THE UNRESTRICTED SECTION PROPERTIES OF SEQUENCES

JOHN SEMBER AND MARC RAPHAEL

1. Introduction. An unrestricted section of a sequence x is any sequence of the form $\sum_{k \in F} x_k \delta^k$, where F is some finite subset of the natural numbers. The notion of boundedness of the set of unrestricted sections of a sequence in a K-space was studied in [10], and called *unconditional section boundedness* (UAB). It was shown in [10] (Theorem 7) that the class of FK-spaces in which every element has UAB consists of those FK-spaces that are invariant under coordinatewise multiplication by the convergent sequences.

In this paper we investigate further the topological properties of the set of unrestricted sections. Theorem 1 shows that the property UAB is related to the classical Köthe α -dual of a sequence space in the same way in which the more familiar section properties FAK and AB are related to the β -dual and γ -dual, respectively. Theorem 2 states that, for barrelled K-spaces with ordinary section boundedness, the property UAB holds if and only if the α -, β -, and γ -duals coincide. Theorem 3 identifies, for any FK-space, the set of sequences x for which the series $\sum x_k \delta^k$ is subseries, or unconditionally, convergent. Theorem 4 contains the fact that, in FK-spaces with UAB, the closure of the set of finitely nonzero sequences is $c_0 E$. Finally we observe, in Theorem 5, that the FK-spaces in which the series $\sum \delta^k$ converges unconditionally in the weak topology are the FK-spaces that are both conservative and conull, and thus are the same FK-spaces as those studied by Snyder in [11].

2. Preliminaries. We employ, for the most part, the standard notation, letting ω denote the linear space of all sequences, φ the subspace of finitely nonzero sequences, δ^k the sequence with 1 in the k^{th} coordinate and 0 elsewhere. The coordinatewise product of two sequences t and x will be denoted by $t \cdot x$ or t(x) and, if D and E are sets of sequences, we write $D \cdot E = D(E) = \{t(x) : t \in D, x \in E\}$. The usual sections of a sequence x can then be written as $P(x) = \{P_n(x)\}$, where $P_n = \sum_{k=1}^n \delta^k$, and the set of unrestricted sections as $H(x) = \{h_F(x) : F \in \Phi\}$, where $h_F = \sum_{k \in F} \delta^k$ and Φ denotes the collection of all finite subsets of the positive integers. For the various section subspaces and section properties associated with P and H, we use the notation of [5] and [10]. Thus, for example, in a K-space E,

 $E_{AB} = \{ x \in \omega : P(x) \text{ is bounded in } E \} \text{ and} \\ E_{USAK} = \{ x \in E : H(x) \to x \text{ weakly} \},$

Received November 3, 1977 and in revised form February 22, 1978.

the convergence in this latter case being unconditional convergence in the weak topology (see [8], p. 146 or [10], p. 700). Further, we let $E_f = \{f(\delta^k) : f \in E'\}$ and $E_{AD} = \bar{\varphi}$ (the closure of φ in E). The theory of K-spaces and FK-spaces can be found in [4], [6], and [12].

3. UAB and the α -dual. The statements in this section concerning the properties AB and FAK are known. They are included here for completeness of presentation.

LEMMA 1. Let E be any K-space. Then (a) $E_{AB} = (E_f)^{\gamma}$ (b) $E_{FAK} = (E_f)^{\beta}$ (c) $E_{UAB} = (E_f)^{\alpha}$

Proof. Parts (a) and (b) are special cases of Theorems 1 and 2, respectively, of [5]. Statement (c) follows directly from Theorem 1 of [10].

THEOREM 1. If E is any barrelled K-space, then (a) $E \subseteq E_{AB}$ if and only if $E_{AB} = E^{\gamma\gamma}$ (b) $E \subseteq E_{FAK}$ if and only if $E_{FAK} = E^{\beta\beta}$ (c) $E \subseteq E_{UAB}$ if and only if $E_{UAB} = E^{\alpha\alpha}$

Proof. Part (a) is included in Theorem 4 of [2] and (b) follows from Theorems 2 and 5 of [2]. To prove (c) note that if $E \subseteq E_{\text{UAB}}$, then $E \subseteq E_{\text{AB}}$ and therefore (again by Theorem 5 of [2]) $E_f = E^{\gamma}$. Consequently, we have, using Lemma 1,

 $E^{\alpha} \supseteq (E_{\mathrm{UAB}})^{\alpha} = (E_f)^{\alpha \alpha} = (E^{\gamma})^{\alpha \alpha} \supseteq E^{\gamma}$

Thus $E^{\gamma} = E^{\alpha}$ and $E_{\text{UAB}} = E^{\alpha \alpha}$. The converse implication in (c) is clear.

From the proof above we can give the following topological characterization of those spaces for which the α -, β -, and γ -duals coincide.

THEOREM 2. Let E be a barrelled K-space with $E \subseteq E_{AB}$. A necessary and sufficient condition for $E^{\alpha} = E^{\beta} = E^{\gamma}$ is that $E \subseteq E_{UAB}$.

Proof. If $E \subseteq E_{UAB}$ then, as in the proof of Theorem 1, $E^{\gamma} = E^{\alpha}$ $(= E^{\beta})$. Conversely, if $E^{\alpha} = E^{\beta} = E^{\gamma}$ and $E \subseteq E_{AB}$, then $E_{f} = E^{\gamma}$ and $E_{UAB} = (E_{f})^{\alpha} = E^{\gamma \alpha} = E^{\alpha \alpha} \supseteq E$.

COROLLARY 2.1. Let E be any FK-space with ordinary section boundedness. A necessary and sufficient condition for $E^{\alpha} = E^{\beta} = E^{\gamma}$ is that $E = c \cdot E$, where c denotes the set of convergent sequences.

Proof. For FK-spaces the condition $E \subseteq E_{UAB}$ is equivalent to $E = c \cdot E$ ([10], Theorem 7).

4. Unconditional Section Convergence. For any FK-space E, the space bv_0 of null sequences of bounded variation acts as a set of multipliers between

332

 E_{AB} and E_{AK} , that is, $E_{AK} = bv_0 \cdot E_{AB}$ (see [4] and [5]). If Cesàro sections are considered the corresponding space of multipliers is the space q_0 of quasi-convex null sequences [1]. We are able to improve upon a result in [10] and show that, for unrestricted sections, the appropriate multiplier space is c_0 .

We first use a standard technique to topologize E_{UAB} .

Definition 1. If p is a seminorm on a K-space E, then p_H is the seminorm on E_{UAB} defined by

$$p_H(x) = \sup_{h \in H} p(h(x)).$$

LEMMA 2. Let (E, \mathcal{T}) be a K-space with topology \mathcal{T} generated by the collection of seminorms \mathcal{P} . Then (E_{UAB}, \mathcal{T}_H) is a sequentially complete K-space, where \mathcal{T}_H is the topology generated by the collection of seminorms $\mathcal{P}_H = \{p_H : p \in \mathcal{P}\}$.

Proof. The proof of Theorem 6 of [2] can be used with \mathscr{P}_T replaced by \mathscr{P}_H . (Note that if p is the coordinate seminorm $p(x) = |x_k|$, then also $p_H(x) = |x_k|$.)

COROLLARY. If (E, \mathcal{T}) is a metrizable K-space, then (E_{UAB}, \mathcal{T}_H) is an FK-space.

Proof. An FK-space is a sequentially complete metrizable K-space, and a K-space is metrizable if (and only if) its topology is generated by a countable collection of seminorms.

LEMMA 3. If (E, \mathcal{T}) is any K-space, then (E_{UAB}, \mathcal{T}_H) is a sequentially complete K-space in which every element has unconditional section boundedness.

Proof. If $x \in E_{UAB}$ and p is one of the seminorms for \mathscr{T} , we have

 $\sup_{h'\in H} p_H(h'(x)) = \sup_{h'\in H} \sup_{h\in H} p(h(h'(x))) = \sup_{h\in H} p(h(x)) < +\infty$

We also need the following result, which relates unconditional section convergence in the two spaces (E, \mathscr{T}) and $(E_{\text{UAB}}, \mathscr{T}_{H})$.

LEMMA 4. If (E, \mathscr{T}) is any FK-space, then $E_{UAK} \subseteq (E_{UAB}, \mathscr{T}_H)_{UAK}$.

Proof. Let $x \in E_{UAK}$, let p be one of the generating seminorms of \mathscr{T} , and let $\epsilon > 0$. There exists $F_0 \in \Phi$ such that if $F \in \Phi$ and $F \supseteq F_0$, then

$$p(h_F(x) - x) < \epsilon/4.$$

If $G \in \Phi$ and $G \cap F_0 = \emptyset$, we have

$$p(h_G(x)) = p(h_{F'}(x) - h_{F_0}(x)) \quad (\text{where } F' \supseteq F_0) \leq p(h_{F'}(x) - x) + p(x - h_{F_0}(x)) < \epsilon/2.$$

For (any) $h \in H$,

$$p_{H}(h(x) - x) = \sup_{h' \in H} p(h'(h(x)) - h'(x))$$

= $\sup_{h' \in H} p(\sum_{k \in F_{0}} (h(h'(x)))_{k} \delta^{k} + \sum_{k \notin F_{0}} (h(h'(x)))_{k} \delta^{k}$
- $\sum_{k \in F_{0}} (h'(x))_{k} \delta^{k} - \sum_{k \notin F_{0}} (h'(x))_{k} \delta^{k}).$

Thus, whenever $F \supseteq F_0$,

$$p_H(h_F(x) - x) = \sup_{h' \in H} p(\sum_{k \notin F_0} (h_F(h'(x)))_k \delta^k - \sum_{k \notin F_0} (h'(x))_k \delta^k)$$

$$\leq 2 \sup_{\substack{h \in H \\ h_k = 0, k \in F_0}} p(h(x)) < 2(\epsilon/2) = \epsilon$$

Therefore $x \in (E_{UAB}, \mathscr{T}_H)_{UAK}$.

We are now able to prove

THEOREM 3. For any FK-space E,

 $\{x \in E : \sum x_k \delta^k \text{ is subseries convergent}\} = c_0 \cdot E_{UAB} = E_{UAK}.$

Proof. Since subseries convergence and unconditional convergence are the same in sequentially complete spaces, we need only show that $E_{UAK} = c_0 \cdot E_{UAB}$. Combining Theorems 4 and 5 of [10] with Lemmas 3 and 4 above, we can write

 $c_0 \cdot E_{\text{UAB}} \subseteq E_{\text{UAK}} \subseteq (E_{\text{UAB}}, \mathscr{T}_H)_{\text{UAK}} = c_0 \cdot E_{\text{UAB}}$

and the result follows.

COROLLARY 3.1. If E is an FK-space with ordinary section boundedness (i.e., if $E \subseteq E_{AB}$), then

 $\{x \in E : \sum x_k \, \delta^k \text{ is subseries convergent}\} = c_0 \cdot E^{\gamma \alpha}$

Proof. If $E \subseteq E_{AB}$ then $E_f = E^{\gamma}$ ([2], Theorem 5) and it is always true that $E_{UAB} = (E_f)^{\alpha}$ (Lemma 1(c)).

COROLLARY 3.2. If E is an FK-space, then E_{UAK} is solid.

 E_{AK} need not be solid. Corollary 3.2 also follows from [3] ((1)(d), p. 59).

5. Some remarks on weak unconditional section convergence. If every sequence in an FK-space E has ordinary section boundedness, then the closure E_{AD} of the set of finitely nonzero sequences is E_{AK} ([4], Proposition 1). Parallel to this result we show that if every sequence has unconditional section boundedness, the closure is E_{UAK} . A consequence is that, for such spaces, weak section convergence implies strong unconditional section convergence.

THEOREM 4. Let E be an FK-space with $E \subseteq E_{UAB}$. Then $E_{AD} = E_{SAK} = E_{USAK} = E_{UAK} = c_0 \cdot E$.

Proof. The inclusions $E_{UAK} \subseteq E_{USAK} \subseteq E_{SAK}$ are clear and $E_{UAK} = c_0 \cdot E$ is the content of Theorem 5 of [10]. If $x \in E_{SAK}$ then x belongs to the weak closure of P(x), hence to the weak closure of the convex hull of H(x), which is C_{ϕ^+} (see [10], Lemma 1). Since the weak and strong closures of convex sets are the same, and since $C_{\phi^+} \subseteq \varphi$, it follows that $x \in E_{AD}$. Thus $E_{SAK} \subseteq E_{AD}$. We complete the proof by showing that $E_{AD} \subseteq E_{UAK}$. If $x \in E_{AD}$ and if U is a basic absolutely convex neighborhood of zero for which $H(U) \subseteq U$ ([9], Theorem 3, p. 69), then there exists $y \in \varphi$ such that $x - y \in \frac{1}{2}U$. There exists N so that $h_F(y) = y$ whenever $F \in \Phi$ with $F \supseteq \{1, 2, \ldots, N\}$. Then, for such F, we have

$$x - h_F(x) = (x - y) + h_F(y - x) \in \frac{1}{2}U + \frac{1}{2}U = U,$$

and it follows that $x \in E_{UAK}$.

Theorem 4 includes the fact that if $E \subseteq E_{UAB}$, then $E_{UAK} = E_{AK}$. The converse does not hold. For example, let $E = c_0 \oplus \text{span} \{2^i\}$ with topology generated by p and q, where $p(x) = p(y + \lambda 2^i) = ||y||_{\infty}$ and

$$q(x) = q(y + \lambda 2^{i}) = |\lambda|.$$

Then E is an FK-space that does not have ordinary section boundedness $(\{2^{-i}\}\{2^i\} \notin E \text{ and } \{2^{-i}\} \in bv)$, whereas $E_{AK} = E_{UAK} = c_0$.

Recall that an FK-space E is conservative in case $E \supseteq c$ and conull in case $1 \in E_{SAK}$ [11].

THEOREM 5. For an FK-space E, the following are equivalent: (i) $1 \in E_{USAK}$ (ii) E is both conservative and conull.

Proof. (i) \Rightarrow (ii). If $1 \in E_{USAK}$ then clearly $1 \in E_{SAK}$ and so E is conull. Since $E_{USAK} \subseteq E_{UAB}$ (This follows, for example, from [8], Theorem 1), we then have $1 \in E_{UAB}$, and therefore $E \supseteq c_0$ ([10], Theorem 1 and Corollary 4.2). It follows that E is conservative. (ii) \Rightarrow (i). If $1 \in E_{SAK}$ and E is conservative then, again by Corollary 4.2 of [10], $1 \in E_{UAB}$. Thus

 $1 \in E_{\text{sak}} \cap E_{\text{uab}} = E_{\text{usak}}$

([10], Theorem 2).

References

- 1. M. Buntinas, Convergent and bounded Cesàro sections in FK-spaces, Math. Z. 121 (1971), 191-200.
- 2. —— On Toeplitz sections in sequence spaces, Proc. Cambridge Philos. Soc. 78 (1975), 451-460.
- 3. M. M. Day, Normed linear spaces (Berlin-Göttingen-Heidelberg, 1962).
- 4. D. J. H. Garling, On topological sequence spaces, Proc. Cambridge Philos. Soc. 63 (1967), 997-1019.
- 5. G. Goes, Summen von FK-räumen, funktionale abschnittskonvergenz und Umkehrsätze, Tôhoku Math. J. 26 (1974), 487–504.
- 6. C. Goffman and G. Pedrick, First course in functional analysis (Englewood Cliffs, N.J., 1965).
- 7. C. W. McArthur, On a theorem of Orlicz and Pettis, Pacific J. Math. 22 (1967), 297-302.

- 8. A. P. Robertson, On unconditional convergence in topological vector spaces, Proc. Roy. Soc. Edin., Sect. A 68 (II) (1969), 145–157.
- 9. A. P. Robertson and W. J. Robertson, Topological vector spaces (Cambridge, 1964).
- 10. J. J. Sember, On unconditional section boundedness in sequence spaces, Rocky Mountain J. of Math. Vol. 7, No. 4, (1977).
- 11. A. K. Snyder, Conull and coregular FK-spaces, Math Z. 90, (1965), 376-381.
- 12. A. Wilansky, Functional analysis (New York, 1964).

Simon Fraser University, Burnaby, British Columbia