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INSTABILITY OF PERIODIC TRAVELING WAVES FOR
THE SYMMETRIC REGULARIZED LONG WAVE

EQUATION

JAIME ANGULO PAVA and

CARLOS ALBERTO BANQUET BRANGO

Abstract. We prove the linear and nonlinear instability of periodic travel-
ing wave solutions for a generalized version of the symmetric regularized long
wave (SRLW) equation. Using analytic and asymptotic perturbation theory,
we establish sufficient conditions for the existence of exponentially growing
solutions to the linearized problem and so the linear instability of periodic
profiles is obtained. An application of this approach is made to obtain the
linear/nonlinear instability of cnoidal wave solutions for the modified SRLW
(mSRLW) equation. We also prove the stability of dnoidal wave solutions asso-
ciated to the equation just mentioned.

§1. Introduction

In this paper we study the nonlinear stability and linear/nonlinear insta-

bility of periodic traveling waves for the general model

(1.1) utt − uxx +
(
f(u)
)
xt
+ (Mu)tt = 0,

where u= u(x, t), x, t ∈R, is a real-valued function, and M is a differential

or pseudodifferential operator in the framework of periodic functions, which

is defined as a Fourier multiplier operator

M̂u(k) = α(k)û(k), k ∈ Z,

where the symbol α of M is a measurable, locally bounded, even function

on R, satisfying the condition

a1|k|m1 ≤ α(k)≤ a2
(
1 + |k|

)m2 ,
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for 1≤m1 ≤m2, |k| ≥ k0, α(k)> b, for all k ∈ Z, a1, a2 > 0 and f being a

sufficient smooth function which prescribes nonlinearity. In our applications

we are interested in nonlinearities of the form f(u) = up+1, with p ≥ 1 a

positive integer. If we considerM=−∂2
x and p= 1, we obtain the symmetric

regularized long wave (SRLW) equation which is a model for the weakly

nonlinear ion acoustic and space-charge waves. The SRLW equation was

introduced by Seyler and Fenstermacher [20], where a weakly nonlinear

analysis of the cold electron fluid equation is made. The SRLW equation is

also a model for water waves. In fact, the so-called bad Boussinesq

(1.2) utt − uxx − (u2)xx − uxxxx = 0,

can be derived as a model for unidirectional water waves (see Boussinesq

[8]). The equation (1.1) in the particular case M=−∂2
x and f(u) = u2 can

be obtained from (1.2) by substituting −∂x for ∂t in the last two terms. This

substitution is consistent with the assumptions made in deriving (1.2) as a

model equation for water waves. So, equation (1.1) can be seen as a gener-

alized version of the SRLW equation (henceforth, SRLW-type equation).

We are interested in the vectorial form of equation (1.1), namely,

(1.3)

{
ut + (Mu)t + (f(u))x − vx = 0,

vt − ux = 0.

For equation (1.3) we desire to find solutions of the form

(1.4)
(
uc(x, t), vc(x, t)

)
=
(
φc(x− ct),ψc(x− ct)

)
,

with profiles φc,ψc :R→R being L-periodic smooth functions and c ∈R the

wave speed. If we substitute (1.4) in (1.3) after an integration, the following

pseudodifferential system is obtained:

(1.5)

{
cMφc + cφc − f(φc) +ψc =Aφc,ψc ,

cψc + φc =Bφc,ψc ,

where Aφc,ψc and Bφc,ψc are constants, which are considered zero in our

theory.

Some symmetric considerations deserve to be mentioned before talking

about instability. Since equation (1.3) is invariant under translations (if

(u(x, t), v(x, t)) is a solution for (1.3), then (u(x+ y, t), v(x+ y, t)) is also a
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solution for every y ∈R), we obtain that the 1-parameter group of unitary

operators {T (y)}y∈R defined by T (y)f(·) = f(·+ y) determines the (φc,ψc)-

orbit

Ω(φc,ψc) :=
{(

T (y)φc, T (y)ψc

)
;y ∈R

}
.

Then, we say that Ω(φc,ψc) is stable in the periodic space X =H
m2
2

per ([0,L])×
L2
per([0,L]) by the flow of equation (1.3), if for all ε > 0 there is δ > 0 such

that if ‖(u0, v0) − (φc,ψc)‖X < δ and (u(t), v(t)) is the global solution of

(1.3) with initial data (u(x,0), v(x,0)) = (u0(x), v0(x)), then

inf
y∈R

∥∥(u(t), v(t))− (T (y)φc, T (y)ψc

)∥∥
X
< ε, ∀t ∈R.

Otherwise, the (φc,ψc)-orbit is said to be orbitally unstable in X .

The instability behavior would happen if the solutions ceased to exist for

a class of initial data close to (φc,ψc) after a finite time (blow-up case). This

kind of behavior for models of dispersive type is in general a very difficult

task to be addressed. In our instability study, the solutions will exist globally

in time.

Consider w(x, t) = u(x+ ct, t)−φc(x) and z(x, t) = v(x+ ct, t)−ψc(x) in

(1.3); then we obtain via Taylor’s theorem the next system{
(∂t − c∂x)(w+Mw) + ∂x(−z +wf ′(φc)) +O(‖(w,z)‖2) = 0,

(∂t − c∂x)z −wx +O(‖(w,z)‖2) = 0.

The following system,

(1.6)

{
(∂t − c∂x)(w+Mw) + ∂x(−z +wf ′(φc)) = 0,

(∂t − c∂x)z −wx = 0,

represents the linearization of (1.3) around (φc,ψc). Our objective will be to

give sufficient conditions to obtain that the solution (w,z)≡ (0,0) is unsta-

ble by the linear flow of (1.6). More exactly, we are interested in finding a

growing mode solution for (1.6) of the form (eλtu(x), eλtv(x)) with Reλ > 0.

Therefore, (u, v) satisfies the nonlocal differential equation

(1.7)

{
u+Mu+ ∂x

λ−c∂x
(−v+ uf ′(φc)) = 0,

v = ∂x
λ−c∂x

u,

where the expression ∂x
λ−c∂x

, with Reλ > 0, is a notation for the linear oper-

ator ∂x(λ− c∂x)
−1. From equation (1.7) it is clear that u and v have zero
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mean. By using the formula for v in the second equation in (1.7) and replac-

ing it on the first equation in 1.7, we arrive at

(1.8) u+Mu+
∂x

λ− c∂x

(
f ′(φ)u− ∂x

λ− c∂x
u
)
= 0.

Next we consider the space of zero mean V, more exactly,

V :=
{
f ∈ L2

per

(
[0,L]

)
: 〈f〉= 1

L

∫ L

0
f(x)dx= 0

}
,

and the orthogonal projection on V, Q : L2
per([0,L]) → V, given by Qu =

u− 〈u〉. Define X0
m2

=Hm2
per([0,L]) ∩ V. Then based on equation (1.8), we

consider the family of closed linear operators for Reλ > 0, Aλ :X0
m2

→ V

given by

(1.9) Aλw := (M+ 1)w+
∂x

λ− c∂x
Q
(
f ′(φc)w− ∂x

λ− c∂x
w
)
.

Immediately we note that Aλ is also well defined in Hm2
per([0,L]), and from

the analyticity of the resolvent associated to the operator ∂x, λ ∈ S → (λ−
c∂x)

−1, for S = {z ∈C : Re z > 0}, we obtain that λ ∈ S →Aλ represents an

analytical family of operators of type-A, namely,

(1) D(Aλ) =Hm2
per([0,L]) for all λ ∈ S , and

(2) for u ∈ Hm2
per([0,L]), λ ∈ S → Aλu is analytic in the topology of

L2
per([0,L]).

Therefore, we obtain that all discrete eigenvalues of Aλ (Reλ > 0) are stable

(see Kato [15]).

In order to deduce the existence of a growing mode solution for (1.8), it is

sufficient to find λ ∈C with Reλ > 0 such that the operator Aλ possesses a

nontrivial kernel. Indeed, for u ∈Hm2
per([0,L])∩V, u �= 0, such that Aλu= 0,

we obtain

0 = (λ− c∂x)(M+ 1)u+ ∂x

(
f ′(ϕc)u−

〈
f ′(ϕc)u

〉
− ∂x

λ− c∂x
u
)

= (λ− c∂x)(M+ 1)u+ ∂x
(
f ′(ϕc)u− ∂x(λ− c∂x)

−1u
)
.

In our approach we find a growing mode solution for λ > 0 via asymptotic

analytic perturbation theory. Indeed, since for

(1.10) L0 = (M+ 1)− 1

c

(1
c
+ f ′(φc)

)
,
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we have that

Aλ −→QL0 as λ→ 0+,

strongly in Hm2
per([0,L]) ∩ V, the usual perturbation theories do not apply,

and so we extend the asymptotic perturbation arguments due to Vock and

Hunziker [22] (see also Hislop and Sigal [13]) and Lin [16] to the periodic case

in order to deduce the existence of a purely growing mode. In our analysis

we need to count the number of eigenvalues of Aλ (λ small) in the left half-

plane; since the kernel of L0 is nontrivial, we need to know how the zero

eigenvalue of QL0 is perturbed, so we deduce a moving kernel formula that

allows us to decide when zero is moving to the right or left (see Lemma 4.1

below). Then, we determine the stability of all discrete eigenvalues of QL0

when they are analytically perturbed by the operator Aλ for λ > 0 and

small enough (see Lemma 3.8).

The linearized instability result for the SRLW equation (1.3) is the fol-

lowing.

Theorem 1.1 (Instability criterion for the SRLW-type equation). Define

the space X0
m2

= Hm2
per([0,L]) ∩ V, and let c 
→ (φc,ψc) ∈ X0

m2
×X0

m2
be a

smooth curve of periodic solutions for equation (1.5) with c > 1. Assume

that

ker(QL0) =
[ d
dx

φc

]
.

Denote by n−(QL0) the number (counting multiplicity) of negative eigen-

values of the operator QL0 defined in X0
m2

. Then there is a purely growing

mode (eλtu(x), eλtv(x)) with λ > 0, u, v ∈ X0
m2

, to the linearized equation

(1.6) if one of the following conditions is true:

(i) n−(QL0) is even and I(c)< 0,

(ii) n−(QL0) is odd and I(c)> 0.

Here,

I(c) :=− 1

‖φ′
c‖2L2

per

1

c

dV

dc

with V denoting the momentum evaluated in the periodic traveling wave φc,

that is,

V (c) =
1

2

〈(
M+ 1+

1

c2

)
φc, φc

〉
L2
per

.
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Theorem 1.1 enables us to establish a novel proof of the linear instability

of cnoidal wave profiles, c ∈ (1,+∞) → ϕc, associated with the modified

SRLW equation (henceforth, mSRLW)

utt − uxx + (3u2ux)t − uxxtt = 0,

that is, f(u) = u3 and M = −∂2
x in equation (1.1), provided that

c ∈ (c∗,+∞). Moreover, our analysis shows that c∗ is a threshold value for

the stability problem; namely, for c ∈ (1, c∗) they are stable in H1
per([0,L])×

L2
per([0,L]) (see Section 5.5 below). After that, in Section 5.6 we adapt the

results due to Henry, Perez, and Wreszinski [12, Theorem 2] (see Theo-

rem 5.13 below) to the case of dispersive equations, and we obtain that

the linear instability result implies nonlinear instability. The proof that lin-

ear instability implies nonlinear instability is obtained because the mapping

data-solution associated with the mSRLW equation is at least of class C2.

Since the mSRLW equation also has a family of positive periodic solutions

with a profile determined by the dnoidal Jacobi elliptic function, for the sake

of completeness, we show that these periodic waves are orbitally stable in

H1
per([0,L])×L2

per([0,L]) (see Section 5.4 below).

The following are some comments on Theorems 1.1 and 5.16 that deserve

to be established. The instability criterion stated in Theorem 1.1 above

is the same as the one appearing in Grillakis, Shatah, and Strauss [11,

Theorem 6.2], but our conditions fall on the linear operator QL0. Even

more, our criterion does not follow directly from [11]. Indeed, in [11] it is

considered the abstract Hamiltonian system

(1.11)
du

dt
= JE′(u(t)),

with J being a one-to-one, onto, and skew-symmetric linear operator. Here,

E is a functional formally conserved under the flow of (1.11). In our case,

the vectorial system (1.3) can be written in the form (1.11) with u= (u, v)t,

J =MJ0,

M =

(
(1 +M)−1 0

0 I

)
, J0 =

(
∂x 0

0 ∂x

)
,

and E(u, v) =
∫
(uv − F (u))dx, with F ′(u) = f(u). It follows immediately

from the formulas for M and J0 above that J is neither one-to-one nor onto

in our study. The linear instability criterion established in [11, Theorem 5.1]

is based on the number of negative eigenvalues of a specific self-adjoint
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operator H (called the linearized Hamiltonian) and the scalar function

d(c) =E(φc,ψc)+cV (φc,ψc), where V (u, v) = (1/2)
∫
(uMu+u2+v2)dx. In

our case, the operator H is given explicitly by H =E′′(φc,ψc)+cV ′′(φc,ψc).

In order to follow the ideas in [11] you need to determine the negative eigen-

values of H , which is equivalent to finding the negative eigenvalues of the

operator L0 in (1.10), but our instability criterion is based on the number of

negative eigenvalues of the operator QL0. Since (φc,ψc) is a critical point for

the functional H , it is easy to see that d′(c) = V (φc,ψc) and consequently

that

d′′(c) =
d

dc
V (φc,ψc) =−c‖φ′

c‖2L2
per

I(c).

From the last equation we have that d′′(c) and I(c) have different signs for

c > 0, which implies by using the notation in [11] that p(d′′) = 0 if I(c)> 0

and p(d′′) = 1 if I(c) < 0; for this reason we can use d′′(c) or I(c), which

makes the two criteria similar. On the other hand, Theorem 5.16 below

(nonlinear instability of cnoidal waves) cannot be inferred directly from the

cnoidal linear instability result and from the general framework established

in [11]. Indeed, the properties established above for the operator J are

essential in [11] to deduce the nonlinear instability from a linearized insta-

bility result. In our particular case, we get around this obstacle generated

by J by using the approach in Henry, Perez, and Wreszinski [12].

Our paper is organized as follows. In Section 2 we present notation and

preliminaries. Section 3 presents the main properties of the operator Aλ and

establishes that all the eigenvalues of QL0 are stable by the perturbations

Aλ for λ small enough. Section 4 establishes the moving kernel formula

and the instability proof. In Section 5, we give the theories of stability

and instability of the families of traveling wave solutions with dnoidal and

cnoidal profiles, respectively, for the mSRLW equation.

§2. Notation and preliminaries

The L2-based Sobolev spaces of periodic functions are defined as fol-

lows (for further details, see Iorio and Iorio [14]). Let P = C∞
per denote

the collection of all functions f : R→ C which are C∞ and periodic with

period 2L> 0. The collection P ′ of all continuous linear functionals from P
into C is the set of periodic distributions. If Ψ ∈ P ′ and ϕ ∈ P , we denote

the value of Ψ at ϕ by 〈Ψ,ϕ〉. Define the functions Θk(x) = exp(πikx/L),

k ∈ Z, x ∈R. The Fourier transform of Ψ is the function Ψ̂ : Z→C defined

by Ψ̂(k) = 1
2L〈Ψ,Θk〉, for all k ∈ Z. So, if Ψ is a periodic function with
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period 2L, we have Ψ̂(k) = 1
2L

∫ L
−LΨ(x)e−

ikπx
L dx. For s ∈ R, the Sobolev

space of order s, denoted by Hs
per([−L,L]), is the set of all f ∈ P ′ such that

(1 + |k|2) s
2 f̂(k) ∈ l2(Z), with norm ‖f‖2Hs

per
= 2L

∑∞
k=−∞(1 + |k|2)s|f̂(k)|2.

We also note that Hs
per is a Hilbert space with respect to the inner product

(f | g)s = 2L
∑∞

n=−∞(1+ |k|2)sf̂(k)ĝ(k). The space H0
per will be denoted by

L2
per and its norm will be ‖ · ‖L2

per
. Of course Hs

per ⊆ L2
per, for any s≥ 0.

The normal elliptic integral of first type (see Byrd and Friedman [9]) is

defined by∫ y

0

dt√
(1− t2)(1− k2t2)

=

∫ φ

0

dθ√
1− k2 sin2 θ

= F (φ,k),

where y = sinφ and k ∈ (0,1); k is called the modulus and φ the argument.

When y = 1, we denote F (π/2, k) by K =K(k). The Jacobian elliptic func-

tions are denoted by sn(u;k), cn(u;k), and dn(u;k) (called snoidal, cnoidal,

and dnoidal, respectively), and are defined via the previous elliptic inte-

gral. More precisely, let u(y;k) := u = F (φ,k); then y = sinφ := sn(u;k),

cn(u;k) =
√
1− sn2(u;k), and dn(u;k) =

√
1− k2 sn2(u;k). We have the

following asymptotic formulas: sn(x; 1) = tanh(x), cn(x; 1) = sech(x), and

dn(x; 1) = sech(x).

Next, we present the Poisson summation theorem. It will be used to find

the periodic traveling wave solutions for the mSRLW equation.

Theorem 2.1. Let f̂ R(ξ) =
∫∞
−∞ f(x)e−ixξ dx and f(x) =∫∞

−∞ f̂ R(ξ)eixξ dξ satisfy∣∣f(x)∣∣≤ A

(1 + |x|)1+δ
and

∣∣f̂ R(ξ)
∣∣≤ A

(1 + |ξ|)1+δ
,

where A> 0 and δ > 0. Thus, for L> 0
∞∑

n=−∞
f(x+ 2Ln) =

1

2L

∞∑
n=−∞

f̂ R
( n

2L

)
e

πinx
L .

The two series above converge absolutely.

Proof. See, for example, Stein and Weiss [21, p. 250].

§3. Stability of the eigenvalues of QL0 by Aλ

In this section we show that all the discrete eigenvalues of QL0 are stable

by the family of linear operators Aλ in (1.9), for λ positive and small enough.

We begin by establishing some basic structures of the family Aλ.
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3.1. Properties of Aλ

Let us define the differential operators D = c∂x and Eλ,± = λ
λ±D . Then

we can rewrite operator Aλ in (1.9) as

Aλ = (M+ 1)− 1

c
(1−Eλ,−)Q

(
f ′(φc) +

1

c
(1−Eλ,−)

)
.

Proposition 3.1. For λ > 0, the operator Aλ converges to A0 := QL0

strongly in V when λ→ 0+, and converges to M+1 strongly in L2
per([0,L])

when λ→+∞.

Proof. Consider ϕ ∈V. Then we have

c2
∥∥(Aλ −QL0)ϕ

∥∥2
L2
per

=
∥∥∥Eλ,−Q

(
f ′(φc)ϕ+

2

c
ϕ
)
+

1

c
(Eλ,−)2ϕ

∥∥∥2
L2
per

and c2‖(Aλ− (M+1))ϕ‖2L2
per

= ‖(Eλ,−− 1)Q(f ′(φc)ϕ− 1
c (Eλ,−− 1)ϕ)‖2L2

per
.

Thus, since for λ > 0 the operators Eλ,± are continuous in L2
per([0,L]) with

respect to λ and satisfy the following properties (see Angulo Pava and Natali

[4, Lemma 2.1]):

(i) ‖Eλ,±‖B(L2
per)

≤ 1, ‖I −Eλ,±‖B(L2
per)

≤ 1,

(ii) Eλ,± converges to 0 strongly (uniformly) in V as λ→ 0+,

(iii) Eλ,± converges to I strongly in L2
per([0,L]) as λ→+∞,

we obtain immediately the proposition.

The next result establishes that all eigenvalues of Aλ (with domain Hm2
per)

are isolated; namely, the spectrum of Aλ is discrete, σ(Aλ) = σp(Aλ), and

so the essential spectrum σess(Aλ) is empty. Therefore, the spectrum of Aλ

with domain Hm2
per ∩V is also discrete.

Proposition 3.2. For any λ > 0, we have σess(Aλ) = σess(M+ 1) = ∅.
Proof. Set X = L2

per([0,L]), T =M+1, and A=−1
c (1−Eλ,−)Q(f ′(φc)+

1
c (1 − Eλ,−)). Then, Aλ = T + A, where D(T ) ⊂ D(A), and T is a closed

linear operator. Therefore, since

c‖Av−Au‖X =
∥∥∥(1−Eλ,−)Q

(
f ′(φc) +

1

c
(1−Eλ,−)

)
(v− u)

∥∥∥
X

≤
(∥∥f ′(φc)

∥∥
L∞
per

+
1

c

)
‖v− u‖X ,

and A is T -compact, Kato [15, Theorem 5.35, Chapter IV] implies that

σess(Aλ) = σess(T ) = ∅.
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The next result is established for Aλ with domain Hm2
per .

Lemma 3.3. Let c > 1. There exists Λ > 0 such that for all λ > Λ, Aλ

does not have eigenvalues z ∈C satisfying Re z ≤ 0.

Proof. We follow the ideas established by Lin in [16]. Suppose by contra-

diction that there exists a sequence λn →+∞ and {bn}n∈N ⊂C, {un}n∈N ⊂
Hm2

per , such that Re bn ≤ 0 and (Aλn − bn)un = 0. Now, the inequality∥∥Aλu− (M+ 1)u
∥∥2
L2
per

≤ c−2
∥∥(1−Eλ,−)Q

(
f ′(φc)u+ c−1(1− Eλ,−)u

)∥∥
L2
per

≤C2‖u‖L2
per

,

where C > 0 does not depend on λ > 0, implies for z ∈ σd(Aλ) and Aλψ = zψ

(‖ψ‖= 1) that (
Rez −

〈
ψ, (M+ 1)ψ

〉)2
+ (Imz)2

(3.1)
+
∥∥(M+ 1)ψ

∥∥2
L2
per

−
〈
ψ, (M+ 1)ψ

〉2 ≤C2.

Since M+1 is a self-adjoint positive operator, we obtain from the Cauchy–

Schwarz inequality that all eigenvalues of Aλ must lie in the closed subset

DC :=
{
z ∈C : Re z ≥−C and | Im z| ≤C

}
.

Then, there exists b∞ ∈DC such that bn → b∞, as n→+∞ and Re b∞ ≤ 0.

Denote e(x) = [f ′(φc(x))]
2; thus we can normalize un such that ‖un‖L2

per,e
:=∫

u2n(x)e(x)dx= 1. Now, since the equation (Aλn − bn)un = 0 implies (see

Lemma 3.7 below) ‖un‖Hm1
per

≤M , where M does not depend on n, there

exists a subsequence of {un}n∈N, that we still denote by {un}n∈N, such

that un ⇀u∞ in H
m1
2

per , as n→+∞. On the other hand, since the embed-

ding H
m1
2

per ↪→ L2
per is compact, we deduce that un −→ u∞ in L2

per and that

un −→ u∞ in L2
per,e, as n → +∞. Hence ‖u∞‖L2

per,e
= 1. Next, by using

Proposition 3.1 we have Aλnun − (M + 1)un → 0 as n → +∞. So, since

Aλnun → b∞u∞, we obtain that (M + 1)un → b∞u∞. Therefore, by M
being a closed operator we have u∞ ∈Hm2

per and (M+1)u∞ = b∞u∞. How-

ever, since Re b∞ ≤ 0, we obtain a contradiction because M+1 is a positive

operator.

Using Lemma 3.3, we obtain the following.
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Lemma 3.4. Let c > 1. There exists Λ> 0 such that for all λ > Λ, Aλ with

domain Hm2
per([0,L])∩V does not have eigenvalues z ∈C satisfying Rez ≤ 0.

3.2. The stability of eigenvalues for λ small enough

In this section we study the spectra of the linear operator Aλ in X0
m2

, for

0< λ� 1, that is, λ > 0 is small enough. In order to obtain the results con-

tained in this section, we apply the arguments of asymptotic perturbation

theory in Hislop and Sigal [13, Chapter 19] and Kato [15, Chapter VIII] to

our periodic context. We start with the following definition. Consider the

self-adjoint linear operator QL0 :X
0
m2

→V, given by

QL0g = L0g+
1

cL

〈
g, f ′(φc)

〉
.

Definition 3.5. An eigenvalue μ0 ∈ σ(QL0) = σp(QL0) is stable with

respect to the family Aλ defined in (1.9) if the following two conditions

hold.

(i) There is δ > 0 such that the region Qδ := {z ∈ C; 0< |z − μ0|< δ} sat-

isfies

Qδ ⊂ ρ(QL0)∩Δb,

where ρ(QL0) is the resolvent set of QL0, and Δb is the region of bound-

edness for the family Aλ, defined by

Δb :=
{
z ∈C;

∥∥Rλ(z)
∥∥
B(V)

≤M,∀0< λ� 1
}
.

Here M = M(z) > 0 does not depend on λ and Rλ(z) = (Aλ − z)−1 :

V→X0
m2

.

(ii) Let Γ be a simple closed curve about μ0 such that Γ⊂Qδ ⊂ ρ(QL0) ∩
ρ(Aλ), for all λ small, and define the associated Riesz projector for Aλ

Pλ =− 1

2πi

∫
Γ
Rλ(z)dz.

Then,

lim
λ→0+

‖Pλ − Pμ0‖B(V) = 0,

where Pμ0 is the Riesz projector for QL0 and μ0.

Remark 3.6. It follows from Definition 3.5 that for all 0 < λ� 1, the

operators Aλ have discrete spectra inside the domain determined by Γ

with total algebraic multiplicity equal to that of μ0, because dim(ImPλ) =
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dim(ImPμ0) for λ small. In order to simplify the notation, we write dim(Pλ)

to refer to dim(ImPλ).

The next lemma is a periodic version of Lin [16, Lemma 2.8] and because

of this, we omit its proof.

Lemma 3.7. Let c > 1. For all λ > 0 small enough, consider

u ∈ Hm2
per([0,L]) satisfying the equation (Aλ − z)u = v, where z ∈ C with

Re z ≤ 1
2(1−

1
c2
) and v ∈ L2

per([0,L]). Then, we have the estimative

‖u‖
H

m2
2

per

≤M
(
‖u‖L2

per,e
+ ‖v‖L2

per

)
,

for some constant M > 0 which does not depend on λ > 0.

The following result gives us sufficient conditions for determining when a

complex number belongs to the region of boundedness for the family {Aλ}.

Lemma 3.8. Let c > 1. For z ∈ C with Rez ≤ 1
2(1−

1
c2
), we have z ∈Δb

if and only if z ∈ ρ(QL0).

Proof. Let z ∈Δb. Then for all u ∈C∞
per([0,L])∩V, we have

(3.2)
∥∥(Aλ − z)u

∥∥
L2
per

≥ ε‖u‖L2
per

> 0,

for all 0 < λ� 1, and ε > 0 does not depend on λ. From Proposition 3.1

and (3.2) we obtain for λ→ 0+ that∥∥(QL0 − z)u
∥∥
L2
per

≥ ε‖u‖L2
per

.

Since QL0 is self-adjoint, it follows that z ∈ ρ(QL0).

Next, we suppose that z ∈ ρ(QL0) but z /∈Δb. Then, we guarantee the

existence of a sequence {uλ} ⊂C∞
per([0,L])∩V, with ‖uλ‖L2

per
= 1 such that∥∥(Aλ − z)uλ

∥∥
L2
per

−→ 0, as λ→ 0+.

Denote vλ = (Aλ − z)uλ. So, from Lemma 3.7 we have for λ small

‖uλ‖
H

m1
2

per

≤M
(
‖uλ‖L2

per,e
+ ‖vλ‖L2

per

)
≤K.

Hence, from the compact embedding H
m1/2
per ↪→ L2

per, we have (modulo a

subsequence) that uλ ⇀ u in H
m1/2
per and uλ −→ u in V as λ → 0+. Then
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‖u‖L2
per

= 1. Next, for any v ∈D((Aλ)∗) =D(QL0), we conclude that

0 = lim
λ→0+

〈
v, (Aλ − z)uλ

〉
L2
per

= lim
λ→0+

〈(
(Aλ)∗ − z̄

)
v,uλ

〉
L2
per

=
〈
(QL0 − z̄)v,u

〉
L2
per

.

Therefore, u ∈D(QL0) and (QL0 − z)u= 0. Since z ∈ ρ(QL0), we conclude

that u= 0. This last fact generates a contradiction because ‖u‖L2
per

= 1. The

proof of the theorem is now completed.

Using Lemma 3.8 we obtain the following main result.

Theorem 3.9. Let Aλ be the linear operator defined in (1.9). Suppose

that μ0 ∈ σ(QL0) (therefore μ0 is a discrete eigenvalue). Then μ0 is stable

in the sense of Definition 3.5.

Proof. Let μ0 ∈ σ(QL0). Then we can choose δ > 0 such that the annular

region

Qδ =
{
z ∈C : 0< |z − μ0|< δ

}
⊂ ρ(QL0).

From Lemma 3.8, we see that Qδ ⊂Δb. Then for z ∈Qδ

(3.3)
∥∥Rλ(z)

∥∥
B(V)

≤M, for 0< λ� 1.

Therefore, since Aλu→QL0u for λ→ 0+ and ρ(QL0)∩Δb �= ∅, from Kato

[15] we have that for all z ∈Qδ and u ∈C∞
per([0,L]) ∩V, limλ→0+ Rλ(z)u=

R0(z)u. Then, the strong resolvent convergence Rλ(z)→R0(z) is uniform on

the circle Γ = {z : |z−μ0|= r < δ}. Hence the Riesz projections Pλ satisfy for

u ∈ C∞
per([0,L]) ∩V that limλ→0+ Pλu= Pμ0u, and since Pμ0 is self-adjoint,

we have limλ→0+ P ∗
λu= Pμ0u. Therefore we obtain dim(Pλ)≥ dim(Pμ0) (see

Kato [15, Lemma 1.23, p. 438]). Next, by using Kato [15, Lemma 1.24], the

above two convergences of the Riesz projectors and the condition

(3.4) dim(Pλ)≤ dim(Pμ0),

for all 0< λ� 1, are sufficient to establish condition (ii) of Definition 3.5,

that is, the norm convergence of the projections. Thus, let us suppose that

inequality (3.4) does not occur. Then, since Pμ0 is an orthogonal projec-

tion, we can find a sequence uλ ∈ V, ‖uλ‖L2
per

= 1 such that Pλuλ = uλ
and Pμ0uλ = 0. Hence, there is a subsequence, still denoted by {uλ}, such
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that uλ ⇀u0 in L2
per. Now, for v ∈ L2

per and λ→ 0+ the relation 〈v,uλ〉=
〈v, (Pλ−Pμ0)uλ〉= 〈(P ∗

λ −Pμ0)v,uλ〉 implies that 〈v,u0〉= 0 and so, u0 = 0.

On the other hand, for z ∈Qδ−Γ we have from the first resolvent identity

that

(Aλ − z)Pλuλ =− 1

2πi

∫
Γ

[
uλ − (z − η)Rλ(η)uλ

]
dη.

Therefore, from (3.3) and the compactness of Γ, we obtain for 0 < λ� 1

that ∥∥(Aλ − z)Pλuλ
∥∥
L2
per

≤M0

[
1 + sup

η∈Γ
|z − η|

]
.

Hence,

(3.5) ‖Aλuλ‖L2
per

≤
∥∥(Aλ − z)Pλuλ

∥∥
L2
per

+ ‖zPλuλ‖L2
per

≤M,

where M > 0 does not depend on λ > 0. Inequality (3.5) implies that uλ
is bounded in Hm2

per . So, we obtain (modulo a subsequence) that there is

u ∈ L2
per such that uλ −→ u in L2

per, as λ → 0+, with ‖u‖L2
per

= 1. Since

uλ converges weakly to zero in L2
per, we obtain a contradiction from the

uniqueness of the weak limit. This finishes the proof of the theorem.

§4. The moving kernel formula and the instability proof

In this section we study the perturbation of the eigenvalue μ = 0 asso-

ciated with the linear operator QL0 with respect to the operator Aλ for

small λ > 0. For this purpose we derive a moving kernel formula in order to

determine an instability criterion. Let us suppose that ker(QL0) = ker(L0) =

[ d
dxϕc]. Then, dimP0 = 1 and from Theorem 3.9 one has dimPλ = 1 for all

0 < λ� 1. We note that since the eigenvalues of Aλ appear in conjugate

pairs, we have that there is only one real eigenvalue bλ of Aλ inside B(0; δ).

The idea in the next result is to determine the sign of bλ, for λ small.

Lemma 4.1. Let c > 1, and assume that ker(QL0) = [ d
dxφc]. For λ > 0

small enough, let bλ ∈R be the only eigenvalue of Aλ near origin. Then,

(4.1) lim
λ→0+

bλ
λ2

= I(c) :=− 1

‖φ′
c‖2L2

per

1

c

dV

dc

with V denoting the momentum evaluated in the periodic traveling wave φc,

that is,

V (c) =
1

2

〈(
M+ 1+

1

c2

)
φc, φc

〉
L2
per

.
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Proof. From Theorem 3.9 we see that for λ > 0 small enough, there exists

uλ ∈Hm2
per([0,L])∩V such that (Aλ− bλ)uλ = 0, bλ ∈R, and limλ→0+ bλ = 0.

We set ‖uλ‖L2
per,e

= 1. So, from Lemma 3.7 we have that ‖uλ‖
H

m2
2

per

≤ C,

for some constant C > 0 which does not depend on λ > 0. Then, modulo a

subsequence, we have that uλ ⇀u0 in H
m2
2

per ([0,L]), as λ→ 0+, and that

(4.2) uλ −→ u0 in V, as λ→ 0+.

Then, since A0u0 =QL0u0 and ker(QL0) = [φ′
c], we guarantee the existence

of c0 �= 0 such that u0 = c0φ
′
c. We can assume that c0 = 1 by normalizing the

sequence. Moreover, from the equality (Aλ − bλ)(uλ − u0) = bλu0 + (A0 −
Aλ)u0, we obtain from Lemma 3.7, Proposition 3.1, and (4.2) that uλ → u0

in H
m2
2

per ([0,L]) as λ→ 0+.

Next, we show that limλ→0+
bλ
λ = 0. Indeed, since (Aλ − bλ)uλ = 0, we

obtain

(4.3)
bλ
λ
uλ =

1

λ
Aλuλ =

1

λ
A0uλ +

Aλ −A0

λ
uλ.

Then, A0φ′
c = 0 implies that bλ

λ 〈uλ, φ′
c〉 = 〈Aλ−A0

λ uλ, φ
′
c〉. Using the argu-

ment in Proposition 3.1 and from the formula〈Aλ −A0

λ
uλ, φ

′
c

〉
=

1

c2

〈
(1−Eλ,−)Q

[1
c
+ f ′(φc)

]
uλ, φc

〉
+

1

c3
〈
(1−Eλ,−)2uλ, φc

〉
,

we conclude that

(4.4) lim
λ→0+

bλ
λ

=
1

c2‖φ′
c‖2
〈
Q
[1
c
+ f ′(φc)

]
φ′
c, φc

〉
+

1

c3
〈φ′

c, φc〉= 0.

Next, we calculate limλ→0+
bλ
λ2 . We write uλ = cλφ

′
c+λvλ, with cλ =

〈uλ,φ
′
c〉

‖φ′
c‖2

.

Then 〈vλ, φ′
c〉= 0 and cλ → 1 as λ→ 0+. Next, we follow the same strategy

as in Lin [16] to obtain the bound

(4.5) ‖vλ‖
H

m2
2

per

≤C,

where C > 0 does not depend on λ > 0. Indeed, first note that

(4.6) Aλvλ =
bλ
λ
uλ − cλ

Aλφ′
c

λ
=

bλ
λ
uλ − cλ

(Aλ −A0

λ

)
φ′
c.
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So, by denoting wλ := (A
λ−A0

λ ), we get that

wλφ
′
c =

1

c2
(Eλ,− − 1)

[1
c
φc + f(φc)

]
− 1

c3
(Eλ,− − 1)2φc

and we can prove that ‖wλ‖L2
per

≤C, for some C > 0 which does not depend

on λ > 0. Since 〈φc〉= 0 and

(4.7) (M+ 1)φc −
1

c

[1
c
φc + f(φc)

]
=Aφc = 0,

we obtain that 〈1cφc + f(φc)〉= 0, and consequently

(4.8) ωλφ
′
c −→−1

c
(M+ 1)φc −

1

c3
φc, as λ→ 0+.

Therefore, if we combine (4.4), (4.8), Proposition 3.1, and Lemma 3.7, we

get the desired result in (4.5). Thus vλ ⇀ v0 in H
m2
2

per ([0,L]) and vλ → v0
in V, as λ → 0+. From (4.6) and (4.8) we obtain the equality QL0v0 =
1
c (M+ 1)φc +

1
c3
φc. Now, from (4.7) we have

L0

( d

dc
φc

)
=−1

c
(M+ 1)φc −

1

c3
φc,

that is, QL0(v0 +
d
dcφc) = 0. From ker(QL0) = [φ′

c], there is θ ∈R such that

v0 +
d
dcφc = θφ′

c. Next, defining cλ := cλ + λθ and vλ := vλ − θφ′
c we obtain

(4.9) uλ = cλφ
′
c + λvλ.

From the limit vλ → v0 in L2
per,e([0,L]) and the fact that

(Aλ − bλ)(vλ − v0) =
bλ
λ
uλ − cλωλ −Aλv0 − bλvλ + bλv0 −→ 0,

in L2
per([0,L]), as λ→ 0+, we obtain from Lemma 3.7 that ‖vλ− v0‖

H
m2
2

per

→

0, as λ → 0+. Then, vλ → v0 − θφ′
c = − d

dcφc, as λ → 0+. Moreover, from

(4.3) and (4.9)

(4.10) J(λ) :=
〈 bλ
λ2

uλ, φ
′
c

〉
=

1

λ2
〈QL0uλ, φ

′
c〉+

cλ
λ
〈ωλφ

′
c, φ

′
c〉+ 〈ωλvλ, φ

′
c〉.

Next, we estimate the last two terms in (4.10) for λ→ 0+ because the first
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one is zero. By using the argument in Proposition 3.1, we obtain

〈wλvλ, φ
′
c〉 =

1

c2

〈
(1−Eλ,−)Q

[1
c
+ f ′(φc)

]
vλ, φc

〉
+

1

c3
〈
(1−Eλ,−)2vλ, φc

〉
−→− 1

c2

〈[1
c
+ f ′(φc)

] d
dc

φc, φc

〉
− 1

c3

〈 d

dc
φc, φc

〉
and〈wλ

λ
φ′
c, φ

′
c

〉
=

1

c

〈 c∂x
λ(λ− c∂x)

(M+ 1)φc, φ
′
c

〉
− 1

λc3

〈( c∂x
λ− c∂x

)2
φc, φ

′
c

〉
=

1

c2
〈
(1− Eλ,−)(M+ 1)φc, φc

〉
+

1

c4
〈
(1−Eλ,−)φc, φc

〉
+

1

c4
〈
(1− Eλ,−)2φc, φc

〉
−→ 1

c2
〈
(M+ 1)φc, φc

〉
+

2

c4
〈φc, φc〉.

Then, from the equality

(M+ 1)
d

dc
φc =−1

c
(M+ 1)φc +

1

c

[1
c
+ f ′(φc)

] d
dc

φc −
1

c3
φc,

we obtain from (4.10)

lim
λ→0+

J(λ) =
1

c

〈
−(M+ 1)

d

dc
φc −

1

c2
d

dc
φc +

1

c3
φc, φc

〉
=−1

c

〈(
M+ 1+

1

c2

) d

dc
φc, φc

〉
+

1

c4
〈φc, φc〉.

Thus from (4.1)

lim
λ→0+

bλ
λ2

= lim
λ→0+

J(λ)

〈uλ, φ′
c〉

= I(c).

The next lemma gives a sufficient condition to obtain the relation

ker(QL0) = ker(L0). The proof is immediate.

Lemma 4.2. Consider the operator L0 :H
m2
per([0,L])→ L2

per([0,L]) defined

in (1.10). If for all u ∈ L−1
0 (1) we have that 〈u〉 = 0, then the operator

QL0 :X
0
m2

→V satisfies ker(QL0) = ker(L0).

The proof of the next theorem is obtained following the ideas of Lin

[16] and Angulo Pava and Natali [4]; we make it here just for the sake of

completeness.
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Proof of Theorem 1.1 (Instability criterion for the SRLW-type equation).

We sketch the proof assuming (ii) since the arguments can be mimicked

if we suppose (i). Assume that n−(QL0) is odd and that I(c) > 0. Con-

sider k−1 , k
−
2 , . . . , k

−
l , with l≤ n−(QL0), all the distinct negative eigenvalues

of QL0. Since eigenvalues k−i , i = 1,2, . . . , l are isolated, we guarantee the

existence of δ1 > 0 such that the l open disks Bδ1(k
−
i ) are disjoint still lie

in the left half-plane (Rez < 0). Using Theorem 3.9, there exists λ1 > 0

and δ > 0 small enough, δ < δ1, such that for 0< λ < λ1,Aλ has n−(QL0)

eigenvalues (counting multiplicity) in
⋃l

i=1Bδ(k
−
i ). Since I(c) > 0, we see

from Lemma 4.1 that the zero eigenvalue of A0 = QL0 is perturbed to

a positive eigenvalue 0 < bλ < δ of Aλ for small λ0. Let us consider the

region D0
C := {z ∈ C : −2C < Rez < 0 and | Im z| < 2C}, where C > 0 is

the same constant which appears in Lemma 3.3. Then if we repeat the

same arguments as in Lemma 3.3, we get that Aλ has exactly n−(QL0)+ 1

eigenvalues (counting multiplicity) in D0
C := {z ∈ C : −2C < Rez < 2δ and

| Im z| < 2C}. Then, all eigenvalues of Aλ with real part no greater than

2δ lie in
⋃l

i=1Bδ(k
−
i ) ∪Bδ(0). Thus for small λ, Aλ has exactly n−(QL0)

eigenvalues in D0
C .

Now, we assume that the conclusion of the theorem does not occur. Then,

Ker(Aλ) = {0} for any λ > 0. Let nD0
C
(λ) be the number of eigenvalues

(with multiplicity) of Aλ in D0
C . Since the spectrum of Aλ is discrete and

D0
C is compact, we conclude that nD0

C
(λ) is always a finite integer for every

λ > 0. Moreover, for λ > 0 small enough nD0
C
(λ) = n−(QL0) is odd and

there is Λ> 0 such that for λ > Λ, we conclude that nD0
C
(λ) = 0. Next, we

define the two nonempty sets Sodd = {λ > 0;nD0
C
(λ) is odd} and Seven =

{λ > 0;nD0
C
(λ) is even}. Then since the complex eigenvalues of Aλ appear

in conjugate pairs, the number of pure complex eigenvalues is even (since

Ker(Aλ) = {0}), and since the mapping λ ∈ (0,+∞)→Aλ is analytic, we

can conclude that both Sodd and Seven are open disjoint subsets such that

(0,+∞) = Sodd ∪ Seven, which is a contradiction.

So, there exists λ > 0 and 0 �= u ∈X0
m2

such that Aλu= 0, and therefore

eλtu(x) is a purely growing mode solution to (1.8). With this solution in

hand, it is easy to obtain a solution for (1.7) of the form (eλtu(x), eλtv(x)).

This finishes the proof of the theorem.
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§5. Stability and instability for the mSRLW equation

In this section we study the stability and instability of two families of

periodic traveling wave solutions for the mSRLW equation, namely,

utt − uxx + (3u2ux)t − uxxtt = 0.

Our analysis of the stability makes use of the classical ideas in Benjamin

[6], Bona [7], and Weinstein [23]. For linear instability we apply the results

established in the previous sections.

The mSRLW equation is equivalent to

(5.1)

{
ut − uxxt + 3u2ux − vx = 0,

vt − ux = 0.

So, suppose that (u, v), with u(x, t) = φc(x− ct) and v(x, t) = ψ(x− ct), is

a solution for (5.1). Then (φc,ψc) satisfy

(5.2)

{
cφ′′

c − cφc + φ3
c −ψc = 0,

−cψc − φc = 0,

where we considered all the constants of integration equal to zero. Using

the last system, we have that the profile φc satisfies

(5.3) c2φ′′
c − (c2 − 1)φc + cφ3

c = 0.

Two Jacobian elliptic profile solutions of (5.3) are of important interest in

applications, the dnoidal and cnoidal solutions. For the dnoidal profile we

use the Poisson summation theorem, and for the cnoidal profile we use the

classical quadrature method.

5.1. Dnoidal solutions

Here we apply a similar argument as in Angulo Pava, Banquet, and

Scialom [3, Section 3] to establish the existence of a smooth curve of posi-

tive, even, and periodic traveling wave solutions for the mSRLW equation.

So, we start by considering the solitary wave solutions for equation (5.3)

ϕw(x) =

√
2(w2 − 1)

w
sech

(√
w2 − 1

w2
x

)
, w > 1, x ∈R,
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with Fourier transform ϕ̂R
w (ξ) =

√
2wπ sech(πξ2

√
w2

w2−1
). Then, from Theo-

rem 2.1 we obtain the following periodic function

(5.4) θw(x) :=

√
2wπ

L
+

2
√
2wπ

L

∞∑
n=1

sech

(
πn

2L

√
w2

w2 − 1

)
cos
(2πnx

L

)
,

where w > 1 will be chosen later for θw to be a periodic traveling wave

of (5.3). On the other hand, we have the Fourier expansion of the dnoidal

Jacobi elliptic function of period L (see Oberhettinger [18])

2K

L
dn
(2Kξ

L
;k
)
=

π

L
+

2π

L

∞∑
n=1

sech
(nπK ′

K

)
cos
(2nπξ

L

)
,

where K = K(k) is the complete elliptic integral of the first kind and

K ′(k) ≡ K(
√
1− k2). Now, because of the shape of the series that deter-

mines θw, we consider the profile

(5.5) φc(x) = η dn
( ηx√

2c
;k
)

with η > 0 and k ∈ (0,1) fixed, a periodic solution (with period L) for the

equation (5.3). Then, substituting this type of solution in (5.3) and using the

fact that the fundamental period of the dnoidal function is 2K, we obtain

the following compatibility relations

(5.6)
c2 − 1

c2
=

η2

2
(2− k2) and η =

2
√
2cK(k)

L
.

Thus, for k ∈ (0,1) we should have that η ∈ (
√

c2−1
c ,

√
2(c2−1)

c ) and

c2−1
c2

> 2π2

L2 (the last one because K(k) > π/2 for all k). Combining the

two equations given in (5.6) it is easy to see that

L2 =
4c2(2− k2)K2(k)

c2 − 1
,

and since c > 1, we obtain the a priori estimate L>
√
2π. The compatibility

relations in (5.6) also imply that

c2 =
L2

L2 − 4(2− k2)K2(k)
.
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Using again the assumption c > 1, we should have that there exists

kL ∈ (0,1) such that

(5.7) L2 − 4(2− k2)K2(k)> 0, for all k ∈ (0, kL).

Next, if we consider φc with fundamental period Tφc , we obtain from (5.6)

that it can be seen as a function of η given by

Tφc(η) = 2K(k)
√
2− k2

√
c2

c2 − 1
,

with k2 = 2− 2(c2−1)
η2c

. So, if η →
√

c2−1
c , then k → 0+; therefore Tφc(η)→

√
2π
√

c2

c2−1
. If η →

√
2(c2−1)

c , then k → 1−; therefore Tφc(η)→ +∞. Since

η 
→ Tφc(η) is a strictly increasing function (we prove it later), we obtain

that Tφc(η)>
√
2π
√

c2

c2−1
.

Since the proof of the next theorem and corollaries follows the same lines

as in Angulo Pava, Banquet, and Scialom [3], we omit the details.

Theorem 5.1. Let L>
√
2π be fixed, and let kL ∈ (0,1) satisfying (5.7).

Consider c0 >
L√

L2−2π2
and the unique η0 = η(c0) such that Tφc0

(η0) = L.

Then we have the following.

(i) There exist an interval I(c0) around c0, an interval J(η0) around η0,

and a unique smooth function Λ : I(c0)−→ J(η0) such that Λ(c0) = η0
and

2
√
2− k2K(k)

√
c2

c2 − 1
= L,

where c ∈ I(c0), η = Λ(c) ∈ J(η0), and k = k(c) is given by k2 = 2 −
2(c2−1)

η2c
.

(ii) The wave solution (φc,ψc), where −cψc = φc and φc is given by (5.5),

determined by η = η(c), has fundamental period L and satisfies (5.2).

Furthermore, the mapping

c ∈ I(c0) 
−→ (φc,ψc) ∈Hn
per

(
[0,L]

)
×Hn

per

(
[0,L]

)
is smooth for all n ∈N.

(iii) I(c0) can be chosen as I = ( L√
L2−2π2

,+∞).

In the next corollary we choose the speed w =w(c) in such way that θw
in (5.4) becomes a periodic traveling wave with dnoidal profile.
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Corollary 5.2. Define

(5.8) w2(c) =
16c2(2− k2)K ′2

16c2(2− k2)K ′2 − c2 + 1
,

where k = k(c) ∈ (0, kL) and c > L√
L2−2π2

. Then φc =
√

c
w(c)ψw(c).

Corollary 5.3. Consider the mapping Λ : I(c0) −→ J(η0) determined

by Theorem 5.1. Then, Λ is a strictly increasing function on I(c0).

Corollary 5.4. Consider w : ( L2

L2−2π2 ,+∞)−→R, where w is given by

(5.8). Then dw
dc > 0.

5.2. Global well-posedness for the gSRLW equation

In this section we study the initial value problem

(5.9)

⎧⎪⎨⎪⎩
ut − uxxt + (up+1)x − vx = 0,

vt − ux = 0,

(u(0), v(0)) = (u0, v0),

for p≥ 1, p ∈ N, in the periodic setting. For p= 1, a local and global well-

posedness result for (5.9) in the periodic and continuous cases was obtained

by Banquet in [5] if (u0, v0) ∈Hs(R)×Hs−1(R) (or in Hs
per ×Hs−1

per ), with

s≥ 0. For this reason we only consider p≥ 2. Write (5.9) in the form

(5.10)

⎧⎪⎨⎪⎩
iut = ϕ(Dx)(u

p+1 − v),

ivt =−ψ(Dx)u,

(u(0), v(0)) = (u0, v0),

where ϕ̂(Dx)u(ξ) = ξ
1+|ξ|2 û(ξ) = ϕ(ξ)û(ξ) and ψ̂(Dx)u(ξ) = ξû(ξ) =

ψ(ξ)û(ξ). Solving the linear problem⎧⎪⎨⎪⎩
iut =−ϕ(Dx)(v),

ivt =−ψ(Dx)u,

(u(0), v(0)) = (u0, v0)

we get the solution (u(t), v(t)) = S(t)(u0, v0), where(
û(t, ξ)

v̂(t, ξ)

)
=

(
cos(α(ξ)t) i√

1+|ξ|2
sin(α(ξ)t)

i
√
1 + |ξ|2 sin(α(ξ)t) cos(α(ξ)t)

)(
û0(ξ)

v̂0(ξ)

)
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with α(ξ) = ξ√
1+|ξ|2

. Then, (5.10) may be rewritten as the integral equation

(
u(x, t), v(x, t)

)
= S(t)(u0, v0)− i

∫ t

0
S(t− τ)G

[
(u, v)(x, τ)

]
dτ,

where G is given by G(u, v) = [ϕ(Dx)(u
p+1),0]. Using a fixed point argument

and the fact that Hs
per is a Banach algebra, it is easy to prove that the initial

value problem (5.9) is locally well-posed in Hs×Hs−1 for s > 1/2. A global

well-posedness result is obtained in H1
per×L2

per, from the fact that the norm

‖ ·‖H1
per×L2

per
is conserved by the flux of the system (5.9). Furthermore, using

the implicit function theorem, it is obtained that the mapping data-solution

associated to the generalized SRLW (gSRLW) equation is smooth.

Then we collect the previous conclusions in the following theorem. Define

X =H1
per ×L2

per.

Theorem 5.5. The Cauchy problem associated with the gSRLW equation

(5.9) is globally well-posed in X; that is, if (u0, v0) ∈X, there is a unique

mild solution (u, v) ∈ C([0, T ];X) of (5.9), for all T > 0. Moreover, the

mapping data-solution associated to the gSRLW equation,

Υ :X → C
(
[0, T ];X

)
,

(u0, v0) 
→Υ(u0, v0) = (uu0 , vv0),

is smooth and we have that the following quantities

V (u, v) =
1

2

∫ L

0
(u2x + u2 + v2)dx,

(5.11)

E(u, v) =

∫ L

0

(
uv− 1

p+ 2
up+2

)
dx

are conserved by the flow of the gSRLW equation.

5.3. General stability criterion for the gSRLW equation

In this section we establish a general criterion of orbital stability of trav-

eling wave solutions for the gSRLW system (5.9). Let us consider (φc,ψc)

satisfying

(5.12)

{
cφ′′

c − cφc + φp+1
c −ψc = 0,

−cψc = φc.
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Using the last system, we have that (φc,ψc) is a critical point for the func-

tional E(u, v) + cV (u, v), that is, E′(φc,ψc) + cV ′(φc,ψc) = 0. Now, define

(5.13) Hc =E′′(φc,ψc) + cV ′′(φc,ψc) =

[
c(1− ∂2

x)− (p+ 1)φp
c 1

1 c

]
.

Then the operator Hc :D(Hc)→ L2
per ×L2

per is linear, closed, not bounded,

and self-adjoint, defined on H2
per × L2

per. Also it is easy to see that

Hc(φ
′
c,ψ

′
c) = 0. Following the proof of the orbital stability of periodic trav-

eling wave solutions for the SRLW equation given in Banquet [5] (see also

Benjamin [6], Bona [7], Weinstein [23], and Grillakis, Shatah, and Strauss

[10]) we obtain the following main conditions, which imply orbital stability

in the case of the gSRLW equation:

(C0) there is a nontrivial smooth curve of periodic

solutions for (5.9) of the form

c ∈ I ⊂R→ (φc,ψc) ∈H1
per([0,L])×L2([0,L]);

(5.14)
(C1) Hc has a unique negative eigenvalue and it is simple;

(C2) the eigenvalue zero is simple;

(C3)
d

dc

∫ L

−L
[(φ′

c)
2 + φ2

c +ψ2
c ]dx > 0.

5.4. Orbital stability of dnoidal waves for the mSRLW equation

In this section we prove that the family of dnoidal waves established in

Section 5.1 is orbitally stable by the periodic flow of the mSRLW. So, from

Theorems 5.1 and 5.5 we only need to verify the conditions (C1), (C2), and

(C3) in (5.14).

5.4.1. Proof of conditions (C1) and (C2). We consider the linear operator

Hc given in (5.13), with p= 2. Then from (5.12) we get that Hc(φ
′
c,ψ

′
c) = 0.

Therefore zero is an eigenvalue with associated eigenfunction (φ′
c,ψ

′
c). The

theory of compact self-adjoint operators implies that Hc has a compact

resolvent and so the spectrum of Hc is a countable infinity set of eigenvalues

{λn}∞n=0 with λ0 ≤ λ1 ≤ λ2 ≤ · · · , where λn →∞ as n→∞.

Next we consider the following operator of Schrödinger type

(5.15) L=−c
d2

dx2
+

c2 − 1

c
− 3φ2

c .
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Following the same lines of Angulo Pava [1, Theorem 3.1] (see also Angulo

Pava [2]), we get the next result.

Proposition 5.6. Let φc be the periodic wave solution given by The-

orem 5.1, with c > L√
L2−2π2

and L > 2π. Then, the operator L defined in

(5.15) with domain H2
per([0,L]) has its first two eigenvalues simple with zero

being the second one. Moreover, the remainder of the spectrum is constituted

by a discrete set of eigenvalues which converge to +∞.

Now, we calculate the quadratic form associated to the operator Hc,

which is given for (f, g) in a dense subset of X :=H1
per([0,L])×L2

per([0,L])

by

〈
H(f, g), (f, g)

〉
=

∫
(−cf ′′f + cf2 − φcf

2 + cg2 + 2fg)dx

(5.16)

= 〈Lf, f〉L2
per

+
1

c
‖cg+ f‖2L2

per
.

Here we denote 〈(f, g), (h, j)〉 :=
∫
(fh+ gj)dx. The next theorem shows us

the behavior of the first two eigenvalues related to the operator Hc.

Theorem 5.7. Let (φc,ψc) be the traveling wave solution given by Theo-

rem 5.1, and let c > L√
L2−2π2

. Then, the operator Hc with domain

H2
per([0,L])×L2

per([0,L]) in L2
per([0,L])×L2

per([0,L]) has its first three eigen-

values simple. The eigenvalue zero is the second one with associated eigen-

function (φ′
c,ψ

′
c). Moreover, the remainder of the spectrum is constituted by

a discrete set of eigenvalues.

Proof. Using system (5.12), we have that Hc(φ
′
c,ψ

′
c) =

−→
0 . Thus zero is an

eigenvalue of Hc. Now, assume that (f, g) �= −→
0 is such that Hc(f, g) =

−→
0 .

Then, L0f + g = 0 and cg + f = 0, where L0 = c(1− ∂2
x)− 3φ2

c . After some

algebra we get that Lf = 0. Therefore, there exists a ∈ R− {0} such that

f = aφ′
c and consequently that g = −a

cφ
′
c = aψ′

c. This shows that zero is

a simple eigenvalue of Hc with associated eigenfunction (φ′
c,ψ

′
c). Let κ be

the unique negative eigenvalue of L with eigenfunction ν. Since 〈Lf, f〉L2
per

assumes negative values, from (5.16) we have that 〈Hc(f, g), (f, g)〉 assumes

negative values. Indeed, consider
−→
ψ = (−cν, ν). Then

〈Hc
−→
ψ ,

−→
ψ 〉= c2〈Lν, ν〉L2

per
+

1

c
‖cν − cν‖2L2

per
= κc2‖ν‖2L2

per
< 0.
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Moreover, the smallest eigenvalue associated to Hc, say, σ1, is negative. We

will show that the next eigenvalue of Hc is σ2 = 0 (which is already known

to be simple) and consequently that the third eigenvalue σ3 is positive. For

this purpose we use the min-max characterization of eigenvalues (see Reed

and Simon [19]). Namely, we have

σ2 = max
(f,g)∈X

min
(h,j)∈X(f,g)

〈Hc(h, j), (h, j)〉
‖(h, j)‖X

,

where X(f,g) = {(h, j) ∈X−{0} : (h, f)1+〈j, g〉L2
per

= 0}. Here (·, ·)1 denotes
the inner product in H1

per([0,L]). If we choose f = ν and g = 0, we get

immediately from Proposition 5.6 that

σ2 ≥ min
(h,j)∈X(ν,0)

〈Hc(h, j), (h, j)〉
‖(h, j)‖X

≥ 0,

and therefore σ2 = 0. Since 0 is simple, we obtain that σ3 > 0.

5.4.2. Proof of condition (C3). In the following analysis we take advan-

tage of the formula (5.4).

Proposition 5.8. Let L >
√
2π, and let c > L√

L2−2π2
. Then for V (c) =∫ L

0 (φ2
c + φ′2

c +ψ2
c )dx, we have d

dcV (c)> 0.

Proof. Since cψc =−φc, and using the Parseval identity, we obtain

d

dc
V (c) = L

d

dc

∥∥∥(c2 + 1

c2
+ | · |2

)1/2
φ̂c

∥∥∥2
l2
.

But we have that φ̂c(n) =
√

c
w(c) φ̂w(c)(n) =

√
2cπ
L sech(

√
w2(c)

w2(c)−1
πn
2L ) and con-

sequently

V (c) =
2π2

L2

∞∑
n=−∞

(c2 + 1

c
+ c|n|2

)
sech2

(πn
2L

√
w2

w2 − 1

)
.

Hence,

d

dc
V (c) =

D

(w2 − 1)3/2
dw

dc

·
∞∑

n=−∞

(c2 + 1

c2
+ c|n|2

)
n sech2

(
πn

2L

√
w2

w2 − 1

)
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· tanh
(
πn

2L

√
w2

w2 − 1

)

+
2π2

L2

∞∑
n=−∞

(c2 − 1

c2
+ |n|2

)
sech2

(
πn

2L

√
w2

w2 − 1

)
,

where the constant D = D(c,L) > 0. Since the sequence

{n tanh(πn2L
√

w2

w2−1
)}n is positive, using Corollary 5.4 we get that

d
dcV (c)> 0.

From the analysis above we have the following theorem of stability.

Theorem 5.9 (Stability of dnoidal waves for the mSRLW equation). Let

L >
√
2π, and let c > L√

L2−2π2
. Let (φc,ψc) be the traveling wave solution

given by Theorem 5.1. Then the Ω(φc,ψc)-orbit is stable by the periodic flow

of the mSRLW equation (5.1).

5.5. Linear instability of cnoidal waves

for the mSRLW equation

Here we apply the results established in the Section 4 to conclude the

linear instability of cnoidal waves for the mSRLW equation. Assuming c �= 0,

from (5.3) we obtain the differential equation in quadrature form,

[φ′
c]
2 =

1

2c

[
−φ4

c +
2(c2 − 1)

c
φ2
c + 4Dφc

]
,

where Dφc is a nonzero integration constant. The periodic solutions related

to (5.3) can be obtained from the specific form of the roots associated to

the polynomial Q(t) =−t4 + 2(c−1)
c t2 +4Dφc . If we suppose that Q has two

symmetric real roots, −b < 0< b and a pure imaginary root ia, we obtain

for c > 1 the formula (see Angulo Pava [1], [2])

(5.17) ϕc(x) = b cn
( β√

c
x;k
)
,

which is a periodic sign-changing solution for (5.3). Here, we have k2 =
b2

a2+b2
, b2 − a2 = 2(c2−1)

c , and β =
√

a2+b2

2 . We note that for c > 1, we get

that b2 > 2(c2−1)
c . Since k2 = b2

j(b,c) for j(b, c) = 2b2 − 2(c2−1)
c , we must have

k2 ∈ (1/2,1). Next, since the cnoidal has real fundamental period equal to
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4K, we obtain that the fundamental period for ϕc can be seen as a function

of b,

Tϕc(b) =
4
√
c√

1
2j(b, c)

K
(
k(b)
)
.

Then, applying a similar argument as in [1, Theorem 2.3], we can deduce

from the implicit function theorem the following result.

Theorem 5.10. Let L > 0 be fixed, and let k2 ∈ (1/2,1) satisfying L2 >

16K2(k)(2k2 − 1). Then we have the following.

(i) For every c > 1 there is a unique b= b(c) ∈ (

√
2(c2−1)

c ,+∞) such that

the map c ∈ (1,+∞) 
→ b(c) is a strictly increasing smooth function and

L = 4
√
c√

1
2
j(b(c),c)

K(k). The modulus k = k(c) is given by k2(c) = b2(c)
j(b(c),c)

and dk
dc > 0.

(ii) For every c > 1 and h(c)≡ 1
2cj(b(c), c), the wave(

φc(x),ψc(x)
)
=
(
b cn
(√

h(c) · x;k
)
,−b

c
cn
(√

h(c) · x;k
))

has fundamental period L and satisfies equation (5.2). Moreover, the

mapping c ∈ (1,+∞) 
→ (φc,ψc) ∈Hn
per([0,L])×Hn

per([0,L]) is a smooth

function for all n ∈N.

Next, for L0 defined in (1.10) with f(u) = u3, we consider the eigenvalue

problem in H2
per([0,L]){

L0ψ = ηψ,

ψ(0) = ψ(L), ψ′(0) = ψ′(L),

which immediately implies the existence of an enumerable set of eigenvalues

{ηi}i�0. From (5.17) and the transformation Φ(x) = ψ(
√
cx/β), we obtain

the eigenvalue problem

LΦ :=−Φ′′ + 6k2 sn2(x;k)Φ = θΦ,
(5.18)

Φ(0) = Φ
(
4K(k)

)
Φ′(0) = Φ′(4K(k)

)
.

Here θ will be an eigenvalue satisfying

(5.19) θ =
1

β2

[
3b2 − c2 − 1

c
+ cη
]
.
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Now, it is known that for (5.18) the set of eigenvalues {θi}i�0 has the dis-

tribution

θ0 < θ1 < θ2 < θ3 < θ4 < θ5 � θ6 < · · · ,
which means that the first five eigenvalues are simple and that all the other

eigenvalues have multiplicity 2 (see Magnus and Winkler [17]). Since the

exact value of these five eigenvalues, as well as the associated eigenfunctions,

will be useful for all subsequent calculations, we have the following:

θ0 = 2
[
1 + k2 − r(k)

]
; ψ0(x) = 1−

(
1 + k2 − r(k)

)
sn2(x),

θ1 = 1+ k2; ψ1(x) = ∂x sn(x) = cn(x)dn(x),

θ2 = 1+ 4k2; ψ2(x) = ∂x cn(x) =− sn(x)dn(x),

θ3 = 4+ k2; ψ3(x) = ∂x dn(x) =−k2 sn(x) cn(x),

θ4 = 2
[
1 + k2 + r(k)

]
; ψ4(x) = 1−

(
1 + k2 + r(k)

)
sn2(x),

where r(k) =
√
1− k2 + k4. Moreover, the following basic computation

shows that for j �= 0 and j �= 4, we have that the associated eigenfunction

Φj has zero mean. Indeed, LΦj = θjΦj implies that

θj〈Φj ,1〉= 6〈k2 sn2,Φj〉= 6〈Φj ,Φ4〉+ 2
[
1 + k2 − r(k)

]
〈Φj ,1〉.

Since θj > θ0, we obtain 〈Φj ,1〉= 0.

Now, using the same steps as in [1, Proof of Theorem 2.3], we obtain that

n−(L0) = 2 and that ker(L0) = [ d
dxφc](from (5.19), the eigenvalues θ0, θ1,

and θ2 determine η0, η1, and η2 = 0, respectively; moreover, η0 < η1 < η2 =

0). Furthermore, since 〈Ψ1,1〉 =
∫ 4K(k)
0 ∂xsn(x;k)dx = 0, we obtain that

the eigenvalue η1 belongs to the negative spectrum of QL0, so we have that

1 ≤ n−(QL0) ≤ 2. Next, we obtain the sign of I(c) given in (4.1). From

Theorem 5.10 we obtain that

dV (c)

dc
= 2

d

dc

{b2
α

∫ K

0

[c2 + 1

c2
cn2(x;k) + α2 sn2(x;k)dn2(x;k)

]
dx
}
,

with α = 4K/L. Moreover, for all L > 0 we can write b2 = 32ck2K2(k)
L2 and

the wave speed c > 1 by the expression

c2 =
L2

L2 − 16K2(k)(2k2 − 1)
, k2 ∈ (1/2,1).

Now, from Byrd and Friedman [9], we have∫ K

0
cn2(x;k)dx=

1

k2
[
E(k)− (1− k2)K(k)

]
,
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with E =E(k) the complete elliptic integral of the second kind, and

α2

∫ K

0
sn2(x;k)dn2(x;k)dx=

16K(k)2

3k2L2

[
(2k2 − 1)E(k) + (1− k2)K(k)

]
.

Therefore,

dV (c)

dc
= 16

d

dc

{c2 + 1

c

K

L

[
E − (1− k2)K

]
+

16cK3

3L3

[
(2k2 − 1)E + (1− k2)K

]}
(5.20)

= 16
d

dc

{c2 + 1

c

D1(k)

L
+

16cD2(k)

3L3

}
.

Since c ∈ (1,+∞) 
→ c2+1
c , k ∈ (0,1) 
→D1(k), k ∈ (0,1) 
→D2(k) are positive

strictly increasing functions and dk
dc > 0 in (

√
2
2 ,1), we have from (5.20) that

dV (c)
dc > 0 and then I(c)< 0. Using a very similar argument as in [4], we get

that, for k ∈ (
√
2/2, k∗), we have n−(QL0) = 1 and for k ∈ (k∗,1), we have

n−(QL0) = 2, where k∗ ∼ 0.909. Moreover, ker(QL0) = [ d
dxφc].

The following result is obtained from Theorem 1.1.

Theorem 5.11 (Linear instability of cnoidal waves for the mSRLW equa-

tion). The solution (φc,ψc), where cψc =−φc and φc is given in (5.17), is

linearly unstable for the mSRLW equation (5.1), provided that the wave speed

c ∈ (c∗,+∞), where

(5.21) c∗2 =
L2

L2 − 16K2(k∗)(2k∗2 − 1)
.

Remark 5.12.

(1) We can determine numerically the value of c∗2 ≈ L2

L2−56,277
, and so our

minimal period L must satisfy a priori the lower bounded L2 > 56,277.

(2) Since ker(QL0) = span{ d
dxϕc} and n−(QL0) = 1 for k ∈ (

√
2/2, k∗), we

obtain from Grillakis, Shatah, and Strauss [10] that the orbit Ωϕc is

stable in H1
per([0,L])∩V for c ∈ (1, c∗).

5.6. Nonlinear instability of cnoidal waves

for the mSRLW equation

In this section we establish the nonlinear instability of the linearly unsta-

ble cnoidal waves for the mSRLW equation determined in Theorem 5.11.
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The following theorem is the link for obtaining nonlinear instability from a

linear instability result.

Theorem 5.13. Let Y be a Banach space, and let Ω ⊂ Y be an open

set containing 0. Suppose that T : Ω→ Y has T (0) = 0, and for some p > 1

and continuous linear operator L with spectral radius r(L)> 1, we have that

‖T (x)−Lx‖Y =O(‖x‖pY ) as x→ 0. Then 0 is unstable as a fixed point of T .

Proof. See Henry, Perez, and Wreszinski [12, Theorem 2].

Remark 5.14. In Theorem 5.13, 0 is unstable as a fixed point of T if

there is ε0 > 0 such that for all B(0;η) and arbitrarily large N0 ∈ N, there

is a N >N0 and x ∈B(0;η) such that ‖TN (x)‖Y ≥ ε0.

By using Taylor’s theorem, Theorem 5.13 implies immediately the follow-

ing result.

Corollary 5.15. Let S : Ω ⊂ Y → Y be a C2 map defined in an open

neighborhood of a fixed point ϕ of S. If there is an element μ ∈ σ(S′(ϕ))
with |μ|> 1, then ϕ is an unstable fixed point of S.

Theorem 5.16. The cnoidal profile solution (φc,ψc), where cψc = −φc

and φc is given in (5.17), is nonlinearly unstable for the mSRLW equation

(5.1), provided that the wave speed c ∈ (c∗,+∞) with c∗ defined as in (5.21).

Proof. In system (5.1), we replace (u(x, t), v(x, t)) by (u(x+ ct, t), v(x+

ct, t)) and then we obtain

(5.22)

{
ut − cux + 3u2ux + cuxxx − uxxt − vx = 0,

vt − cvx − ux = 0.

Then (φc,ψc) is an equilibrium solution for equation (5.22). Defining

G(u, v) = 1
c [E(u, v) + cV (u, v)], where E and F are defined as in (5.11),

we have that equation (5.22) can be written as

(5.23)
(
(1− ∂2

x)u, v
)
t
= JG′(u, v),

where J =
[
c∂x 0
0 c∂x

]
. Moreover, from (5.23) we see that the linearized equa-

tion at equilibrium point (φc,ψc) is ((1− ∂2
x)w,z)t = JH0(w,z) (see (1.6)),

where H0 is the linear self-adjoint operator defined by

H0 =

[
1− ∂xx − 1

cf
′(φc)

1
c

1
c 1

]
.
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Let us define S : X → X as S(u0, v0) = (uu0(1), vv0(1)), where

(uu0(t), vv0(t)) is the solution of (5.22) with initial data (u(x,0), v(x,0)) =

(u0(x), v0(x)). If one considers Υc : X → C([0, T ];X) the mapping data-

solution related to equation (5.22), we see from Theorem 5.5 that Υc is

smooth. Furthermore, S(φc,ψc) = (φc,ψc) and S is a C2 map defined on a

neighborhood of (φc,ψc) (this last fact follows since translation in x is a lin-

ear continuous map in X). Moreover, for (g,h) ∈ X we have

S′(φc,ψc)(g,h) = (wg(1), zh(1)), where (wg(1), zh(1)) is the solution of the

linear initial value problem{
((1− ∂2

x)w,z)t = JH0(w,z),

(w,z)(0) = (g,h)

evaluated in t= 1. Then, from arguments established in Sections 4 and 5.5,

we deduce that there is λ > 0 and (w0, z0) ∈X−{0} such that JH0(w0, z0) =

λ((1 − ∂2
x)w0, z0). Hence for (ww0(t), zz0(t)) = eλt(w0, z0) and μ := eλ, we

obtain S′(φc,ψc)(w0, z0) = μ(w0, z0). Therefore μ ∈ σ(S′(φc,ψc)), and from

Corollary 5.15 we obtain the nonlinear instability in X of the cnoidal solu-

tion (φc,ψc), provided that c ∈ (c∗,+∞).
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