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0. Introduction. On a semigroup S let the relation %*, sometimes denoted by R¥,
be defined by x%*y & [(Vs, 1 € $')sx = tx &sy = 1y). A semigroup S is called left type-A,
iff the set E5 of idempotents of S forms a semilattice under multiplication, each element x
of S is &* related to a (necessarily unique) idempotent x*, and xe = (xe)*x for all x € §,
€ e Es.

Left type-A semigroups are natural generalizations of inverse semigroups and have
been the subject of a considerable amount of investigation in recent years (e.g. {2], [3],
(71, [S], (4]).

By a left type-A congruence p on a left type-A semigroup S we mean a congruence p
on (S,-), satisfying the implication xpy 2>x"py™ and making S/p into a left type-A
semigroup by (sp)*:=s"p.

The purpose of this paper is to generalize the results of [1] to left type-A semigroups.

In Section 2 we define the notions of A-semidirect product and full restricted
semidirect product. These notions are not given in full generality but rather as they are
needed here (first (second) component a semilattice (left type-A semigroup)).

In Section 3 we prove that, given a left type-A semigroup S and a left type-A
congruence p on S, satisfying p N &* =, the identity relation, then S is isomorphic to a
well determined subsemigroup T of a A-semidirect product A =, S/p, with A a semilattice.
Moreover RF < R%. s,

In particular, if § is proper, i.e. if o0 N %&* =, where o is the least right cancellative
congruence on S, we obtain that S is isomorphic to an M-semigroup T, [2], which is
embedded into a semidirect product of a semilattice by a right cancellative monoid.
Regarding this we generalize Fountain’s representation theorem for proper left type-A
semigroups, as well as O’Carroll’s embedding theorem for E-unitary inverse semigroups,

(6].

A related result, which states that each proper left type-A semigroup is embeddable
into a reverse semidirect product of a semilattice by a right cancellative monoid, was
recently proven using the categorical approach in [4].

In Section 4 we apply our methods to a certain class of left type-A semigroups whose
intersection with the class of inverse semigroups consists precisely of the E-reflexive ones,
in the sense of [8].

The notation and terminology of [8] will be used throughout the paper, whenever
possible. In particular, for any congruence, § often denotes the congruence class
containing s, and for H, K €8, HK means the set product, i.e. HK ={hk |h € H, k € K}.

1. Preliminaries. The following basic results on left type-A semigroups and left
type-A congruences are frequently used in the sequel without further reference.

ProrosiTioN 1.1. Let S be a left type-A semigroup. Then:
(i) (ky™)" = ()",
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(i) x"(xy)" = (xy)",

(i) xy™ = (xy")*x.

ProrosiTION 1.2. Let p be a left type-A congruence on a left type A-semigroup S. Then
the following statements are equivalent:

(i) pNR* =,

(ii) xpy > x"y =y"x.

Proof. ()= (ii)). Let pNR* =1 and xpy. It follows that x*py™ which implies
x*ypy*x. Moreover, since R* is a left congruence on S, we obtain xTyR*x¥y* =
y*x"%*y*x. Thus by assumption x*y = y " x follows.

(ii) = (i). Let (ii) be satisfied and xp N R*y. It follows that x* =y* and x*y = y*x,
implyingx =x"x=y*x=x*y=y*y=y. [

ProrosiTioN 1.3. Let p be a left type-A congruence on a left type-A semigroup S with
p N R* = . Then p is idempotent pure, i.e. ape = e* implies a € Es.

Proof. Let ape with e € Eg. It follows that apa®, implying apa™, since p is left type-A,
implying a = a™ by assumption. O

Note that the converse of Proposition 1.3 is not true since there are E-unitary left
type-A semigroups which are not proper [2].

2. A-Semidirect products and full restricted semidirect products

ProprosiTiON 2.1. Let A be a semilattice and G be a left type-A semigroup acting on A
by endomorphisms on the left, i.e. for each g e G, a —»ga is a homomorphism and
g(ha)=(gh)a, for all a € A, g, he G. On T:={(a,g) e AXG|g"a=a} let a multi-
plication be defined by (a,g).(B,h):=((gh)"aNgB,gh). Then T is a left type-A
semigroup with E;={(a,g")e AXG|g"a=qa} and (a,g)" =(a,g") for (a,g)eT.
(T is called a A-semidirect product of A by G, denoted by A *, G).

Proof. Let (a,g), (B,h), (v,k) e T. It follows that (gh)*((gh) argB)=(gh)" an
(gh)"'gB=(gh)*argh™B = (gh)"a ngB, proving that (a,g).(B,h) e T. Moreover we
obtain

((a,8)(B, h)(y, k)= ((ghk)"((gh)" e ngB) nghy, ghk)
= ((ghk)"(gh)" o n(ghk)"gB ~ghy, ghk)
= ((ghk)" a ng(hk)™ B nghy, ghk)
= ((ghk)"a ng((hk)* B Ahy), ghk)
= (a, g)((B, h)(v, k)).

Thus T is a semigroup.

It remains to show that 7T is left type-A. Obviously E;={(a,g”)|(a,g) e T}
E; is a semilattice, since (a,g" )} B, h")=(@g h"(arB),g"h")=(h"g" (Bra),h"g")=
(B,h™Ya,g").
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Further, for (B, k), (y,k) e T we obtain

(B, h)(a,g) = (v, k)(a,8) = ((hg)" B nha,hg) = ((kg)"y nka, kg)
& (hg)' Baha =(kg*) ' yaka and hg™ = kg*
S (B, h)(a,g")=(v,k)a,g").
Consequently (a,g")®*(a, g), and (a,g™) acts as (a,g)* on T. Finally

(a,8)(B,h")=((gh) angB,gh™)
=((gh) angBnr(gh)a,(gh)'g)
= (e, g)(B,h ")) (a,8),

completing the proof. |
It should be noted that if, in Proposition 2.1, G is a right cancellative monoid with
identity 1, and the action satisfies la = a, for all « € A, then A %, G becomes a
semidirect product of A by G.
An important example of the above construction is the following:

DEerFINITION 2.2. Let A be a semilattice and G be a left type-A semigroup. Then
F:=AC€ is a semilattice with respect to the multiplication given by (x)f rg:=(x)f A (x)g,
xeG, f,geF ForteG, fekF, let tf e F be defined by (x)if :=(xr)f, x € G. This
defines an action of G on F by endomorphisms on the left. Thus we can form the
A-semidirect product W:=F %, G with respect to this action. W is called the standard
A-wreath product of A by G, denoted by AW, G.

In general, a semidirect product A * G of a semilattice A by a left type-A semigroup
G is not left type-A. However, if the action of G on A satisfies some additional properties,
a left type-A subsemigroup 7 of A * G can be determined with %} € R%...

ProrosiTiON 2.3. Ler A be a semilattice and G be a left type-A semigroup acting on A
on the left, such that for each o € A, there exists e, € Eg, satisfying

(i) e;a = a, for all a € A,

(ii) eanp=eqep, forall a, B € A,

(iii) e, =(ge,)" , foralla e A,geG.
Then T:={(a,g) e AX G |e,=g"}is a subsemigroup of A x G, which is left type-A, with
(a,g) :=(a,e,). T is called a full restricted semidirect product of A by G, denoted by
ARG.

Proof. Let (a,g), (B,h)e T. It follows e, =g"*, eg=h", and we obtain by (ii)
and  (iii) e, =ea(ges)" =g"(gh)" =(gh)*, implying (a,g)(B,h)eT. Further,
Er={(a,e,)|a € A}, and for (a,e,), (B,es)e Er, we have (a,e,)(B,e5)=

) (i) 0]
(ane.B,e.ep)=(e.(anB), esep)=(esea(anPB), e.eg)=(anP,e.ep)=(Bnra,ege,)=
(B,eg)(a,e,), by symmetry. Thus E, is a semilattice. Moreover (a,g)R*(a,e,)
follows directly from the fact that G is left type-A. Finally we get (a,g)(B,h)" =

(angB,ges) = (a ngBA(ges) (@ ngB)  (g5)'8) = (angBAl(ses)a,  (ges)'s) =
((a,8)(B,h))"(a,g), completing the proof.
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The notions of A-semidirect product and full restricted semidirect product are closely
related as the following theorem shows.

THEOREM 2.4. Let S:=A*, G be a A-semidirect product of a semilattice A by a left
type-A semigroup G. Then A*, G can be embedded into a full restricted semidirect product
A'®G of a semilattice A’ by G.

Proof. Consider the semilattice A':= Es={(a,e) e S|e e Eg}. For ge G, (a,e) e
A' let g(a,e):=(ga,(ge)”). A straightforward verification shows that this defines an
action of G on A’ by endomorphisms on the left. For (a,f) € A’ let e,y :=f Then the
conditions (i), (i), (iii) of Proposition 2.3 are satisfied. Hence we may construct A'® G in
which § is embedded via (a,g)— ((a,87), g). a

In the following proposition we determine a certain subsemigroup A *, G which will
be useful in view of the representation theorem in Section 3.

PrOPOSITION 2.5. Let A*, G be as in Theorem 2.4. Let C be a nonempty subset of A,
and B:=CU{ga |g € G,a € C}. Let € be a fixed element of A and assume further that for
each p € B there is an e, € Eg such that

(i) e, =, for all u € B,

(i) u, v,uaveBe, .. =e,e,

(iii) ey, =(ge.)", forall p e B, g € G,

(iv) anee=a, forall a € C,

(v) a,BeC,e,=g" and a nge = a imply (geg) angB e C,

(vi) for each g € G, there is a € C such that e, =g~ and a Age = a.

Then T:={(a,g)e CXGle,=g" and ange=a} is a left type-A subsemigroup of
Ax, G with R} < R}, . Moreover, pr, defined by (a,g)pr(B,h)& g =h, is a left type-A
congruence on T, satisfying pr N &%=, and T/pr=G.

Proof. Let (a,g), (B,h)eT. It follows that e,=g", eg=h", ange=a, and

BAhe=p. Thus (a,g)(B,h)=((gh) @ ~gB,gh)=((ges) argB,gh)e CXG, by (v),
(ii) (iii)

and €(geg) angB™ C(geg)-afgp = ((geﬁ)+ea)+(geﬁ)+ = (geg)" =(gh)". Further, (gep) a ngB A
ghe = (geg) a ng(B Ahe) = (ges) a ngB. Consequently, T is a subsemigroup of A *, G.
Moreover, (a,e,) € T by (iv), which implies that T is left type-A with (a,g)" = (a, e,).
From this we directly obtain that py is left type-A, pr N RF =1, and R} < R}, ;. Finally
T/pr is isomorphic to G via (a,g)— g, by (vi). O

In connection with Theorem 2.4, Proposition 2.5 leads to a certain subsemigroup of a
full restricted semidirect product, which will be described below.

ProrosiTiON 2.6. Let AQG be as in Proposition 2.3. Let B be a subsemilattice of A
and € an element of A, such that the following holds:

(i) ane=aq, forall « € B,

(i) a,BeA, e, =g  and a nge=a imply a ngB € B,

(iii) for each g € G, there is @ € B, such thate, = g™ and a nge = a.
Then T:={(a,g)e BXGle,=g" and ange=a} is a left type-A subsemigroup of
AQ®G with R < Riwc. Moreover, pr, defined by (a,g)pr(B,h)&g =h, is a left type-A
congruence on T, satisfying pr N R4 =, and T/p;r =G.
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Proof. Let (a,g), (B,h)eT. It follows that e,=g"%, eg=h", ange=a,
and Bahe=p. We obtain e, pz=e.e,s=g (gh")" =(gh)", and anrgBarghe=an
g(B nhe)= a ngPB. Further, by (ii}, a ngB € B. Consequently, T is a subsemigroup of
A®G. Moreover, ane,e=ane=a implies (a,e,)e T, and T is left type-A with
(a,8)" = (a,e,). It follows directly that pr is left type-A, pr N A% =1, and A%< Riec.
Finally T/pr is isomorphic to G via (a,g)— g, by (iii). g

According to [2], [7] we note the following results.

CoroLLarY 2.7. If G is a right cancellative monoid in Proposition 2.6, then
(G, GB, B) is a left admissible triple and T = M(G, GB, B).

CoroLLARY 2.8. Let T be a semigroup constructed by Proposition 2.5. Assume further
that G is a monoid with identity 1 and le = €. Then T is isomorphic to a semigroup
constructed by Proposition 2.6.

Proof. Consider A’ ® G as in Theorem 2.4. Note that by assumption (g, 1) belongs to
A’. Then T is embedded into A’ ® G via ¢, defined by ¢:(a,g)— ((a,e,), g). Moreover
B':={(a,e,)| a € C}is a subsemilattice of A’, and Ty is built up by B’ and £':= (g, 1), as
T is by B and ¢ in Proposition 2.6. a

3. The representation theorem. Let S be a left type-A semigroup and p be a left
type-A congruence on S satisfying p N #* = 1. The aim of this section is to show that S is
isomorphic to a semigroup constructed by Proposition 2.5 with G = S§/p.

The following proposition is a generalization of Theorem 4 of [1].

ProposiTION 3.1. Let S be a left type-A semigroup and p be a left type-A congruence
on S such that p N R* = . Consider C'(S):={H<S|H# ¢, HSS, s"H=H, for some
5eS/p}

(i) C'(S) is a left type-A semigroup with multiplication given by H ° K :=(s1)* HK,
for H K e C'(S), with HS§, K<t and H* :={h" | h € H}.
(ii) S/p = C'(S).
(iii) § is embedded into C'(S) via s —§, where §:=s s*{s}, and the embedding respects
% iLe. gis c %C *(S)

Proof. (i): Let H, K, L e C'(S), with HS§, K<t, L cii. We prove that H oK is in
_(_) Obviously H ¢ K is uniquely defined and H o K <st. Moreover (st)*(H o K) =
(st)* (st)*HK=H * K.

In what follows, we will use Proposition 1.1 several times without further reference.
Next we show that o is associative. We have

(HoK)eL=_(stu)" (st)y"HKL < (stu) HKL,
and
(stu)THKL < (stu)” (st)* HKL imply (H ° K) o L = (stu)* HKL.
On the other hand we have
Ho (Ko L)=(stu)*H(mu) KL < (stu)* HKL,

and
(stu)*HKL < (stu)*H(tu)* KL, implying H o (K o L) = (stu) " HKL.
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Consequently o is associative. Note that Ecy={H<Es|Hce, éH=H for some
e € Eg} since p is left type-A and idempotent pure by Proposition 1.3. Hence Ec s is a
semilattice.

We continue proving that C'(S) is left type-A For this, let H e C'(S) with Hc 5. Let

T:={h*|h e H}. Then clearly H*<s". Further, for ees®, h™ e H", we obtain
eh *R*ehR*(eh)* implying eh™ = (eh)™ o.=.H+ since eh € H. Consequently stH*c H*
and H* € Ecs). Next we show that H™ is *-related to H: Consider K, L € C'(S) with
Kect,Lciand KcH=Lo H,i.e. (ts) KH—(u_LLH

Note that this implies rs=us and 5" =us® since p is left type-A. Let now
xeKoH*=(s)"KH*. Then x=ekh* with ee(is*), ke K, h* e H*. We obtain

= e(kh*)*k =e(flhy) "k =f(h{) ek, for suitable fe(us™), /el, h,eH Since
lh+ =us* = ek, we get by Proposition 1.2 that x = f(ek)*Ih} e (us)"LH* =L o H*.
Analogous]y, it follows that Le H* < K e H*, whence K e H* = L « H*. Finally, since for
arbitrary M\N e C'(S), Mc H=H (1sp. H=No H) implies Mc H=H" o H (rsp. H* »
N = N o H), we obtain by the above M e H* = H* (rsp. H* = N « H*). Summarizing, we
have proven that H* is R*-related to H.

To complete the proof we have to show that for arbitrary H, K € C'(S) the equation
HeK"=(H°K*)"oH is valid. Let H<3, K<t We must verify the equality A:=
(st)THK* =(st)"((st) " HK)*H=:B. Let x € A. Then x =ehk™ with e e (st)*, he H,
k* e K*. It follows that x =e(hk)"h € B. On the other hand, let x € B. Then x =
e(fhk) hy, withe, f e (st)",hy,hoe H, k € K. We get x = ef (h k) h, = ef(h k) hTh,=
ef(h\k) h7h,, by Proposition 1.2. Thus x =efh;(h k) h,=efh;h k" € A, and A=B
follows. .

(ii): The assertion is obvious from the fact that § = s*5 for each Se S/p.

(iii): By definition of C’(S) each § lies in C'(S). Further, § =1 1mp11es s=et and
t=fs,forsomee, f e ES, which implies es =s. Thus s = er = efs = fes = fs = 1 follows._

We prove § 0?— st. Let x € § ot. Then x = cdser with &= (st)", d=s5" and e-t+ It
follows that x = cd(se) st e 5t since cd(se)™ = (st)*s*(st¥)* = (s1)*. Consequently, § o7
si. Since 57 < § o evidently holds, the assertlon is proven

Finally, the embedding respects %*, since s* = r* implies §* = (s*{s})* = (F{})* =1*.

O

Note that §/p is a subset of C'(S) but not a subsemigroup in general. To avoid
confusion, §* always means the element of Ec.s, which is %*-related to § in C'(S),
whereas for the idempotent which is R*-related to §in S/p we use exclusively the term

s

Lemma 3.2. Let H, K € C'(S) such that H=5, K<t and (st)* =s*. Then: Ho K =
HK.

Proof. By definition of o and the assumption we obtain
HeK=(st)* HK =s*HK = HK. 0

Proposition 3.1 enables us to embed S into a standard A-wreath product of a semilattice
by S/p.

THeOREM 3.3. Let S be a left type-A semigroup and p be a left type-A congruence on
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S such that p N\ R* = . Then the mapping ¢:S — Ec.5\W,S/p defined by s — (f;,5), where
(@)f;:=(us* = 8)*, it € S/p, is an R*-respecting embedding.

Proof_Obviously ¢ is uniquely defined. Note that by Lemma 3.2 we have
(@), = (us™ os*{sP)* = (us™ s*{s})", since (us*s)* = (us™)™.

We prove that ¢ is l__|_ect1ve Let (f,8)=(f, tmr_ some s,f € S. Then f,=f and
§=1 We obtain (s7)f,=(s*)f,, implying HshHT =(s"r +{r})*‘, 1mplymg st=(dt)" =
dr*, for some d € Es. On the other hand from (:)f, = (t7)f, we have t* =es™, for some
e € Eg. Thus we get s™ =t7, implying sp N R*t, implying s = 1.

Next we prove that ¢ is a homomorphism. All we have to show is that
L:=(u(st)")f o (us)f, = (@)f,=:R holds for all s, r,u eS. .

From Lemma 3.2 we obtain L = (u(st)* s*™{s})* (ug+ t*{t}LR = (u_(st)* (s)*{st})™.
Let z € L. Then z = (xes)*(yft)", with x e u(st)*, ees™, y e ust™, f et*. We conclude
that z%&*(xes)” yft = (yf)* xest, by Lemma 1.2, since xespyf 1mplymg z%*(yf) (xest)" =
(((yf)*xe)(st)*st)* e R since (yf)*xepu(st)*. Consequently z € R since R* is the identity
relation on Es. Now let z € R. Then z = (xest)™ with x e u(st)*, e e (st)*. We may
write z = (xes)*(xest)* = ((xe)s*s) (xest*)*t)*, implying z € L since xepu(st)* and
xest” pust™. .

Finally ¢ respects &* since (f;,5)" = (f;,s™) in Ec5,W,S/p. O

CoroLLARY 3.4. Let S be a left type-A semigroup and p be a left type-A congruence
on S such that pNR*=1. Then § is embeddable into some Ax*,G, where A is a
semilattice, G = S/p, and R* is respected.

Recall that a left type-A semigroup S is called proper, if o N %&* =1, where o is the
least right cancellative congruence on S, (see [2]). In view of the remark following
Proposition 2.1, Theorem 3.3 yields:

CoroLLARY 3.5. Each proper left type-A semigroup is embeddable into a semidirect
product of a semilattice by a right cancellative monoid such that R* is respected.

Now we are ready to formulate the main result of this section.

THeEOREM 3.6. Let S and p be as in Theorem 3.3. Then S is isomorphic to a
subsemigroup of some A, G, constructed by Proposition 2.5, where A =Egfs, and
G=S5/p.

Proof. Consnder the embedding ¢:s—(f;,5) of Theorem 3.3. Let A:= E&fs,,
B:={tf,|s,t eS8}, C:={f.|s e §}, and G S/p. Note that C < B since s ﬁ f; for each

seS. LeteeAbe deﬁned by (@)e:=i*, it e G, and for each tf, € B let e -(ts) Then
ez is uniquely defined since if, = qf, implies (t)f:- q)f and (9)f, = (q t)f,, implying
(1s)* = (" gp)* and (gp)* = (q71s)", implying (15)" = (qp)

We show that the conditions (i) to (vi) of Proposition 2.5 are satisfied with respect to
C, B, G, ¢, and that S¢ is equal to T:={(f,,1) e CX G |s™ =1" and f, a1e =f,}, where A
denotes the operation in A.

(i): holds, since (u(ts)"0)f, = (uts™)f; = (ut)ﬁ, foralls,t,ued.

(ii): Let f, agf, = yf,, for some p, q, s, t, x, y € S. It follows that (y*0)f, (y )y =
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(7)f._implying y*(1s)*(gp)” = (y"1s)"(y*qp)"p(yz)*. On the other hand we have
if.o (1% q)f, = (17 y)f., implying (1s)*(gp)*™ = (ts)* (1 gp) "p(t*yx)™ = t*(yx)*. Summarizing,
we obtain (1s)"(gp)*p(yx)" and (i) is established.

(iii): straightforward, by definition.

Before establishing (iv) to (vi) we show that S¢ equals T.

Let (f;,5) e Sp. By a direct calculation we get (u)f; (us)e = (us™ s {s})* ous*
(us™ s*H{sP)*us* = (us* s*{s})* = (@)f,, implying (f,,5) € T. Note that obviously f, = f,-, for
alls e S

Now let (ﬁ,t) e T. It follows that sT =1 and finte INT = f;- We obtain (s Yoo (sT0)e =
G 1mp]ymg (s*sH* o sTr* (s*{s}) , implying s*t*(s*{s})*s = (Hsh™. Thus we
have s* =e(fs)*x*, for some e es*1*, fes*, xes't=1 Let p:=s*x. Then p =1 and
pr=(@Etx)"=s"x"=s". Consequentlyf,, fpe =fi- =f, and we obtain (f,, 1) = (f,,p) €
Se.

(iv): follows from the fact that (f,,s*) e T for all s €S _

(v): follows from the embeddlg& since f,, f, € C, t € G with sT=1", and fate=f,

imply (ﬁ,r)(f,,,p )= ((tp™)" firntfp,tp™) € T, which implies (tp ) f Atjj, fv,- eC.
{vi): is clear. g

According to Corollary 2.8 we get:

CoroLLARY 3.7. Let S and p be as in Theorem 3.3. Assume further that S/p is a
monoid. Then S is isomorphic to a semigroup constructed by Proposition 2.6.

CoroLLARY 3.8. [2]. Each proper left type-A semigroup is isomorphic to an
M-semigroup M(G, GB, B).

If § and p are as in Theorem 3.3 and G:=S/p is not a monoid, then § is not a
monoid too and we may consider §' and g:=p U{(1,1)}. Obviously §' is a left type-A
semigroup and p is a left type-A congruence on S' satisfying N A% = and S'/p =G’
By the above, S' is isomorphic to a submonoid T of some A®G', constructed by
Proposition 2.6, and T \{1} is a representation for S.

4. E-Reflexive left type-A semigroups. In this section we consider left type-A
semigroups, which admit a left type-A congruence p, satisfying p N R* = ¢ and xepex, for
all x € §, e € E. In this case S/p is a left type-A semigroup with central idempotents.
Such semigroups where investigated by Fountain [3] who proved that they are precisely
the strong semilattices of right cancellative monoids.

The following concept seems to be appropriate:

DeriniTiON 4.1, Let s be a left type-A semigroup. S is called E-reflexive if
) v)z=z ulxy) v xtytv) z=z uxy v, u, v, x,y, 2 € S. (ER)

ProrosiTion 4.2. Let S be a left type-A semigroup. Let T be a binary relation on S,
defined by

xty: & [(uxv)*z = 2 (uxv) & (uyv) z = 27 (uyv)], forall u, v e §', z € S.
Then t is a congruence on (S, *) satisfying TN R* =

Proof. That t is a congruence on (S,-) is straightforward. Let xtN R*y. By
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definition of Tand (1-x-1)"x=x"(1-x-1) we get y*x =x"y. Moreover x%*y implies
x"=y" Thusx=y*'x=x"y=y. O

THEOREM 4.3. Let S be an E-reflexive left type-A semigroup. Then p defined by
xpy: & xty and x*ty”™, is a left type-A congruence on S, which satisfies p N ®* =1 and
xepex, forall x e S, e € Es.

Proof. Obviously p is an equivalence relation on §. Let xpy, a € §. It follows that xty
and x*1y*, implying axtay. Further (u(ax)*v)*z =z%(u(ax)'v) iff (ua*x*v)'z=
2 (ua*x"v), by (ER), iff (ua*y*v)*z=z"(ua*y*v), since x*1y*, iff (u(ay)*v)'z=
2" (u(ay)*v), by (ER). Consequently, (ax)”t(ay)* and axpay follows. By duality we
obtain that p is a congruence on (S, -).

We show next that xepex, for all x € §, e € E5. Note first that by (ER) and the
definition of p, xpy implies x *py* and (xw)*px*w™, for all w, x, y € S. We infer

xe = (xe) xepx Texe = exe = e(xe) xpex*ex = ex.

We continue, showing that p is left type-A. Let xwpyw. It follows that x*w*py w"*
and by the proof of Proposition 4.2 (xw)*yw = (yw)*xw, implying (xw)"yw™* =
(yw)*xw™. We conclude that

xwTpxxwpxy w p(yw) xw™ = (xw) yw pyxTw pyy 'w pyw™,
proving the assertion.

Finally from Proposition 4.2 we get LSpNR*STNR* = O
Taking into account Theorem 3.3 we immediately obtain the following equivalences:

CoROLLARY 4.4. Let S be a left type-A semigroup. Then the following statements are
equivalent:
(i) S is E-reflexive.
(i1) S has a left type-A congruence p, satisfying p N R* = and xepex,x € §, e € Eg.
(iii) S admits an R*-respecting embedding into some A * , G with A a semilattice and
G a strong semilattice of right cancellative monoids.

Proof. (1)= (ii) by Theorem 4.3.
(i) = (iii) by Theorem 3.3.
(ili) = (i) is straightforward. O
Further, (if we replace the expressions gg~' in the proof by g*), [1, Corollary 14] yields
the following.

CoroLLARY 4.5. Each E-reflexive left type-A semigroup admits an R*-respecting
embedding into a strong semilattice of proper left type-A semigroups, which are semidirect
products of semilattices by right cancellative monoids.

For inverse semigroups our concept of E-reflexivity coincides with that of [8, I11.8.1],
since p is an idempotent pure Clifford congruence in this case, and an inverse semigroup
is E-reflexive iff it has an idempotent pure Clifford congruence [8, 111, 8.3. Theorem)].
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