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THE UNRESTRICTED SECTION PROPERTIES OF 
SEQUENCES 

JOHN SEMBER AND MARC RAPHAEL 

1. Introduction. An unrestricted section of a sequence x is any sequence 
of the form XAÇF xkô

k
t where F is some finite subset of the natural numbers. 

The notion of boundedness of the set of unrestricted sections of a sequence in a 
K-space was studied in [10], and called unconditional section boundedness 
(UAB). It was shown in [10] (Theorem 7) that the class of FK-spaces in which 
every element has UAB consists of those FK-spaces that are invariant under 
coordinatewise multiplication by the convergent sequences. 

In this paper we investigate further the topological properties of the set of 
unrestricted sections. Theorem 1 shows that the property UAB is related to 
the classical Kôthe a-dual of a sequence space in the same way in which the 
more familiar section properties FAK and AB are related to the /3-dual and 
7-dual, respectively. Theorem 2 states that, for barrelled K-spaces with 
ordinary section boundedness, the property UAB holds if and only if the a-, 
P-, and 7-duals coincide. Theorem 3 identifies, for any FK-space, the set of 
sequences x for which the series ]T xkô

k is subseries, or unconditionally, con
vergent. Theorem 4 contains the fact that, in FK-spaces with UAB, the closure 
of the set of finitely nonzero sequences is c0E. Finally we observe, in Theorem 5, 
that the FK-spaces in which the series J2 àk converges unconditionally in the 
weak topology are the FK-spaces that are both conservative and conull, and 
thus are the same FK-spaces as those studied by Snyder in [11]. 

2. Preliminaries. We employ, for the most part, the standard notation, 
letting co denote the linear space of all sequences, <p the subspace of finitely 
nonzero sequences, ôk the sequence with 1 in the kth coordinate and 0 elsewhere. 
The coordinatewise product of two sequences / and x will be denoted by t • x 
or t(x) and, if D and E are sets of sequences, we write D • E = D(E) = 
{t(x) : t £ D, x £ E}. The usual sections of a sequence x can then be written 
as P(x) = {Pn(x)}, where Pn = XJUI 5*, and the set of unrestricted sections as 
H(x) = {hF(x) : F £ <£>}, where hF — Y^K^F àk and $ denotes the collection 
of all finite subsets of the positive integers. For the various section subspaces 
and section properties associated with P and H, we use the notation of [5] and 
[10]. Thus, for example, in a K-space E, 

EAB = {x G co : P(x) is bounded in E) and 
£ u g A K = {x G E : H(x) —> x weakly}, 
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the convergence in this latter case being unconditional convergence in the weak 
topology (see [8], p. 146 or [10], p. 700). Further, we let Ef = \f(5k) : / 6 E'\ 
and £ A D = ip (the closure of <p in E). The theory of K-spaces and FK-spaces 
can be found in [4], [6], and [12]. 

3. UAB and the a-dual. The statements in this section concerning the 
properties AB and FAK are known. They are included here for completeness 
of presentation. 

LEMMA 1. Let E be any K-space. Then 
(a) EAB = (E,)y 
(b) EFAK = (EfY 

(c) £UAB = (£/)" 

Proof. Parts (a) and (b) are special cases of Theorems 1 and 2, respectively, 
of [5]. Statement (c) follows directly from Theorem 1 of [10]. 

THEOREM 1. If E is any barrelled K-space, then 
(a) E C EAB if and only if EAB = E™ 
(jb) E Ç £ F A K if and only if EFAK = E^ 
(c) E C £U A B if and only if EUAB = Eaa 

Proof. Part (a) is included in Theorem 4 of [2] and (b) follows from Theorems 
2 and 5 of [2]. To prove (c) note that if E ÇZ £U A B , then E Ç EAB and there
fore (again by Theorem 5 of [2]) Ef = Ey. Consequently, we have, using 
Lemma 1, 

E« 3 (£UAB)" = (Efy« = (Er)°* 2 Ey 

Thus Ey = Ea and JEU A B = Eaa. The converse implication in (c) is clear. 

From the proof above we can give the following topological characterization 
of those spaces for which the a-, ft-, and 7-duals coincide. 

THEOREM 2. Let E be a barrelled K-space with E Q EAB. A necessary and 
sufficient condition for Ea = E$ = E7 is that E Ç EUAB. 

Proof. If E Ç £ U A B then, as in the proof of Theorem 1, E* = Ea (= E**). 
Conversely, if Ea = E& = E7 and E Ç EAB, then Ef = Ey and £ U A B = 
(Ef)

a = E7a = Eaa ^ E. 

COROLLARY 2.1. Let E be any FK-space with ordinary section boundedness. A 
necessary and sufficient condition for Ea = E$ = Ey is that E = c • E} where c 
denotes the set of convergent sequences. 

Proof. For FK-spaces the condition E ÇI EVAB is equivalent to E = c • E 
([10], Theorem 7). 

4. Unconditional Section Convergence. For any FK-space £ , the space 
bv0 of null sequences of bounded variation acts as a set of multipliers between 
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EAB and £ A K , t h a t is, EAK = bv0 • EAB (see [4] and [5]). If Cesàro sections are 

considered the corresponding space of multipliers is the space q0 of quasi-

convex null sequences [1]. We are able to improve upon a result in [10] and 

show tha t , for unrestricted sections, the appropriate multiplier space is c0. 

We first use a s tandard technique to topologize JEUAB-

Definition 1. If p is a seminorm on a K-space E, then pH is the seminorm on 
£ U A B defined by 

pH(x) = supheH p(h(x)). 

LEMMA 2. Let (E, 0~) be a K-space with topology^ generated by the collection 
of seminorms £P. Then (EVAB, 0~H) is a sequentially complete K-space, where 
^H is the topology generated by the collection of seminorms 0H = \pH : p £ SP\. 

Proof. The proof of Theorem 6 of [2] can be used with SP T replaced by SPH. 
(Note t h a t if p is the coordinate seminorm p(x) = \xk\, then also pH(x) = |#*|.) 

COROLLARY. / / (E, 0~) is a metrizable K-space, then (EVAB, 0~H) is an 
FK-space. 

ProoJ. An FK-space is a sequentially complete metrizable K-space, and a 
K-space is metrizable if (and only if) its topology is generated by a countable 
collection of seminorms. 

LEMMA 3. If ( £ , 0~) is any K-space, then (EVAB, 0~H) is a sequentially com
plete K-space in which every element has unconditional section boundedness. 

Proof. If x (E -EUAB and p is one of the seminorms for J^~, we have 

sup £#(/&'(#)) = sup sup p(h(h'(x))) = sup p(h(x)) < +oo 

We also need the following result, which relates unconditional section con
vergence in the two spaces (E, 0~) and ( £ U A B , 0~H)-

LEMMA 4. If (E, £T) is any YK-space, then £UAK Ç= (EuAB,^/ H)UAK' 

Proof. Let x Ç £ U A K , let p be one of the generating seminorms oî0~, and let 
e > 0. There exists F0 £ $ such tha t if F G <ï> and F Z) F0, then 

p(hF(x) - x) < e/4. 

If G 6 <£ and G C\ F0 = 0, we have 

p(hG(x)) = p(hF>(x) — hFo(x)) (where F' 2 F0) ^ p(hF>(x) — x) 

+ £ ( * - * F O ( * ) ) < e/2. 
For (any) h £ H, 

pH(h(x) - x) = suph'eHp(h'(h(x)) - hf(x)) 

= s u p ^ € ^ ^ ( E * € F 0 (h(h'(x)))k8
k + 5 ^ 0 (h(h'(x)))kô

k 
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Thus , whenever F 3 F0, 

pH(hF(x) - x) = supn'tHpiY, wo (hF(h'(x)))kô
k - ] £ WF* (k'(x))kb

k) 

S 2 sup p(h(x)) < 2(e/2) = e 

hk=0,kCFo 

Therefore x G ( E U A B ^ F J U A K -

We are now able to prove 

T H E O R E M 3. For any FK-space E, 

{x Ç E : ̂ xk dk is subseries convergent} = Co • £ U A B = £UAK-

Proof. Since subseries convergence and unconditional convergence are the 

same in sequentially complete spaces, we need only show t h a t £ U A K = 

£o • £ U A B . Combining Theorems 4 and 5 of [10] with Lemmas 3 and 4 above, 

we can write 

C0 ' EVAB Ç EXJAK Ç (EXJAB}I/ HJUAK = £0 * ^ U A B 

and the result follows. 

COROLLARY 3.1. If E is an FK-space with ordinary section boundedness 
(i.e., if E C E A B ) , then 

j x Ç £ : Y^xk àk is subseries convergent] = c0 • Eya 

Proof. If £ Ç EAB then Ef = Ey ([2], Theorem 5) and it is always t rue t ha t 
£ U A B = (EfY (Lemma 1(c)). 

COROLLARY 3.2. If E is an FK-space, then EVAK is solid. 

EAK need not be solid. Corollary 3.2 also follows from [3] ((1) (d), p. 59). 

5. Some remarks on weak unconditional section convergence. If 
every sequence in an FK-space E has ordinary section boundedness, then the 
closure EAT> of the set of finitely nonzero sequences is -EAK ([4], Proposit ion 1). 
Parallel to this result we show tha t if every sequence has uncondit ional section 
boundedness, the closure is £ U A K . A consequence is tha t , for such spaces, weak 
section convergence implies strong uncondit ional section convergence. 

T H E O R E M 4. Let E be an FK-space with E Ç E U A B . Then E A D = £ 8 A K = 

Exj&xK — EuAK = Co - E. 

Proof. T h e inclusions -EUAK £ £USAK S ESAK are clear and £ U A K = c0 • E 
is the content of Theorem 5 of [10]. If x £ E8AK then x belongs to the weak 
closure of P(x), hence to the weak closure of the convex hull of H(x), which is 
Q.+ (see [10], Lemma 1). Since the weak and strong closures of convex sets 
are the same, and since Q>+ Q <p, it follows t ha t x (E -SAD- T h u s E8AK C £ A D . 
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We complete the proof by showing that £ A D C £UAK . If x G EAT> and if U is a 
basic absolutely convex neighborhood of zero for which H(U) Q U ([9], 
Theorem 3, p. W), then there exists y £ <p such that x — y G \U. There exists 
N so that hF(y) = y whenever F G $ with i7 D {1, 2, . . . , N]. Then, for such 
F, we have 

x - hF(x) = (x - y) + AF(y - *) G ££/ + \U = U, 

and it follows that x G £UAK-

Theorem 4 includes the fact that if E C JEU A B , then £ Ï ÏAK = ^AK- The 
converse does not hold. For example, let E = c0 © span {22} with topology 
generated by p and g, where p(x) = p(y + A2*) = \\y\\œ and 

g(x) = .£'(y + X20 = |X|. 

Then E is an FK-space that does not have ordinary section boundedness 
({2-*}{2*} G E and {2^} G bv), whereas £ A K = EVAK = c0. 

Recall that an FK-space E is conservative in case E ^ c and conull in case 
1 E -ESAK [ H ] -

THEOREM 5. For an FK-space E, the following are equivalent: 
(t) 1 G ^TJSAK 

(ii) E is both conservative and conull. 

Proof, (i) =» (ii). If 1 G ^USAK then clearly 1 G JESAK and so E is conull. 
Since £ U S A K £ £UAB (This follows, for example, from [8], Theorem 1), we then 
have 1 G EVAB, and therefore E 3 c0 ([10], Theorem 1 and Corollary 4,2). It 
follows that E is conservative, (n) => (i). If 1 G -ESAK and £ is conservative 
then, again by Corollary 4.2 of [10], 1 G -EUAB- Thus 

1 G £sAK <» -EuAB = -EuSAK 

([10], Theorem 2). 
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