|N1(F0,X) : N1(F0,X) → N1(Y )

is surjective. This is impossible because dimN1(F0,X) = 1 while ρY = 3.
On the other hand, a small contraction cannot have only one-dimensional fibers; see [Wís91a,

Corollary on p. 145]. Thus we have a contradiction.
Consider now an extremal ray β of NE(X) that is not contained in NE(f). Since the contraction

of β is not small, Theorem 4.4(ii) implies that there is a face NE(h) (h as in (4.2)) of NE(X), of
dimension 1 + dim NE(f), containing both β and NE(f). Then f∗(β) is an extremal ray of NE(Y ),
say α1. This implies that β = α̃1.
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Summing up, we have shown that α̃1, α̃2, and α̃3 are the only extremal rays of NE(X) outside
NE(f).

Let us show that X is a product. Applying Remark 5.1 we get the sequence

X

f

��

ϕ1

��

ζ

��
W1

��

�� X0

f0
��

Y
ψ1

�� F1
�� P2

where ψ1 : Y → F1 is the contraction of C1 and F1 → P2 is the contraction of (the image of) C2;
hence ζ : X → X0 is the contraction of α̃1 + α̃2.

Since dimX0 � 3, NE(f0) is a proper face of NE(X0), and there is at least one extremal ray
β of NE(X0) outside NE(f0). As explained in § 2.5, β must be the image via ζ∗ of some extremal
ray β̃ of NE(X) not lying in NE(ζ) = α̃1 + α̃2. Since ζ∗(NE(f)) = NE(f0) and β �⊆ NE(f0), it must
be β̃ �⊆ NE(f). Thus the only possibility is β̃ = α̃3 and β = ζ∗(α̃3).

Let

h : X0 −→W0

be the contraction of β. Observe that dimW0 � n− 2, because h is finite on fibers of f0. Our goal
is to show that X0

∼= P2×W0 and f0 is the projection, which implies the statement. The first step is
to show that dimW0 = n− 2.

For i = 1, 2, 3 let ϕi : X → Wi be the smooth blow-up obtained by contracting α̃i. Let Ei ⊂ X
be the exceptional divisor of ϕi, F the fiber of f over C1 ∩ C3, and F ′ the one over C2 ∩ C3. By
Remark 5.1 we have E3

∼= P1 × F ∼= P1 × F ′, so F ∼= F ′; let us call it F . Thus Ei ∼= P1 × F ,
E1 ∩ E2 = ∅, while E1 ∩ E3 and E2 ∩E3 are fibers of f .

Let C̃i ⊂ Ei be a curve corresponding to P1 × {∗}. Then [C̃i] ∈ α̃i, C̃i · Ei = −1, f∗(C̃i) = Ci,
and f∗(Ci) = Ei. This gives

C̃1 · E3 = C̃3 ·E1 = C̃2 ·E3 = C̃3 ·E2 = 1 while C̃1 ·E2 = C̃2 ·E1 = 0.

Finally set E′
3 := ζ(E3) and C ′

3 := ζ∗(C̃3), so that [C ′
3] ∈ β.

Observe that E′
3 is a divisor in X0 and there are m1,m2 ∈ Z�0 such that

ζ∗(E′
3) = E3 +m1E1 +m2E2.

Then

0 = E′
3 · ζ∗(C̃1) = E3 · C̃1 +m1E1 · C̃1 +m2E2 · C̃1 = 1 −m1

so m1 = 1, and similarly m2 = 1. Hence

E′
3 · C ′

3 = (E3 + E1 + E2) · C̃3 = 1.

This says that C ′
3 is a minimal element in the extremal ray β, namely that, for every curve C ⊂ X0

such that [C] ∈ β, we have C ≡ mC ′
3 with m ∈ Z>0.

Moreover

KX = ϕ∗
1(KW1) +E1 = ζ∗(KX0) + E1 + E2,

which gives

−KX0 · C ′
3 = ζ∗(−KX0) · C̃3 = (−KX + E1 +E2) · C̃3 = 3.

This says that the length l(β) of the extremal ray β, that is the minimal anticanonical degree of
rational curves whose class is in β, is 3. Now [Wís91a, Theorem 1.1] yields that for every non-trivial
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fiber F of h we have

dimF + dim Locus(β) � n+ 2.

On the other hand f0 is finite on fibers of h, so dimF � 2. Therefore dim Locus(β) = n, every fiber
of h has dimension 2, and dimW0 = n− 2.

Now f0 and h induce a finite morphism X0 → P2 ×W0; let d be its degree.
Let w0 ∈ W0 be a general point and S0 = h−1(w0). Then S0 is a smooth surface and g :=

(f0)|S0
: S0 → P2 is finite of degree d.

Since in X the divisor E3 intersects transversally E1 and E2, ζ|E3
is an isomorphism, so that

E′
3
∼= P1 × F and (f0)|E′

3
is the first projection.

Observe that f0(E′
3) is a line l (the line through p1 and p2), and h|E′

3
: E′

3 →W0 is surjective, so
it factors as

E′
3
π2−→ F

ξ−→W0

where π2 is the second projection and ξ is a finite morphism. We have

g−1(l) = (f0)−1(l) ∩ S0 = E′
3 ∩ S0 = E′

3 ∩ h−1(w0) = (h|E′
3
)−1(w0) ∼= P1 × ξ−1(w0).

On the other hand g−1(l) is the support of an ample divisor in S0 and hence it is connected. This
implies that ξ is an isomorphism and that l̃ := g−1(l) � P1 × w0.

Then g∗(l) = d l̃; on the other hand g|l̃ = (f0)|l̃ is an isomorphism, so g∗(l̃) = l. Now we have

1 = l2 = l · g∗(l̃) = g∗(l) · l̃ = d(l̃)2,

so d = 1 and we are done; Theorem 1.1(i) is proved.

6. Fano manifolds with a quasi-elementary contraction onto a 3-fold

In this section we prove Theorem 1.1(ii). Let us consider a smooth Fano variety X of dimension
n � 4, and a quasi-elementary contraction f : X → Y with dimY = 3.

Recall that Y is factorial and has at most isolated canonical singularities by Lemma 3.10(i)
and (iv). Let ψ : Y → Z be an elementary contraction of Y . We consider all possibilities for ψ.

If ψ is of type (3,0), then Z is a point and Y is Fano with ρY = 1.
If ψ is of type (3,1), then Z � P1 and ρY = 2. In this case the other elementary contraction of

Y cannot be again of type (3,1), because non-trivial fibers of distinct elementary contractions can
intersect at most in finitely many points, and Y is factorial.

Claim 6.1. If ψ : Y → Z is of type (3,2), then ψ is equidimensional, and we have the following
possibilities:

(i) ρY = 2 and Z ∼= P2;

(ii) ρY = 3 and Z is either P1 × P1 or F1; or

(iii) Z is a smooth Del Pezzo surface with ρZ � 3, Y ∼= Z×P1, ψ is the projection, and X ∼= Z×W ,
where W is a smooth Fano variety of dimension n−2 with a quasi-elementary contraction onto
P1.

Proof. We have dimZ = 2 and ψ ◦ f : X → Z is quasi-elementary (see Example 3.2). By Theo-
rem 1.1(i), ψ ◦ f is equidimensional and Z is a smooth Del Pezzo surface. Then ψ must be equidi-
mensional too.

If ρZ = 1, 2, we get the first two cases. If ρZ � 3, again by Theorem 1.1(i) we see thatX ∼= Z×W ,
where W is a smooth Fano variety of dimension n − 2, and ψ ◦ f is the projection onto Z. Then
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any intermediate contraction Z ×W → V → Z must be onto a product V ∼= Z × F , hence we get
Y ∼= Z × P1. Moreover, f induces a contraction g : W → P1. Since f is quasi-elementary, it is easy
to see that g is quasi-elementary too.

Claim 6.2. If ψ is of type (2,0), then we have the following possibilities:

(i) ρY = 2 and Y has an elementary contraction of type (3,2); or
(ii) ρY = 3 and Y has a birational elementary contraction with fibers of dimension at most 1.

Proof. The divisor Exc(ψ) satisfies dimN1(Exc(ψ), Y ) = 1, hence Proposition 3.16 yields ρY � 3.
However, Y has a non-trivial elementary contraction, hence ρY > 1. Then the statement follows
from Remark 3.17.

Claim 6.3. Let ψ : Y → Z be an elementary contraction that is birational with fibers of dimension
at most 1. Then ψ is the blow-up of a smooth curve C ⊂ Zreg, and we have a commutative diagram

X

f
��

ϕ �� W

g

��
Y

ψ �� Z

whereW is smooth, ϕ is the blow-up of a smooth subvariety of codimension 2, Exc(ϕ) = f∗(Exc(ψ)),
and g is a quasi-elementary Mori contraction.

Proof. Recall that ψ has a lifting as explained in § 2.5, so we have a diagram as above. Since X is
Fano, ϕ is a Mori contraction. Then Theorem 3.14 yields the statement.

In particular, Claim 6.3 implies that Y has no small elementary contractions.

Claim 6.4. In the setting of Claim 6.3, suppose that Y is Fano. Set E := Exc(ϕ) and S := Exc(ψ).
Then the following statements are equivalent:

(i) W is not Fano;
(ii) Z is not Fano; and
(iii) S ∼= P1 × P1 with normal bundle OP1×P1(−1,−1), and there is an extremal ray β of NE(Y ),

different from NE(ψ), such that S · β < 0.

Proof. (i) ⇒ (ii) If W is not Fano, by [Wís91a, Proposition 3.4] there exists an extremal ray α
of NE(X) such that α �= NE(ϕ) and α · E < 0. Observe that α is not contracted by f , because
E · C = 0 for every curve C ⊂ X contracted by f .

Let ϕ2 : X →W2 be the contraction of α and let F0 be an irreducible component of a non-trivial
fiber of ϕ2. Then F0 ⊂ E and f is finite on F0, hence f(F0) ⊆ S and dimF0 � 2. Moreover, if
dimF0 = 2, then f(F0) = S. This would imply that dimN1(S, Y ) = 1, while dimN1(S, Y ) = 2.
Thus dimF0 = 1.

Now [Wís91a, Theorem 1.2] yields that ϕ2 is a smooth blow-up with exceptional divisor E.
Observe that S is a smooth P1-bundle over ψ(S). It is not difficult to see that the P1-bundle (ϕ2)|E
induces a second rational fibration on S, so that S ∼= P1 × P1. Moreover, if C ⊂ E is a non-trivial
fiber of ϕ2, then

−1 = C · E = C · f∗(S) = f∗(C) · S,
and this gives NS/Y

∼= OP1×P1(−1,−1). In particular, ψ(S) is a curve of anticanonical degree 0 in
Z, so Z is not Fano.

(ii) ⇒ (iii) Suppose that Z is not Fano. Observe that Y and Z may be singular; however they
are factorial and KY = ψ∗(KZ) + S. Then reasoning as in [Wís91a, Proposition 3.4] one gets
statement (iii).
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(iii) ⇒ (i) The contraction of β is birational with fibers of dimension at most 1; let ϕ2 : X →W2

be the smooth blow-up given by Claim 6.3. Then E = Exc(ϕ2), and ϕ2 �= ϕ. If C ⊂ E is a non-trivial
fiber of ϕ2, then KX · C = E · C = −1, which yields −KW · ϕ∗(C) = 0. Hence W is not Fano.

Claim 6.5. Suppose that Y is Fano, and let β1 and β2 be two extremal rays of NE(Y ) with distinct
divisorial loci Si = Locus(βi). If S1 ∩S2 �= ∅, then the contraction ψ : Y → Z of one of the βi is the
blow-up of a smooth curve C ⊂ Zreg, and Z is Fano.

Proof. Let ψi : Y → Zi be the contraction of βi. Since S1 ∩ S2 �= ∅ and Y is factorial, we have
dimS1 ∩ S2 = 1. Thus ψ1 and ψ2 cannot both be of type (2,0).

So let us assume that ψ1 is of type (2,1). If Z1 is Fano, we are done. If Z1 is not Fano, Claim 6.4
yields the existence of a second extremal ray β̃1 of NE(Y ), distinct from β1, with β̃1 · S1 < 0. Then
N1(S1, Y ) is generated by β1 and β̃1, and no other extremal ray of NE(Y ) can be contained in
N1(S1, Y ).

Thus ψ2 cannot be of type (2,0). Let us show that Z2 must be Fano. If not, by Claim 6.4 there
is another extremal ray β̃2 of NE(Y ), distinct from β2, with β̃2 · S2 < 0. Since β2 and β̃2 are not
contained in N1(S1, Y ), we have β2 · S1 � 0 and β̃2 · S1 � 0.

Now if C ⊂ S1 ∩S2 is an irreducible curve, we get C ·S1 < 0 because β1 ·S1 < 0 and β̃1 ·S1 < 0.
On the other hand, C ·S1 � 0 because β2 ·S1 � 0 and β̃2 ·S1 � 0. Thus we have a contradiction.

Claim 6.6. In the setting of Claim 6.3, suppose that Y is Fano. Then we are in one of the following
situations:

(i) W and Z are Fano;

(ii) ρY � 3 and Y has another elementary contraction ψ̃ as in Claim 6.3, such that the correspond-
ing W̃ , Z̃ are Fano; or

(iii) ρY = 3 and Y has an elementary contraction of type (3,2).

Proof. Let us assume that we are not in situation (i), so W and Z are not Fano. By Claim 6.4 we
have S ∼= P1 × P1, and there is a second extremal ray β of NE(Y ) with β · S < 0.

There exists an extremal ray β̃ of NE(Y ) such that S · β̃ > 0; let ψ̃ : Y → Z̃ be its contraction.
Clearly β̃ is distinct from NE(ψ) and β, and the elements of three distinct extremal rays must

by linearly independent in N1(Y ). Hence ρY � 3 and β̃ ∩ N1(S, Y ) = {0}, which implies that ψ̃ is
finite on S. On the other hand, S must intersect every non-trivial fiber of ψ̃, hence ψ̃ has fibers of
dimension at most 1.

If ψ̃ is of fiber type, then it is of type (3,2). Let us consider

(ψ̃∗)|N1(S,Y ) : N1(S, Y ) −→ N1(Z̃).

Since ker ψ̃∗ is the line spanned by β̃ in N1(Y ), we have ker ψ̃∗ ∩N1(S, Y ) = {0} and (ψ̃∗)|N1(S,Y ) is
injective. On the other hand, ψ̃(S) = Z̃, hence (ψ̃∗)|N1(S,Y ) is surjective too. This gives ρZ̃ = 2 and
ρY = 3, and thus situation (iii).

Suppose that ψ̃ is birational. Then Exc(ψ̃)∩Exc(ψ) �= ∅, and Claim 6.5 implies that Z̃ is Fano.
Finally also W̃ is Fano by Claim 6.4, and we get situation (ii).

Claim 6.7. Let π : Y → T be a contraction onto a surface. Let α1, . . . , αm be the extremal rays of
NE(π) and ψi : Y → Zi be the contraction of αi. Then Exc(ψi) ∩ Exc(ψj) �= ∅ for some i �= j.

Proof. Set Si := Exc(ψi), and assume by contradiction that Si ∩ Sj = ∅ for every i �= j. Then each
ψi is birational and Si · αi < 0 for every i by Remark 2.4; moreover Si · αj = 0 for every i �= j.
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Let C ⊂ Y be an irreducible curve that is contracted by π but not contained in S1 ∪ · · · ∪ Sm.
Then

C ≡
m∑
i=1

λili where [li] ∈ αi and λi ∈ Q�0 for every i = 1, . . . ,m.

So 0 � C · Si = λi(li · Si) implies that λi = 0 for every i = 1, . . . ,m, a contradiction.

Proof of Theorem 1.1(ii). Let us suppose that ρY � 4. By Claims 6.1, 6.2, and 6.3, any elementary
contraction of Y is either a smooth blow-up or a P1-bundle. This implies that Y is Fano (but
possibly singular) by Remark 3.11.

Suppose now that Y is smooth and that ρY � 6. Then Y ∼= S × P1 with S a Del Pezzo surface
by [MM81, Theorem 2]. Thus X → S is a quasi-elementary contraction (see Example 3.2), and
applying Theorem 1.1(i) as in the proof of Claim 6.1 we easily get the statement.

Thus we are left to prove that if ρY � 4, then Y must be smooth.
By contradiction, assume that Y is singular and ρY � 4. By Claims 6.1, 6.2, and 6.6, we can

construct a sequence
X = XρY

f
��

�� XρY −1 ��

��

· · · �� X4

f4
��

Y = YρY

ψρY �� YρY −1 �� · · · ψ5 �� Y4

where, for every i = 4, . . . , ρY , Xi is smooth and Fano, fi is a quasi-elementary contraction, Yi is
Fano with ρYi = i, and ψi is the blow-up of a smooth curve contained in the smooth locus of Yi−1.
In particular, each Yi is singular, because Y is.

Since Y4 is singular and ρY4 = 4, Claim 6.1 implies that Y4 has no elementary contraction of
fiber type.

Claim 6.8. The 3-fold Y4 has no contraction onto a surface.

Proof. By contradiction let π : Y4 → T be such a contraction. Then π cannot be elementary, so
ρT � 2.

The cone NE(π) containsm � 2 extremal rays, whose contractions are birational. Call S1, . . . , Sm
their exceptional loci. By Claim 6.7 they cannot all be disjoint, so we can assume that S1 ∩ S2 �= ∅.

Using Claim 6.5, we can assume that the elementary contraction ψ4 : Y4 → Y3 with exceptional
locus S1 is the blow-up of a smooth curve C3 ⊂ (Y3)reg, and that Y3 is Fano. We observe that Y3 is
singular because Y4 is. As before we get

X4

f4
��

�� X3

f3
��

Y4
ψ4 �� Y3

where X3 is smooth and Fano and f3 is a quasi-elementary contraction. Moreover, π induces a
contraction π′ : Y3 → T .

If π′ is elementary, then ρT = 2, π′ is equidimensional, and T is either P1×P1 or F1 by Claim 6.1.
Hence π′ is a conic bundle (see [Sar82, § 1] for the definition and properties of conic bundles). Let
∆π′ ⊂ T be the discriminant locus of π′, which is non-empty because Y3 is singular.

We recall that C3 ⊂ Y3 cannot intersect any curve of anticanonical degree 1 by Remark 2.3.
Thus C3 cannot be a component of a reducible fiber of π′.

If C3 is an irreducible fiber, let p = π′(C3) ∈ T and call T ′ the blow-up of T in p: then Y4 has
an elementary contraction onto T ′, which is impossible.
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Hence π′(C3) is a curve in T , and it is disjoint from ∆π′ because C3 cannot intersect singular
fibers of π′.

If T ∼= P1 ×P1, the only possibility is that ∆π′ is a union of fibers of a projection P1 ×P1 → P1,
hence a disjoint union of smooth rational curves. But this is impossible, see for instance [Pro05,
Lemma 5.3].

Consider now the case where T ∼= F1. Then we have a contraction Y3 → F1 → P2, which has
a second factorization Y3 → Y2 → P2. It is not difficult to see that ψ3 : Y3 → Y2 is birational with
fibers of dimension at most 1, so by Claim 6.3 it is again a blow-up of a smooth curve C2 ⊂ (Y2)reg,
and we have the diagram

X3

f3
��

�� X2

f2
��

Y3
ψ3 �� Y2

ξ �� P2

where X2 is smooth, Y2 is singular with ρY2 = 2, and f2 is a quasi-elementary Mori contraction.
The only curve in Y2 which could have non-positive anticanonical degree is C2. Thus ξ : Y2 → P2

is a conic bundle with non-empty discriminant locus ∆ξ ⊂ P2. If ξ(C2) is a curve in P2, then C2

must intersect some singular fiber, which is again impossible by Remark 2.3. Thus C2 is a smooth
fiber of ξ, Y2 is Fano, and X2 is Fano too by Claim 6.4.

Let us consider the other elementary contraction η : Y2 → Z of Y2.
If η is again of type (3,2), reasoning as above we get that η must contract C2, a contradiction

because NE(η) ∩ NE(ξ) = {0}.
If η is of type (3,1), it is a fibration in Del Pezzo surfaces over P1. Then Y2 is a finite cover of

P1 × P2, and C2 is the inverse image of P1 × {pt}. This implies that Y3 is a finite cover of P1 × F1,
which gives a surjective morphism Y3 → P1×P1. Taking the Stein factorization we get an elementary
contraction Y3 → T ′ of type (3,2), where T ′ is a finite cover of P1 × P1. By Claim 6.1, T ′ can be
P1 × P1 or F1, but T ′ has two distinct fibrations, thus T ′ ∼= P1 × P1. We have already excluded this
possibility.

Therefore, η is birational; let E be its exceptional divisor. Since E · NE(η) < 0 by Remark 2.4,
it must be E ·NE(ξ) > 0, hence ξ(E) = P2 and E intersects C2. In particular, E cannot be covered
by curves of anticanonical degree 1, thus η is of type (2,0). Moreover, E · C2 � 2, because ξ has
singular fibers.

The composite contraction Y3 → Z has a second factorization

Y3
σ−→ Ỹ2

χ−→ Z.

It is not difficult to see that σ has exceptional locus ψ∗
3(E) and is the blow-up of a smooth curve

C̃2 ⊂ (Ỹ2)reg. Since the image of ψ∗
3(E) in Z is z0 := η(E), C̃2 is contracted by χ. Then we see that

χ is again a Mori contraction of type (2,1) with exceptional divisor σ(Exc(ψ3)), and Ỹ2 is Fano. In
particular, χ is again a blow-up of a smooth curve contained in Zreg, so that z0 is a smooth point.
Moreover, ψ∗

3(E) is contained in the smooth locus of Y3, so that E ⊂ (Y2)reg.
Therefore η is just the blow-up of z0 and E ∼= P2. If E intersects C2 in at least two distinct

points, take l to be a line in E through these two points. Let l̃ be the proper transform of l in Y3.
Then −KY2 · l = 2 and l̃ · Exc(ψ3) � 2, so by Remark 2.3 we get −KY3 · l̃ � 0, a contradiction.

If E intersects C2 in a single non-reduced point y0, similarly as before take l to be a line in
E ∼= P2 through y0. Then the schematic intersection ψ∗

3(E)∩Exc(ψ3) is non-reduced along the fiber
of ψ3 over y0, thus again l̃ ·Exc(ψ3) � 2 gives a contradiction. This concludes the case where ρT = 2.

We still have to exclude the case where ρT = 1 and Y3 has no elementary contractions of type
(3,2). Reasoning as for Y4, we see that one of the two extremal rays of NE(π′) yields a blow-up

1452

https://doi.org/10.1112/S0010437X08003679 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003679


Quasi-elementary contractions of Fano manifolds

ψ3 : Y3 → Z2 of a smooth curve C ′ ⊂ (Z2)reg, and Z2 is Fano with ρZ2 = 2. Now π′ yields an
elementary contraction π′′ : Z2 → T . Claim 6.1 gives T ∼= P2, and ∆π′′ is non-empty. As before we
easily get a contradiction. This completes the proof of Claim 6.8.

Using Claims 6.8, 6.2, and 6.6, we get a sequence

Y4
ψ4 �� Y3

ψ3 �� Y2
ψ2 �� Y1

where each Yi is Fano and each ψi is the blow-up of a smooth curve Ci−1 ⊂ (Yi−1)reg. In particular
Y1 is factorial with isolated canonical singularities, singular, and ρY1 = 1.

We first show that Y1 must have terminal singularities, using the following lemma.

Lemma 6.9. Let Z be a three-dimensional Q-factorial projective variety, with isolated canonical
singularities and KZ Cartier. Suppose that Z is Fano with ρZ = 1, and that the singularities of Z
are not terminal. Then one of the following occurs:

(i) Z contains a one-dimensional family of curves of anticanonical degree 1 passing through a
singular point; or

(ii) Z is covered by a family of curves of anticanonical degree at most 2 passing through a singular
point.

We postpone the proof of Lemma 6.9 and carry on with the proof of Theorem 1.1(ii).
Suppose that Y1 has at least one non-terminal singular point: then Lemma 6.9 applies to Y1. If

part (i) holds, let S ⊂ Y1 be a surface covered by curves of anticanonical degree 1. Since ρY1 = 1,
S is ample, and C1 ∩ S �= ∅. Observe that, even if C1 ⊂ S, C1 does not contain any singular point,
hence it cannot be a member of the family given by part (i). Thus C1 intersects some curve of
anticanonical degree 1, which is impossible by Remark 2.3.

Suppose now that part (ii) holds for Y1. If C1 is a component of some reducible curve l1 of the
family, it must be l1 = C1 ∪C ′

1 with −KY1 ·C1 = −KY1 ·C ′
1 = 1, which again gives a contradiction.

Again C1 cannot be a member of the family, because it does not contain singular points. Hence C1

is not contained in any member of the family; let T be an irreducible surface containing C1 such
that through every point of C1 there is a curve of anticanonical degree at most 2 contained in T .
Let T̃ be the proper transform of T in Y2. Then through every point of T̃ ∩Exc(ψ2) there is a curve
of anticanonical degree 1 contained in T̃ (see Remark 2.3).

Consider C2 ⊂ (Y2)reg. If ψ2(C2) is a point, then C2 must intersect some curve of anticanonical
degree 1 contained in T̃ . On the other hand, if ψ2(C2) is a curve, then it must intersect T , thus
C2 must intersect ψ−1

2 (T ) = T̃ ∪Exc(ψ2). In any case C2 will intersect some curve of anticanonical
degree 1, which gives a contradiction.

Hence Y1 has terminal singularities, and the same holds for each Yi. Consider in particular Y4.
By [Nam97], Y4 has a smoothing, that is an integral complex space Y, with a projective flat morphism
Y → ∆ onto the complex unit disk, such that Y4 is the fiber over 0 while the fiber Yt over t �= 0
is a smooth Fano 3-fold. It is proven in [JR06] that PicY4

∼= PicYt, in particular ρYt = 4. Then
we know by Mori and Mukai’s classification that Yt has a conic bundle structure (not necessarily
elementary), see [IP99, Theorem on p. 141]. Our goal is to deduce from this that Y4 must have a
contraction onto a surface, contradicting Claim 6.8.

For this we need the following lemma, based on [JR06].

Lemma 6.10. Let Z be a three-dimensional factorial Fano variety with terminal singularities and
Z → ∆ a smoothing. Consider the inclusions it : Zt ↪→ Z and i0 : Z0 ↪→ Z.
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Then the push-forwards (it)∗ and (i0)∗ induce bijections among the cones

NE(Zt), NE(Z/∆), and NE(Z0),

and every contraction of Zt or of Z0 is the restriction of the contraction of the corresponding face
of NE(Z/∆).

By Lemma 6.10, the conic bundle on Yt induces a contraction Y → T → ∆. This restricts to a
contraction π : Y4 → T onto a surface, which contradicts Claim 6.8. Theorem 1.1(ii) is proved, and
this concludes the proof of Theorem 1.1.

Proof of Lemma 6.9. Let ψ : Z ′ → Z be a partial crepant resolution such that Z ′ has terminal and
factorial singularities (see [KM98, § 6.3]). Hence KZ′ = ψ∗(KZ), −KZ′ is nef and big, and ρZ′ > 1
because ψ is not an isomorphism.

Since Z is Q-factorial, for every non-terminal point p ∈ Z the inverse image ψ−1(p) has pure
dimension 2, therefore Exc(ψ) is a divisor. Moreover, any irreducible curve contained in Exc(ψ) has
anticanonical degree 0.

There is at least one elementary Mori contraction f : Z ′ →W . Observe that f must be finite on
Exc(ψ), because any curve contracted by f has positive anticanonical degree. Hence any fiber F of
f such that F ∩ Exc(ψ) �= ∅ has dimension at most 1.

Suppose that f is of fiber type. Then it must be of type (3,2) and [Cut88, Theorem 7] says that
W is a smooth surface and f is a conic bundle. Moreover, if E ⊆ Exc(ψ) is an irreducible component,
then f(E) = W , so that every fiber of f intersects E. Then the fibers of f give a covering family of
curves of anticanonical degree at most 2 in Z, all passing through the singular point ψ(E), and we
get part (ii).

Suppose that f is birational. Since Z ′ is Gorenstein, f is divisorial; set D := Exc(f). We claim
that D cannot be disjoint from Exc(ψ). In fact, if so, ψ(D) would be a non-nef Cartier divisor in
Z, which is impossible because ρZ = 1.

Hence f must be of type (2,1) and by [Cut88, Theorem 4] we have −KZ′ · l = 1 for the general
fiber l of f . Again, if E is an irreducible component of Exc(ψ) intersecting D, every fiber l of f must
intersect E. So we get a one-dimensional family of curves of anticanonical degree 1 in Z, passing
through the singular point ψ(E).

Proof of Lemma 6.10. By [JR06, Proposition 1.1], Z has at most isolated terminal factorial singu-
larities at the singular points of Z0.

We refer to [KMM87, § 0-1] for the notation in the relative situation. Observe that for a projec-
tive morphism in the analytic category the standard results of the Minimal Model Program hold,
see [KM98, Example 2.17] and references therein. In particular, since each fiber of Z → ∆ is Fano,
NE(Z/∆) is closed and polyhedral by the relative version of the cone theorem.

We first observe that the linear maps

(it)∗ : N1(Zt) −→ N1(Z/∆) and (i0)∗ : N1(Z0) −→ N1(Z/∆)

are isomorphisms. In fact they are dual to the restrictions

Pic(Z) ⊗ R −→ Pic(Zt) ⊗ R and Pic(Z) ⊗ R −→ Pic(Z0) ⊗ R,

which are isomorphism by [JR06, Theorem 1.4]. Moreover, we have (it)∗ NE(Zt) ⊆ NE(Z/∆) and
(i0)∗ NE(Z0) ⊆ NE(Z/∆).

Up to shrinking ∆, we can assume that for every extremal ray α of NE(Z/∆), either Locus(α)
dominates ∆, or Locus(α) is contained in Z0. Let us show that the second case cannot happen.
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Assume by contradiction that Locus(α) is contained in Z0 and consider the contraction ϕ of α,
as below.

Z

��

ϕ �� W

����
��

��
��

∆
Then ϕ is an isomorphism outside the central fiber, and restricts to a contraction ϕ0 : Z0 →W0 on
the central fiber. The morphism W → ∆ is projective and the general fiber has dimension 3, hence
dimW0 = 3 and ϕ0 is birational.

This means that E = Exc(ϕ) = Exc(ϕ0) has dimension at most 2, namely ϕ is a small contraction
of Z and it must be of type (2,0). Hence W is not factorial at ϕ(E).

Since (i0)∗ is injective, ϕ0 is an elementary contraction of type (2,0) of Z0, and E is irreducible.
Moreover, W0 has terminal singularities and is Fano.

If W0 were Gorenstein, W should be factorial again by [JR06, Proposition 1.1], which is not
the case: so KW0 is not Cartier. The possibilities for ϕ0 are given in [Cut88, Theorem 5], and the
only case where KW0 is not Cartier is E ∼= P2 with normal bundle NE/Z0

∼= OP2(−2).
Since E is a smooth prime divisor in the factorial variety Z0, it is contained in (Z0)reg and hence

in Zreg. Now [Kaw89, Theorem 2.1] yields NE/Z ∼= OP2(−1)⊕2, a contradiction.
Hence Locus(α) dominates ∆, which means that α is contained in both cones (it)∗ NE(Zt) and

(i0)∗ NE(Z0). Repeating this for every extremal ray of NE(Z/∆), we get the statement.

7. Applications and examples

In this section we prove the corollaries stated in the introduction, and some other applications. We
also give some related examples.

Suppose that X is a smooth Fano variety with a quasi-elementary contraction f : X → Y . If
X has other suitable contractions, one can use Theorems 4.1 and 4.4 to get a quasi-elementary
contraction h : X → Z with dimZ � 3, and then apply Theorem 1.1. Corollaries 1.4, 7.2, and 7.3
are obtained in this way.

Proof of Corollary 1.4. Recall that ρX − ρYi � ρFi because fi is quasi-elementary. Suppose that
dimF1 + dimF2 � n− 2. By Theorem 4.4(i) and Remark 4.5, there exists a contraction h : X → Z
where dimZ � n− (dimF1 + dimF2) and

ρX − ρZ = (ρX − ρY1) + (ρX − ρY2) � ρF1 + ρF2.

This immediately gives dimF1+dimF2 � n, and, if equality holds, Z is a point so ρZ = 0. Moreover,
dimF1 + dimF2 = n− 1 implies that Z ∼= P1 and ρZ = 1.

Let us notice that h is quasi-elementary too. In fact let G be a general fiber of h, then G contains
general fibers of f1 and f2. Since both fi are quasi-elementary, N1(G,X) contains both ker(f1)∗ and
ker(f2)∗. On the other hand we have

N1(G,X) ⊆ kerh∗ = ker(f1)∗ + ker(f2)∗

as shown in the proof of Theorem 4.4, so N1(G,X) = kerh∗ and h is quasi-elementary.
Hence if dimF1 + dimF2 = n − 2 then Z is a Del Pezzo surface by Theorem 1.1(i), so that

ρZ � 9.
Finally, suppose that dimF1 + dimF2 = n − 3 and that f2 is elementary. Similarly to the

previous case, Theorem 4.1(i) gives a quasi-elementary contraction h : X → Z with Z � 3 and
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ρX � ρF1 +ρZ+1. If dimZ � 2 we proceed as before. If dimZ = 3 then ρZ � 10 by Theorem 1.1(ii),
so we are done.

Remark 7.1. In the statement of Corollary 1.4 one can replace ρFi by dim ker(fi)∗, which gives a
better bound for instance when fi is elementary. Similarly in the following corollaries.

Corollary 7.2. Let X be a smooth Fano variety and f : X → Y a quasi-elementary contraction
of fiber type with dimY � 3 and general fiber F .

Let ϕ : X →W be an elementary contraction such that NE(ϕ)∩NE(f) = {0}. Then every fiber
of ϕ has dimension at most dimY . Moreover:

(i) if ϕ has a fiber of dimension dimY , then ρX � 1 + ρF and ρY = 1; and

(ii) if ϕ has a fiber of dimension dimY − 1, then ρX � 3 + ρF and ρY � 3.

We state the corollary in this form for completeness; however, let us notice that only the last
statement is really new.

Proof. Recall that ρX � ρY + ρF because f is quasi-elementary. Since f is finite on fibers of ϕ,
they have dimension at most dimY . If there is a fiber with the same dimension as Y , let F0 be an
irreducible component with dimF0 = dimY . Then f(F0) = Y , so

(f∗)|N1(F0,X) : N1(F0,X) −→ N1(Y )

is surjective and ρY � dimN1(F0,X) = 1.
If ϕ has a fiber of dimension dimY − 1, let F0 be an irreducible component with dimF0 =

dimY − 1. Then f(F0) is a prime divisor in Y with dimN1(f(F0), Y ) = 1, so Proposition 3.16
implies that ρY � 3.

Corollary 7.3. Let X be a smooth Fano variety and f : X → Y a quasi-elementary contraction
of fiber type with dimY � 3 and general fiber F .

Let ϕ : X → W be a divisorial elementary contraction such that NE(ϕ) ∩ NE(f) = {0} and
f(Exc(ϕ)) = Y .

(i) If the general fiber of ϕ|Exc(ϕ) has dimension dimY − 2, then ρX � ρF + 10.

(ii) If f is elementary and the general fiber of ϕ|Exc(ϕ) has dimension dimY − 3, then ρX � 12.

Proof. The proof is very similar to that of Corollary 1.4. We apply Theorem 4.4(iii) and Theo-
rem 1.1(i) in the first case, Theorem 4.1(iii) and Theorem 1.1(ii) in the second case.

Proof of Corollary 1.2. The first two statements are a direct consequence of Theorem 1.1(i). For
the last statement, suppose that ρX � 7 and that f : X → Y is an elementary contraction with
dimY = 3. Then ρY � 6, so Theorem 1.1(ii) says that X ∼= S × S′ where S, S′ are Del Pezzo
surfaces and S′ has an elementary contraction onto P1. Then S′ ∼= P1 × P1 or S′ ∼= F1.

Proof of Corollary 1.3. The first two statements follow from Corollary 1.4 and Theorem 1.1. Let
f : X → Y be an elementary contraction with dimY = 4, and ϕ : X → W another elementary
contraction. If ϕ has a fiber of dimension at least 3, then ρX � 4 by Corollary 7.2. In particular,
this holds if ϕ is of type (3,0), (4,0), or (4,1). Finally suppose that f(Exc(ϕ)) = Y . If ϕ is of fiber
type, we have ρX � 12 by the previous part. If ϕ is birational, then it must be divisorial, so ρX � 12
by Corollary 7.3.

Finally we give an application in the spirit of § 3.15.
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Corollary 7.4. Let X be a smooth Fano variety and f : X → Y a non-trivial quasi-elementary
contraction of fiber type with general fiber F .

Let D ⊂ X be a prime divisor such that dimN1(D,X) = 2. Then one of the following occurs:

(i) ρX = 3, Y � P1, and D is a fiber of f ;

(ii) ρX � 4, ρY � 3, and f is elementary;

(iii) ρX � 10, X ∼= F × Y , Y is a Del Pezzo surface, ρF = 1, and dim f(D) = 1; or

(iv) ρX � 1 + ρF , ρY = 1, and f(D) = Y .

Proof. Suppose that f(D) � Y . Then Lemma 3.9 says thatD = f−1(f(D)); in particularD contains
a fiber F , so

ker f∗ = N1(F,X) ⊆ N1(D,X)

and ρX − ρY � 2. If ρX − ρY = 2, then N1(D,X) = ker f∗, so D is a fiber and Y ∼= P1. Thus we are
in case (i).

If ρX − ρY = 1, then f is elementary and D is not a fiber, hence dimY � 2. If ρY � 3, we are
in case (ii).

Suppose that ρY � 4. We have dimN1(f(D), Y ) = 1, so Proposition 3.16 yields that dimY = 2.
Thus Theorem 1.1(i) gives case (iii).

Assume now that f(D) = Y . Then the restriction

(f∗)|N1(D,X) : N1(D,X) −→ N1(Y )

is surjective, so ρY � 2. If equality holds, then N1(D,X) ∩ ker f∗ = {0} and hence N1(D,X) ∩
NE(f) = {0}. This implies that f|D is finite, so f has one-dimensional fibers. Then f is elementary
and ρX = 3, so we are again in case (ii). Finally if ρY = 1 we get case (iv).

Example 7.5 (Elementary contractions over surfaces). It is not difficult to write down examples
of smooth Fano varieties of dimension n � 3 which are not products, but have an elementary
contraction of fiber type over P2, P1 × P1, or F1. Thus the condition ρY � 3 in the second part of
Theorem 1.1(i) is necessary.

For instance, one can consider the Pn−2-bundles

PP2(O⊕(n−2) ⊕O(1)), PP1×P1(O⊕(n−2) ⊕O(1, 1)), PF1(O⊕(n−2) ⊕O(l))),

where l ⊂ F1 is the proper transform of a general line in P2.
A different example is given by F1 × P1 × Pn−3, which has a quasi-elementary contraction onto

P1 × P1 with fiber P1 × Pn−3. In this case the variety is a product, but it is not the product of the
fiber and the target of the contraction.

Example 7.6 (Elementary contractions over 3-folds). Let Y = PP1×P1(O ⊕ O(1, 1)), so that Y is
Fano with ρY = 3. Observe that Y is the divisorial resolution of a quadric Q ⊂ P4 with an isolated
singularity. Let L ∈ PicY be the pull-back of OQ(1), and consider

X = PY (O⊕(n−3) ⊕ L).

Then X is Fano with dimension n and ρX = 4, and it is not a product. One can write down
analogous examples with ρY = 1, 2.

We do not know whether there are similar examples with ρY = 4, 5. Let us point out that
smooth Fano 3-folds Y with ρY = 5 (respectively ρY = 4) that are not products are given by just
two families (respectively 12), after [MM81].
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Example 7.7 (Conic bundles). Let X be a smooth Fano variety and f : X → Y an equidimensional
contraction with dimY = n− 1. Then f is a conic bundle, and it is quasi-elementary if and only if
it is elementary.

We know that Y is smooth (see [And85, Theorem 3.1] and [AW98, Proposition 4.1]) and if
dimX � 4 then Y is also Fano, by [Wís91a, Corollary on p. 156]. However, this is not true in
higher dimensions, see [Wís91a, Example on p. 156].

Example 7.8 (Elementary contractions in dimension 4). Let X be a smooth Fano 4-fold and consider
an elementary contraction f : X → Y with dimY = 3.

If f is equidimensional then Y is smooth and Fano, see Example 7.7. However, it is well known
that f can have isolated two-dimensional fibers, which are classified, see [AW98, Kac97]. In [Kac97,
§ 11] we find several examples where f is not equidimensional and Y ∼= P3; in particular, in this
case X is not a product. However, we are not aware of similar examples with Y singular.

Example 7.9 (A Fano 4-fold with ρ = 6 and only small elementary contractions). In the toric case,
smooth Fano varieties are classified up to dimension 7, the cases of dimensions 5, 6 and 7 being
quite recent [KN07, Øbr07]. They are a good source of explicit examples.

After the classification in [Bat99] (see also [Sat00]), toric Fano 4-folds have Picard number at
most 8. The ones with ρ = 7, 8 are just S3 × S3 and S3 × S2, S2 and S3 being the blow-up of P2 in
two points and in three non-collinear points respectively. Among the ones with ρ = 6 there is a case
with no (non-trivial) quasi-elementary contractions, the toric Del Pezzo 4-fold V (n. 118 in [Bat99]).

The Mori cone NE(V ) has dimension 6 but has 20 extremal rays. Every elementary contraction
is a small contraction with exceptional locus a P2 with normal bundle OP2(−1)⊕2. Every such
exceptional P2 intersects three others in a point.

One can see that V has a contraction of fiber type f : V → Y with dimY = 3 and ρY = 1, so f
is not quasi-elementary. There are six two-dimensional fibers, which are unions of two exceptional
P2 intersecting in one point. Moreover, Y has six isolated non-Q-factorial points in the images of
these fibers.

To our knowledge, among the known examples of Fano 4-folds with no (non-trivial) quasi-
elementary contractions of fiber type, V is the one with largest Picard number.

This example has an analog Vn in each even dimension n = 2m � 4. This is a smooth toric
Fano variety with ρVn = n + 2 and 2

(n+1
m

)
extremal rays. Every elementary contraction is a small

contraction with exceptional locus a Pm with normal bundle OPm(−1)⊕m. The varieties Vn are called
toric Del Pezzo varieties and were introduced in [VK84].
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(2) 52 (2000), 383–413.
Tsu06 T. Tsukioka, Classification of Fano manifolds containing a negative divisor isomorphic to

projective space, Geom. Dedicata 123 (2006), 179–186.
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