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Conformal geometry

Conformal geometry is concerned with the properties of angle-preserving geomet-

ric transformations. Conformal geometry, as a branch of differential geometry,

has a long story going back to the work of Cotton, Schouten and Weyl; see,

for example, Cotton (1899), Schouten (1921) and Weyl (1918, 1968). It remains

an active area of research; compare the monograph by Fefferman and Graham

(2012).

The approach to the use of conformal methods in general relativity followed

in this book goes back to the seminal work by R. Penrose in the 1960s; see

Penrose (1963, 1964). Penrose’s ideas allowed to reformulate, in a geometric

manner, the study of the asymptotic behaviour of the gravitational field. Since

then, conformal methods have provided a valuable tool for the analysis of global

aspects of the Einstein field equations and their solutions. Conformal methods

have also been useful in the construction of exact solutions to the Einstein field

equations; see Stephani et al. (2003).

This chapter provides an introduction to the notions of conformal geometry

to be used in the later parts of this book. The organisation of this chapter is

geared towards applications.

5.1 Basic concepts of conformal geometry

This section discusses the basic notions of conformal geometry that will be used

throughout this book.

5.1.1 Conformal rescalings and transformations

The key notion in conformal geometry is that of a conformal rescaling . In

what follows, let g̃ and g denote two metrics on a manifold M̃. The metrics
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5.1 Basic concepts of conformal geometry 113

g̃ and g are said to be conformally related (or simply conformal) to each

other if there exists a positive Ξ ∈ X(M̃) such that

g = Ξ2g̃. (5.1)

The scalar Ξ is called the conformal factor. Throughout this book, the symbol

Ξ will be used to denote a generic conformal factor on a four-dimensional

manifold.

The conformal rescaling in Equation (5.1) gives rise to an equivalence relation

among the set of metrics over M̃. The conformal class of a metric g̃, to be

denoted by [g̃], is the collection of metrics conformally related to g̃. A conformal

class is also called a conformal structure. From Equation (5.1) it follows that

the contravariant metrics g̃� and g� are related by

g� = Ξ−2g̃�;

that is, gab = Ξ−2g̃ab, so as to ensure that g̃abg̃
bc = δa

c and gabg
bc = δa

c.

Closely related to the notion of conformally related metrics is the concept

of conformal transformations. To discuss this idea, let M̃ and M denote two

manifolds with metrics g̃ and g, respectively. A conformal transformation

(also called conformorphism) is a diffeomorphism ϕ : M̃ → M such that the

pull-back of g is conformal to g̃. That is, one has that

ϕ∗g = Ξ2g̃. (5.2)

Notice that as ϕ is a diffeomorphism, then (ϕ∗)−1 is well defined and the last

expression could have been written, alternatively, as g = (ϕ∗)−1
(
Ξ2g̃
)
.

A special case of the previous discussion occurs when g̃ is a flat metric – in the

Lorentzian four-dimensional case the Minkowski metric η and in the Riemannian

three-dimensional case the Euclidean metric δ. In these cases one then says that

g is conformally flat . Determining whether a given conformal class contains

the flat metric is a classical problem in conformal geometry; see Section 5.2.3.

The conformal group

As before, let [g̃] denote the conformal class of a Lorentzian metric g̃ on a

manifold M̃. Consider a frame {ẽa} which is orthonormal with respect to g̃. If

{ω̃a} denotes the associated coframe, one has that

g̃ = ηabω̃
a ⊗ ω̃b, that is, g̃(ẽa, ẽa) = ηab.

In order to investigate the type of transformations of {ω̃a} which lead to another

metric g ∈ [g̃], write

ω̃a = Ka
cω

c,
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114 Conformal geometry

with (Ka
c) denoting some transformation matrix and {ωa} another orthonormal

frame. The condition on the matrix (Ka
c) so that it leads to another member

of the conformal class, say, g = Ξ2g̃, is then given by

g̃ = ηabK
a
cK

b
dω

c ⊗ ωd = Ξ−2ηcdω
c ⊗ ωd.

The latter expression suggests writing

Ka
b = Ξ−1Λa

b,

where (Λa
b) is a Lorentz transformation; that is, Λa

cΛ
b
dηab = ηcd. The

group of (four-dimensional) Lorentz transformations will be denoted

by O(1, 3). It follows that at a point p ∈ M̃ the group of transformations

taking a g̃-orthonormal frame to a frame which is orthonormal with respect

to another metric in the conformal class [g], the so-called conformal group

CO(1, 3), is given by CO(1, 3) = R+ × O(1, 3). The previous discussion can

be adapted to the case of three-dimensional Riemannian metrics. In that case,

the conformal group, denoted by CO(3), is given by CO(3) = R+ ×O(3), where

O(3) denotes the group of three-dimensional orthogonal transformations

(rotations).

5.1.2 Conformal extensions and conformal compactifications

If a smooth mapping ϕ : M̃ → M satisfying condition (5.2) is injective

but not surjective (i.e. ϕ(M̃) � M), then one says that M is a conformal

extension of M̃. An important type of conformal extensions are the so-called

conformal compactifications. A conformal compactification of a manifold M̃
with metric g̃ is a conformal transformation ϕ : M̃ → U where U is a relatively

compact (i.e. the closure of U is compact), connected, open set of a manifold M
such that

g = (ϕ∗)−1(Ξ2g̃) in U ,

with a conformal factor Ξ such that:

(i) Ξ > 0 in U .
(ii) Ξ = 0 on ∂U , the boundary of the open set U . The set ∂U is called the

conformal boundary of M̃.

Examples of conformal extensions will be discussed in Chapter 6.

5.2 Conformal transformation formulae

The discussion of Section 2.4.4 can be applied to obtain the transformation

formulae relating the curvature tensors of the Levi-Civita connections ∇̃ and ∇
of two metrics g̃ and g related to each other by Equation (5.1).
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5.2 Conformal transformation formulae 115

5.2.1 Transformation formulae for the connection

As a first step, one needs to find the specific form of the transition tensor Qa
c
b

– see Equation (2.13). The first observation is that as the connections ∇̃ and

∇ are torsion free, it follows from Equation (2.15) that the transition tensor is

symmetric; that is, one has that

Qa
c
b = Q(a

c
b).

Using formula (2.14) one has that

∇agbc − ∇̃agbc = −Qa
d
bgdc −Qa

d
cgbd.

From ∇agbc = 0 and ∇̃agbc = ∇̃a(Ξ
2g̃bc) = 2Ξ∇̃aΞg̃bc (as ∇̃ag̃bc = 0) one finds

that

2(Ξ−1∇aΞ)gbc = Qa
d
bgdc +Qa

d
cgbd.

Two further companion equations can be obtained from the latter by permuting

cyclically the indices abc. Adding two of them and subtracting the third one, one

can solve for Qa
c
b to find

Qa
c
b = Ξ−1(∇aΞδb

c +∇bΞδa
c −∇dΞg

dcgab).

This last expression can be rewritten in a more concise form as

Qa
c
b = Sab

cd(Ξ−1∇dΞ), (5.3)

where

Sab
cd ≡ δa

cδb
d + δa

dδb
c − gabg

cd.

To simplify the presentation of the various transformation formulae, let

Υa ≡ Ξ−1∇aΞ, Υa
c
b ≡ Sab

cdΥd.

Hence, one can write schematically that

∇− ∇̃ = S(Υ), (5.4)

and Equation (5.3) yields Qa
c
b = Υa

c
b. The tensor S appeared in Section

2.5.2 in the decomposition of the Riemann tensor; see Equation (2.21b). Using

Equation (5.1) one finds that

δa
cδb

d + δa
dδb

c − gabg
cd = δa

cδb
d + δa

dδb
c − g̃abg̃

cd.

Hence, the tensor S is independent of the representative of the conformal class;

that is, it is an invariant of [g̃].

https://doi.org/10.1017/9781009291347.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.007


116 Conformal geometry

5.2.2 Transformation formulae for the curvature

Combining the results of Section 2.4.4 with the expression for the transition

tensor of Equation (5.3) one obtains a transformation rule for the Riemann

tensor:

Rc
dab − R̃c

dab = 2(∇[aΥb]
c
d +Υ[a

c
|e|Υb]

e
d). (5.5)

Some of the transformation formulae for the various concomitants of the

Riemann tensor are dimension dependent; thus, they are analysed separately.

The 4-dimensional case

In the four-dimensional case one has that the Ricci and Schouten tensors and

Ricci scalar of the connections ∇̃ and ∇ are related to each other, respectively,

by the expressions

Rab − R̃ab = − 2

Ξ
∇a∇bΞ− gabg

cd

(
1

Ξ
∇c∇dΞ− 3

Ξ2
∇cΞ∇dΞ

)
, (5.6a)

Lab − L̃ab = − 1

Ξ
∇a∇bΞ +

1

2Ξ2
∇cΞ∇cΞ gab, (5.6b)

R− 1

Ξ2
R̃ = − 6

Ξ
∇c∇cΞ +

12

Ξ2
∇cΞ∇cΞ. (5.6c)

Using the tensor Sab
cd, one can rewrite the transformation formula for the

Schouten tensor, Equation (5.6b), in the alternative form

Lab − L̃ab = ∇aΥb +
1

2
Sab

cdΥcΥd. (5.7)

By letting ϑ ≡ Ξ−1, the transformation rule for the Ricci tensor can be

rewritten as

6∇a∇aϑ−Rϑ = −R̃ϑ3.

Using the irreducible decomposition of the Riemann tensor, Equation (2.21b), as

a definition for the Weyl tensor, together with Equations (5.5) and (5.6b), one

finds that

Cc
dab = C̃c

dab.

In other words, the Weyl tensor is an invariant of the conformal class [g̃]. Using

this invariance and the transformation law for the connection, a calculation leads

to the important identity

∇a(Ξ
−1Ca

bcd) = Ξ−1∇̃aC
a
bcd. (5.8)

A further tensor which will play a role in the present treatment of conformal

geometry is the so-called Cotton tensor of ∇̃. This tensor is defined as

Ỹabc ≡ ∇̃aL̃bc − ∇̃bL̃ac.
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Notice that by construction Ỹabc = Ỹ[ab]c. The Cotton tensor is closely related

to the Weyl tensor. To see this, consider the second Bianchi identity

∇̃[eR̃
a
|b|cd] = 0, (5.9)

satisfied by the Riemann tensor of the metric g̃; see Section 2.4.3. Now, as seen

in Section 2.5.2, for a Levi-Civita connection, the Riemann tensor R̃a
bcd can be

decomposed in terms of the Weyl tensor Ca
bcd and the Schouten tensor L̃ab as

R̃a
bcd = Ca

bcd + 2(g̃a[cL̃d]b − g̃b[cL̃d]
a). (5.10)

Substituting the latter into Equation (5.9) one obtains

2(g̃b[c∇̃eL̃d]
a − g̃a[c∇̃eL̃d]b) = ∇̃[eC

a
|b|cd].

Contracting the indices a and e one obtains

∇̃cL̃db − ∇̃dL̃cb = ∇̃aC
a
bcd. (5.11)

That is,

Ỹcdb = ∇̃aC
a
bcd. (5.12)

In particular, one sees that if Ca
bcd =0, then Ỹcdb =0. Moreover, as a consequence

of the first Bianchi identity for the Weyl tensor, Ỹ[abc] =0. The Riemann tensor

Ra
bcd of the connection ∇ satisfies equations analogous to (5.9) and (5.10). It

follows by the same computation described above that

∇cLdb −∇dLcb = ∇aC
a
bcd. (5.13)

Alternatively, defining the Cotton tensor of ∇, Ycdb ≡ ∇cLdb −∇dLcb, one can

write

Ycdb = ∇aC
a
bcd. (5.14)

Combining Equations (5.8), (5.12) and (5.14) one finds that the transformation

rule for the Cotton tensor is given by:

Ycdb − Ỹcdb = ΥaC
a
bcd. (5.15)

The three-dimensional case

In the case of a three-dimensional manifold, let h = Ω2h̃ – throughout, the

symbol Ω will be used to denote a generic conformal factor on a manifold of

dimension three. One has that

rij − r̃ij = − 1

Ω
DiDjΩ− hijh

kl

(
1

Ω
DkDlΩ− 2

Ω2
DkΩDlΩ

)
, (5.16a)

lij − l̃ij = − 1

Ω
DiDjΩ+

1

2Ω2
DkΩD

kΩ hij , (5.16b)

r − 1

Ω2
r̃ = − 4

Ω
DiD

iΩ+
6

Ω2
DiΩD

iΩ. (5.16c)
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118 Conformal geometry

where Di denotes the Levi-Civita covariant derivative of the metric h, and

rij , lij , r correspond to its Ricci and Schouten tensors and its Ricci scalar,

respectively. The transformation law of the Schouten tensor is of particular

interest. Comparing Equations (5.6b) and (5.16b) one sees that although the

definition of the Schouten tensor is dimension dependent, its transformation

formula is not.

Letting ϑ ≡ Ω−1/2, the transformation law for the Ricci scalar can be recast as

8DiD
iϑ− rϑ = −r̃ϑ5. (5.17)

This expression plays an important role in the discussion of the Einstein

constraint equations; see Chapter 11.

Given the three-dimensional Schouten tensor l̃ij , its associated Cotton tensor

ỹijk is given by

ỹijk ≡ D̃i l̃jk − D̃j l̃ik. (5.18)

Using the transformation rule (5.16b), a computation shows that

yijk = ỹijk.

That is, in three dimensions the Cotton tensor is conformally invariant.

Sometimes it is more convenient to work with its Hodge dual, the so-called

Cotton-York tensor , given by

ỹij = −1

2
ỹkljεi

kl.

It can be readily verified that

yij = yji, yi
i = 0, Diyij = 0.

Moreover, the Cotton-York tensor satisfies the transformation rule

yij = Ω−1ỹij . (5.19)

5.2.3 Characterising conformal flatness

Given a conformal class [g] on a manifold M, an important question is whether

the flat metric belongs to it, so that g is conformally flat. Conformally flat metrics

are a source of geometric intuition in general relativity as they have a simpler

curvature tensor depending on the Schouten tensor only. Conformal flatness is

characterised by the following classical result:

Theorem 5.1 (Weyl-Schouten theorem)

(i) Let (M, g) be a manifold with metric of dimension n ≥ 3. The metric g is

conformally flat if and only if the Cotton tensor of g vanishes.

(ii) Let (M, g) be a manifold with metric of dimension n ≥ 4. The metric g is

conformally flat if and only if the Weyl tensor of g vanishes.
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Proof A direct computation shows that if a metric is conformally flat, then

both its Cotton and Weyl tensors vanish; this proves the if part.

In order to prove the only if part, one uses the fact that if the Weyl tensor

vanishes then, for dimensions n ≥ 4, the Cotton tensor vanishes; compare

Equation (5.14). In view of Equation (5.15) one concludes that the vanishing

of the Cotton tensor holds for any metric in the conformal class. From this point

onwards, the proofs for the various dimensions are similar. For simplicity, only

the four-dimensional case is considered.

Given a metric g in the conformal class, one needs to find a conformal factor

Ξ such that g = Ξ2η where η is the flat Minkowski metric. Motivated by

the transformation law for the Schouten tensor, Equation (5.6b), consider the

equation

∇aαb + αaαb −
1

2
αcα

cgab = −Lab. (5.20)

The latter can be read as an overdetermined partial differential equation for the

covector αa. Given a solution to Equation (5.20), an antisymmetrisation yields

that ∇[aαb] = 0 so that αa is a closed covector. Thus, locally αa is exact and

can be written as αa = ∇a(ln Ξ) = Ξ−1∇aΞ for some function Ξ. Comparing

Equation (5.20) with (5.6b) one concludes that the Schouten tensor of the metric

g̃ = Ξ−2g must vanish. As Ca
bcd = 0, the whole Riemann tensor of g̃ must

vanish. Consequently, one concludes that g̃ = η.

Hence, to conclude the proof one needs to show that Equation (5.20) admits

a solution under the assumption that Ca
bcd = 0 and Yabc = 0. Applying ∇c

to Equation (5.20), antisymmetrising on ca and finally using the commutator of

covariant derivatives, one finds the integrability condition

Rd
bcaαd + 2α[a∇c]αb + 2αe∇[cα

ega]b = 0. (5.21)

Now, as Ca
bcd = 0 one has that

Ra
bcd = 2(δa[cLd]b − gb[cLd]

a).

Using the latter expression for the Riemann tensor together with Equation (5.20),

one finds that the integrability condition (5.21) is automatically satisfied.

A general version of the Frobenius theorem ensures the existence of a solution

αb to Equation (5.20); see, for example, Choquet-Bruhat et al. (1982) or Spivak

(1970).

5.3 Weyl connections

As in the previous sections, let ∇̃ denote the Levi-Civita connection of a metric

g̃ on M̃. Some of the applications of conformal geometry to be considered in this

book give rise to connections which are not necessarily the Levi-Civita connection
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of a metric but, nevertheless, respect the conformal class. A Weyl connection

is a torsion-free connection ∇̂ such that

∇̂ag̃bc = −2 f̃ag̃bc, (5.22)

for some arbitrary covector f̃a.

The transition tensor Qa
c
b relating the connections ∇̃ and ∇̂ can be obtained

using an argument similar to the one employed in Section 5.2.1 to compute the

transition tensor of a conformal rescaling. One finds that

Qa
c
b = Sab

cdf̃d.

Schematically one writes

∇̂− ∇̃ = S(f̃).

If the covector f̃ is exact, so that on suitable open sets it can be written in the

form f = −Ξ−1dΞ with some smooth function Ξ > 0, then the Weyl connection

∇̂ is, in fact, the Levi-Civita connection of the metric g = Ξ2g̃.

The condition ∇̂aδb
c = 0 satisfied by a generic connection together with

the relation δb
c = g̃bdg̃

dc and the defining property of a Weyl connection,

Equation (5.22), show that

∇̂ag̃
bc = 2 f̃ag̃

bc.

Using the above expressions one readily obtains that

∇̂eSab
cd = ∇̂e(δa

cδb
d + δb

cδa
d − g̃abg̃

cd)

= −∇̂e(g̃abg̃
cd) = −∇̂eg̃abg̃

cd − g̃ab∇̂eg̃
cd = 0.

In what follows, let R̂a
bcd denote the Riemann tensor of the Weyl connection

∇̂. This tensor possesses the basic symmetry R̂a
bcd = −R̂a

bdc. As the connection

∇̂ has vanishing torsion, it follows that R̂a
bcd satisfies the first and second

Bianchi identities in the form:

R̂a
[bcd] = 0, (5.23a)

∇̂[eR̂
a
|b|cd] = 0. (5.23b)

5.3.1 Weyl propagation

To investigate the relation between Weyl connections and the conformal class [g̃],

consider a curve γ with parameter s ∈ I ⊆ R on (M̃, g̃) with tangent ẋ ∈ T (M̃).

A vector u ∈ T (M̃) is said to be Weyl propagated along γ if it is parallely

propagated along γ with respect to a Weyl connection ∇̂; that is, u satisfies the

equation

∇̂ẋu = 0.
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5.3 Weyl connections 121

Writing the latter in terms of the Levi-Civita connection ∇̃ one has that

ẋa∇̃au
b = −ẋaSac

beucf̃e,

= g̃cdu
cẋdf̃ b − ucf̃cẋ

b − ẋcf̃cu
b.

In index-free notation one has that

∇̃ẋu = g̃(u, ẋ)f̃
� − 〈f̃ ,u〉ẋ− 〈f̃ , ẋ〉u.

Let {ea} denote an arbitrary frame which is Weyl propagated along γ so that

∇̂ẋea =0. Letting g̃ab ≡ g̃(ea, eb), a computation then shows that

∇̂ẋg̃ab = ∇̂ẋ(g̃(ea, eb)) = −2〈f̃ , ẋ〉g̃ab. (5.24)

Consequently, one obtains ∇̂ẋ(ln g̃ab) = −2〈f̃ , ẋ〉. The latter equation can be

solved to give

g̃ab(η) = g̃ab(η�) exp

(
−2

∫ s

s�
〈f̃ , ẋ〉ds′

)
along the curve x(s). Thus, one finds that Weyl connections respect the conformal

class in the sense that parallel propagation of a metric using a Weyl connection

leads to a metric in the same conformal class. Notice also that Equation (5.24)

allows one to conclude that if the frame is orthogonal at some point along the

curve, then it is orthogonal elsewhere on γ – the normalisation, however, is lost.

5.3.2 Transformation formulae for the curvature

The transformation formulae between the curvature tensors of the Levi-Civita

connection ∇̃ and the Weyl connection ∇̂ follow directly from the general

discussion of Section 2.4.4.

In what follows let f̃a
c
b ≡ Sab

cdf̃d. If R̂
a
bcd denotes the Riemann tensor of ∇̂,

then one has that

R̂a
bcd −Ra

bcd = 2(∇̃[cf̃d]
a
b + f̃e

a
[cf̃d]

e
b), (5.25a)

= 2(δa[c∇̃d]f̃b + ∇̃[cf̃
ag̃d]b − δab∇̃[cf̃d]

−δa[cf̃d]f̃b + g̃b[cf̃d]f̃
a + δa[cg̃d]bf̃ef̃

e). (5.25b)

Note that the above transformation law involves both the symmetric and

antisymmetric parts of the covariant derivative ∇̃af̃b.

A transformation formula for the Ricci tensor R̂bd ≡ R̂a
bad can be obtained

directly from Equation (5.25b):

R̂cd − R̃cd = −3∇̃df̃c + ∇̃cf̃d + 2 f̃cf̃d − g̃cd

(
∇̃ef̃

e + 2 f̃ef̃
e
)
. (5.26)
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Now, as there is no canonical metric to lower or raise indices in expressions

involving a Weyl connection, it is conventional to choose a representative of the

conformal class, say, g̃, and use it to compute traces. In this spirit one defines

the Ricci scalar of the Weyl connection via R̂ ≡ g̃abR̂ab. It can then be directly

computed that

R̂− R̃ = −6∇̃af̃
a − 6 f̃af̃

a. (5.27)

Combining the transformation formula for the Riemann tensor, Equa-

tion (5.25a), with the irreducible decomposition of the Riemann tensor R̃a
bcd

given by Equation (2.21b), one can find an analogous decomposition for the

Riemann tensor R̂a
bcd of ∇̂:

R̂c
dab = Cc

dab + 2Sd[a
ceL̂b]e,

= Cc
dab + 2(g̃c[aL̂b]d − δcdL̂[ab] − g̃d[aL̂b]

c), (5.28a)

where

L̂ab =
1

2

(
R̂(ab) −

1

2
R̂[ab] −

1

6
g̃abR̂

)

is the Schouten tensor of the Weyl connection ∇̂. This definition is

independent of the choice of the representative of the conformal class. Making

use of the transformation laws for the Ricci tensor and scalar, Equations (5.26)

and (5.27), one finds that

L̃ab − L̂ab = ∇̃af̃b − f̃af̃b +
1

2
g̃abf̃

cf̃c, (5.29a)

= ∇̃af̃b −
1

2
Sab

cdf̃cf̃d, (5.29b)

= ∇̂af̃b +
1

2
Sab

cdf̃cf̃d. (5.29c)

Finally, it is observed that letting R̂abcd ≡ g̃aeR̂
e
bcd, it follows from the

discussion in the previous paragraphs that

R̂abcd = R̂[ab]cd + 2g̃ab∇̂[cfd], (5.30a)

= R̂[ab]cd − 2g̃abL̂[cd]. (5.30b)

These formulae show in an explicit way how the usual symmetries of the

curvature tensor are obstructed by the covector defining a Weyl connection.

5.4 Spinorial expressions

This section discusses the spinorial counterparts of the tensorial expressions

obtained in the previous sections of this chapter.

https://doi.org/10.1017/9781009291347.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.007


5.4 Spinorial expressions 123

5.4.1 Conformal rescalings

As in previous sections, let g̃ and g denote two metrics on M̃ related to each

other by the conformal rescaling (5.1). Following the discussion of Chapter 3,

the spinorial counterparts of g̃ and g are given by

g̃AA′BB′ = ε̃AB ε̃A′B′ , gAA′BB′ = εABεA′B′ ;

compare Equation (3.15). Hence, it is natural to consider the transformation

laws

εAB = Ξε̃AB , εAB = Ξ−1ε̃AB ,

εA′B′ = Ξε̃A′B′ , εA
′B′

= Ξ−1ε̃A
′B′

.

Let {õA, ι̃A} and {oA, ιA} denote two spin bases satisfying, respectively, the

conditions

ε̃AB = õAι̃B − ι̃AõB , εAB = oAιB − ιAoB .

There are several possible transformation rules between the two spin bases which

are consistent with the above equations and with the rescaling (5.1). Namely,

one has:

oA = õA, ιA = Ξι̃A, oA = Ξ−1õA, ιA = ι̃A, (5.31a)

oA = ΞõA, ιA = ι̃A, oA = õA, ιA = Ξ−1ι̃A, (5.31b)

oA = Ξ1/2õA, ιA = Ξ1/2ι̃A, oA = Ξ−1/2õA, ιA = Ξ−1/2ι̃A. (5.31c)

The choice of the most convenient transformation rule depends on the nature of

the application at hand; see, for example, Chapter 10.

Transformation rules for the connection and curvature

In what follows let ΥAA′ ≡ Ξ−1∇AA′Ξ denote the spinorial counterpart of the

covector Υa. Let also Υa
c
b ≡ Sab

cdΥd. Its spinorial counterpart is given by

ΥAA′CC′
BB′ = δA

CδA′C
′
ΥBB′ + δB

CδB′C
′
ΥAA′ − εABεA′B′ΥCC′

.

By rewriting

δA
CδA′C

′
ΥBB′ + δB

CδB′C
′
ΥAA′ = δA

CεA′C
′
εB′D

′
ΥBD′ + δB

CεB′C
′
εA′D

′
ΥAD′ ,

and using the Jacobi identity (3.5), one finds that

ΥAA′CC′
BB′ = ΥAA′CBδB′C

′
+ ῩA′A

C′
B′δB

C ,

where

ΥAA′CB ≡ δA
CΥBA′ .
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The reduced coefficient ΥAA′CB can be used to obtain the transformation laws

relating the covariant derivatives of spinors. In particular, one has for arbitrary

spinors κA, μA′ , ξA and ηA
′
that

∇̃AA′κB = ∇AA′κB +ΥBA′κA,

∇̃AA′μB′ = ∇AA′μB′ +ΥAB′μA′ ,

∇̃AA′ξB = ∇AA′ξB − δA
BΥCA′ξC ,

∇̃AA′ηB
′
= ∇AA′ηB

′ − δA′B
′
ΥAC′ηC

′
.

These expressions can be extended, in a direct way, to higher valence spinors.

For the curvature spinors, it can be verified that

Ψ̃ABCD = ΨABCD,

Φ̃AA′BB′ = ΦAA′BB′ + Ξ−1∇A(A′∇B′)BΞ.

5.4.2 Weyl connections

In what follows, let ∇̂AA′ denote the spinorial counterpart of the Weyl connection

∇̂ defined by Equation (5.22). To determine expressions for ∇̂AA′ ε̃BC and

∇̂AA′ ε̃BC one notices that the spinorial version of Equation (5.22) is

∇̂AA′(ε̃BC ε̃B′C′) = −2 f̃AA′ ε̃BC ε̃B′C′ ,

so that

ε̃B′C′∇̂AA′ ε̃BC + ε̃BC∇̂AA′ ε̃B′C′ = −2 f̃AA′ ε̃BC ε̃B′C′ .

The latter is satisfied if one sets

∇̂AA′ ε̃BC = −f̃AA′ ε̃BC .

From this expression and using that ∇̂AA′δB
C = 0, one can readily compute

∇̂AA′ ε̃BC . One finds that

∇̂AA′ ε̃BC = f̃AA′ ε̃BC .

Decomposition of the spin connection coefficients of a Weyl connection

Let {ε̃AA} denote a spin basis with respect to ε̃AB . Following the general discus-

sion on spin connection coefficients of Section 3.2.2 – compare Equation (3.33)

– the spinorial counterparts of the connection coefficients Γ̃a
b
c and Γ̂a

b
c admit

the decompositions

Γ̃AA′BB′
CC′ = Γ̃AA′BCδC′B

′
+ ¯̃ΓAA′B

′
C′δC

B,

Γ̂AA′BB′
CC′ = Γ̂AA′BCδC′B

′
+

¯̂
ΓAA′B

′
C′δC

B.
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The spinorial counterpart of the equation

Γ̂a
b
c = Γ̃a

b
c + δa

bf̃c + δc
bf̃a − ηacf̃

b

is given by

Γ̂AA′BB′
CC′ = ΓAA′BB′

CC′ + δA
BδA′B

′
f̃CC′

+δC
BδC′B

′
f̃AA′ − εACεA′C′ f̃BB′

.

Now, by rewriting

δA
BδA′B

′
f̃CC′ = δA

BεA′B
′
εC′D

′
f̃CD′ , δC

BδC′B
′
f̃AA′ = δC

BεC′B
′
εA′D

′
f̃AD′

and using the Jacobi identity (3.5), one finds that

δA
BδA′B

′
f̃CC′ + δC

BδC′B
′
f̃AA′ − εACεA′C′ f̃BB′

= δA
BδC′B

′
f̃CA′ + δC

BδA′B
′
f̃AC′ .

Hence,

Γ̂AA′BB′
CC′ = (Γ̃AA′BC + δA

B f̃CA′)δC′B
′

+(¯̃ΓAA′B
′
C′ + δA′B

′
f̃AC′)δC

B,

so that

Γ̂AA′BC = Γ̃AA′BC + δA
B f̃CA′ . (5.32)

In particular, as Γ̃AA′BC = Γ̃AA′(BC), it follows that

Γ̂AA′QQ = f̃AA′ .

Decomposition of the curvature tensors

The discussion of the decomposition of the spinorial counterpart of a general

Riemann tensor given in Section 3.2.3 can be applied to the case of a Weyl

connection. In particular, if R̂AA′
BB′CC′DD′ denotes the spinorial counterpart

of the Riemann tensor of a Weyl connection ∇̂, one has that Equation (3.35)

gives, in the present context, the decomposition

R̂AA′BB′CC′DD′ = εA′B′R̂ABCC′DD′ + εAB
¯̂
RA′B′CC′DD′ ,

where

R̂ABCC′DD′ ≡ R̂(AB)CC′DD′ +
1

2
εAB(∇̂CC′ f̃DD′ − ∇̂DD′ f̃CC′),

= R̂(AB)CC′DD′ − 1

2
εAB(L̂CC′DD′ − L̂DD′CC′),
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and L̂AA′BB′ denotes the spinorial counterpart of the Schouten tensor of ∇̂.

A more detailed expression is given by

R̂ABCC′DD′ = −ΨABCDεC′D′ + L̂BC′DD′εAC − L̂BD′CC′εAD. (5.33)

The spinorial counterpart L̂AA′BB′ of the Schouten tensor admits, in turn, the

decomposition

L̂AA′BB′ = ΦAA′BB′ − 1

24
RεABεA′B′ +ΦABεA′B′ + Φ̄A′B′εAB

where ΦAA′BB′ represents the trace-free part of 1
2 R̂(ab), while ΦAB describes the

antisymmetric tensor 1
4 R̂[ab].

5.5 Conformal geodesics

This section discusses a class of invariants of the conformal structure of a

spacetime (M̃, g̃). To motivate the discussion let x(s), s ∈ I ⊂ R, denote a

curve on M̃ with tangent given by x′ ≡ dx/ds. The curve x(s) is a geodesic

if it satisfies the equation ∇̃x′x′ = 0. The transformation rule of the covariant

derivative ∇̃ under the conformal rescaling (5.1) implies, in turn, the equation

∇x′x′ = 2〈Υ,x′〉x′ − g(x′,x′)Υ�. (5.34)

Let τ = τ(s) denote a new parameter. Writing ẋ ≡ dx/dτ and τ ′ ≡ dτ/ds, the

chain rule yields x′ = τ ′ẋ, so that Equation (5.34) implies

τ ′2∇ẋẋ = (2〈Υ, ẋ〉τ ′2 − τ ′′)ẋ− τ ′2g(ẋ, ẋ)Υ�.

This last expression suggests choosing the parameter τ so that it satisfies the

condition

τ ′′ = 2〈Υ, ẋ〉τ ′2.

As Υ is known along the curve, this equation can be read as a second-order

ordinary differential equation for τ . Thus, it can always be solved locally so that

τ ′2∇ẋẋ = −τ ′2g(x′,x′)Υ�.

It follows that only when the curve x(s) is null (i.e. g(x′,x′) = 0) is it possible

to reparametrise so that x(s) is a geodesic. Hence, timelike or spacelike geodesics

are not, in general, conformal invariants.
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5.5.1 Basic definitions

A conformal geodesic on a spacetime (M̃, g̃) is a pair (x(τ),β(τ)) consisting

of a curve x(τ) on M̃, τ ∈ I ⊂ R, with tangent ẋ(τ) and a covector β(τ) along

x(τ) satisfying the equations

∇̃ẋẋ = −2〈β, ẋ〉ẋ+ g̃(ẋ, ẋ)β�, (5.35a)

∇̃ẋβ = 〈β, ẋ〉β − 1

2
g̃�(β,β)ẋ� + L̃(ẋ, ·), (5.35b)

where L̃ denotes the Schouten tensor of the Levi-Civita connection ∇̃. Associ-

ated to a conformal geodesic, it is convenient to consider a frame {ea} which is

Weyl propagated along x(τ) so that

∇̃ẋea = −〈β, ea〉ẋ− 〈β, ẋ〉ea + g̃(ea, ẋ)β
�. (5.36)

Initial data for the conformal geodesic Equations (5.35a) and (5.35b) consist

of an initial position, an initial direction for the curve and an initial value for

the covector:

x� ∈ M̃, ẋ� ∈ T |x�
(M̃), β� ∈ T ∗|x�

(M̃). (5.37)

Piccard’s theorem – see, for example, Hartman (1987) – ensures the existence of

a unique conformal geodesic (x(τ),β(τ)) near x� satisfying for given τ� ∈ R

x(τ�) ≡ x�, ẋ(τ�) ≡ ẋ�, β(τ�) ≡ β�.

A direct computation using Equations (5.35a) and (5.35b) yields the relations

∇̃ẋ (g̃(ẋ, ẋ)) = −2〈β, ẋ〉g̃(ẋ, ẋ), (5.38a)

∇̃ẋ〈β, ẋ〉 = −〈β, ẋ〉2 + 1

2
g̃(ẋ, ẋ)g̃�(β,β) + L̃(ẋ, ẋ), (5.38b)

∇̃ẋ

(
g̃�(β,β)

)
= 〈β, ẋ〉g̃�(β,β) + 2L̃(ẋ,β�). (5.38c)

In particular, from Equation (5.38a) it follows that if g̃(ẋ, ẋ) = 0 at some point

along the conformal geodesic, one has that g̃(ẋ, ẋ) = 0 everywhere else. This

null conformal geodesic can, in turn, be reparametrised so that it coincides with

a null geodesic of g̃.

Expressions in abstract index notation

For later use, it is observed that the conformal geodesic equations can be written

in abstract index notation using the tensor Sab
cd as

ẋc∇̃cẋ
a = −Sef

acẋeẋ fβc,

ẋc∇̃cβa =
1

2
Sca

efβeβf ẋ
c + L̃caẋ

c,

ẋc∇̃cea
a = −Scd

afea
dẋcβf .
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5.5.2 Conformal geodesics and changes of connection

The motivation behind the notion of conformal geodesics is not directly apparent

from the defining Equations (5.35a) and (5.35b). Their relevance becomes

apparent only once one considers their transformation rules under conformal

rescalings and transitions to Weyl connections.

As in the previous section, let (x(τ),β(τ)) denote a solution to the conformal

geodesic Equations (5.35a) and (5.35b) on a spacetime (M̃, g̃). Given f̌ ∈ T ∗(M̃)

one can define a Weyl connection ∇̌ via the relation

∇̌ ≡ ∇̃+ S( f̌). (5.39)

A computation using Equations (5.35a) and (5.35b) shows that (x(τ), β̌(τ)) with

β̌(τ) ≡ β(τ)− f̌(τ) (5.40)

is a solution to the ∇̌-conformal geodesic equations :

∇̌ẋẋ = −2〈β̌, ẋ〉ẋ+ g̃(ẋ, ẋ)β̌
�
,

∇̌ẋβ̌ = 〈β̌, ẋ〉β̌ − 1

2
g̃�(β̌, β̌)ẋ� + Ľ(ẋ, ·),

where Ľ denotes the Schouten tensor of the Weyl connection ∇̌. The latter is

given by

Ľab = L̃ab − ∇̌af̌b −
1

2
Sab

cdf̌cf̌d.

Thus, one concludes that conformal geodesics are invariants of [g̃]. Notice, in

particular, that one could have chosen f̌ = −Ξ−1dΞ for some positive Ξ ∈ X(M̃)

so that the change of connections given by Equation (5.39) corresponds, in fact,

to a conformal rescaling of g̃.

Now, choosing f̌(τ) = β(τ) one has that β̌(τ) = 0, so that the ∇̌-conformal

geodesic equations reduce to:

∇̌ẋẋ = 0, Ľ(ẋ, ·) = 0. (5.41)

Moreover, the frame propagation Equation (5.36) yields

∇̌ẋea = 0.

Hence, given a congruence of conformal geodesics on (M̃, g̃), there exists a Weyl

connection ∇̌ on [g̃] with respect to which the curves x(τ) are (affine) geodesics

and the frame {ea} is parallely propagated. This observation justifies the name

conformal geodesics given to a solution to Equations (5.35a) and (5.35b). Thus,

conformal geodesics not only are an invariant of the conformal structure, but

also single out a particular Weyl connection on the conformal class [g].
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5.5.3 Reparametrisations

Given two solutions to the conformal geodesic Equations (5.35a) and (5.35b),

(x(τ),β(τ)) and (x̄(τ̄), β̄(τ̄)), it is natural to ask under which conditions x(τ)

and x̄(τ̄) coincide locally (as sets of points) so that τ = τ(τ̄) and x(τ(τ̄)) = x̄(τ̄).

Let ẋ ≡ dx/dτ and x̄′ ≡ dx̄/dτ̄ denote the corresponding tangent vectors and

assume that g̃(ẋ, ẋ) �= 0 and g̃(x̄′, x̄′) �= 0. By definition, the tangent vector x′

satisfies

∇̃x̄′ x̄′ = −2〈β̄, x̄′〉x̄′ + g̃(x̄′, x̄′)β̄
�
, (5.42a)

∇̃x̄′ β̄ = 〈β̄, x̄′〉β̄ − 1

2
g̃�(β̄, β̄)x̄′� + L̃(x̄′, ·). (5.42b)

Now, letting τ ′ ≡ dτ/dτ̄ one has that

x̄′ = τ ′ẋ, ∇̃x̄′ x̄′ = τ ′′ẋ+ τ ′2∇̃ẋẋ.

Substituting the latter into Equation (5.42a) and using (5.35a) to eliminate ∇̃ẋẋ

one obtains

τ ′′ẋ+ 2τ ′2〈β̄ − β, ẋ〉ẋ+ τ ′2g̃(ẋ, ẋ)(β� − β̄
�
) = 0. (5.43)

It follows from this last equation that the difference β̄
� − β� has components

only along ẋ. Hence, one can write

β̄ − β = αẋ�, (5.44)

for some scalar α. Substituting into Equation (5.43) one obtains the differential

equation

τ ′′ + ατ ′2g̃(ẋ, ẋ) = 0. (5.45)

Combining Equations (5.35a), (5.35b), (5.42b) and (5.44) one obtains

α̇ = 2〈β, ẋ〉α+
1

2
g̃(ẋ, ẋ)α2. (5.46)

Equations (5.44), (5.45) and (5.46) encode the requirement that the curves x(τ)

and x̄(τ̄) coincide as sets. Using Equation (5.38a) together with Equation (5.46)

one finds that

∇̃ẋ (αg̃(ẋ, ẋ)) =
1

2
(αg̃(ẋ, ẋ))

2
.

This last equation can be solved to give

αg̃(ẋ, ẋ) =
2α�g̃(ẋ�, ẋ�)

1− α�g̃(ẋ�, ẋ�)(τ − τ�)
,
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where α� ≡ α(τ�), ẋ� ≡ ẋ(τ�) and τ� denotes some fiducial value of the

parameter τ . Using Equations (5.44) and (5.45) one finally finds that:

x̄′ =
4κ

1 + 2κα�g̃(ẋ�, ẋ�)(τ − τ�)
ẋ, (5.47a)

β̄ = β +
2α�g̃(ẋ�, ẋ�)

(1− α�g̃(ẋ�, ẋ�)(τ − τ�)) g̃(ẋ, ẋ)
ẋ�, (5.47b)

τ = τ� +
4κ(τ̄ − τ̄�)

1 + 2κα�g̃(ẋ, ẋ)(τ̄ − τ̄�)
, (5.47c)

with κ a non-zero real constant. One can summarise the previous discussion in

the following lemma:

Lemma 5.1 (admissible reparametrisations of conformal geodesics)

The admissible reparametrisations taking (non-null) conformal geodesics into

(non-null) conformal geodesics are given by fractional transformations of the

form

τ �→ aτ + b

cτ + d
, (5.48)

with a, b, c, d ∈ R.

If α� = 0, then Equation (5.47c) shows that the reparametrisation reduces to

an affine parameter transformation. Notice also, that with a suitable choice of

constants, it is always possible to choose a parametrisation such that τ → ∞ for

a given value of τ̄ . This property of conformal geodesics is in stark contrast to

the behaviour of standard geodesics.

A final remark concerning the reparametrisation of conformal curves follows

from evaluating Equations (5.47a) and (5.47b) at τ�. One finds that x̄′
� = 4κẋ�

and β̄� = β̄� + α�ẋ
�
�. Consequently, the transformations of initial data given by

ẋ� �→ 4κẋ�, β� �→ β� + α�ẋ
�
�, (5.49)

preserve the set of points covered by the conformal geodesics. From the discussion

in the previous paragraphs it follows that the transformation of initial data (5.49)

implies a reparametrisation of the resulting curves.

5.5.4 Geodesics as conformal geodesics

It is of natural interest to investigate the relation between conformal geodesics

and metric geodesics. For a null conformal geodesic this relation can be readily

established. If (x̄(τ̄), β̄(τ̄)) denotes a null conformal geodesic, it follows readily

from Equation (5.42a) that

∇̃x̄′ x̄′ = −2〈β, x̄′〉x̄′.
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Thus, using an argument similar to the one discussed at the beginning of Section

5.5, one finds that null conformal geodesics are, up to a reparametrisation, null

geodesics.

The situation for non-null conformal geodesics is more complicated and

requires restrictions of the Schouten tensor of the spacetime. One has the

following result (see Friedrich and Schmidt (1987)):

Lemma 5.2 (standard geodesics as conformal geodesics) Any non-null

g̃-geodesic in an Einstein spacetime (M̃, g̃) is, up to a reparametrisation, a non-

null conformal geodesic.

Proof Let x(τ) denote a solution to the metric geodesic equation ∇̃ẋẋ = 0.

Consider a reparametrisation of the curve of the form τ = τ(τ̄). The analysis

in Section 5.5.3 suggests completing x(τ̄) to a conformal geodesic using an

ansatz of the form β̄ = α(τ̄)ẋ�. Writing, as in the previous section, x̄′ = τ ′ẋ,

Equation (5.42a) readily leads to the condition

τ ′′ + ατ ′2g̃(ẋ, ẋ) = 0,

where it is noticed that g̃(ẋ, ẋ) is constant along the curve as it is a g̃-geodesic.

To obtain an equation for α one substitutes the ansatz for β̄ into (5.42b) and

notices that ∇̃ẋβ̄ = α′ẋ� so that

α′ẋ� =
1

2
α2τ ′g̃(ẋ, ẋ)ẋ� + τ ′L̃(ẋ, ·).

The solvability of this equation depends on the available information about L̃.

In the case of an Einstein space one has that L̃(ẋ, ·) = 1
6λẋ

� so that one obtains

α′ =
1

2
α2τ ′g̃(ẋ, ẋ) +

1

6
λτ ′,

which can always be solved – at least locally.

A partial converse of Lemma 5.2 is given by:

Lemma 5.3 (conformal geodesics as metric geodesics) Let (M̃, g̃) be a

Einstein spacetime and let g = Ξ2g̃ be a further metric on M̃. A conformal

geodesic (x̄(τ̄), β̄(τ̄)) with respect to the metric g is, up to a reparametrisation,

a g̃-geodesic if there exists a function α(τ̄) such that

β̄ = −Υ+ αx̄′�.

Proof The geodesic equation ∇̃ẋẋ = 0 implies, under the conformal rescaling

g = Ξ2g̃, the equation

∇ẋẋ = 2〈Υ, ẋ〉ẋ− g(ẋ, ẋ)Υ�. (5.50)
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It follows from the analysis of Section 5.5.3 that, to reparametrise the conformal

geodesic equations for the metric g to yield Equation (5.50), one needs to have

a parameter α such that β̄ = −Υ+ αx̄′�.

5.5.5 Conformal factors associated to congruences

of conformal geodesics

In what follows, for simplicity it will be assumed that the spacetime (M̃, g̃)

can be covered by a non-intersecting congruence of conformal geodesics. The

congruence of conformal geodesics can be used to single out a metric g ∈ [g̃] by

means of a conformal factor Θ such that

g(ẋ, ẋ) = 1, g = Θ2g̃. (5.51)

That is, the tangent vector field of the congruence of conformal geodesics is g-

normalised – accordingly, the parameter τ of the geodesics corresponds to the

g-proper time. It follows by applying ∇̃ẋ to the first equation in (5.51) and using

the conformal geodesic Equation (5.35a) that

Θ̇ = 〈β, ẋ〉Θ, (5.52)

where Θ̇ ≡ ∇̃ẋΘ. Thus, by prescribing Θ� ≡ Θ(τ�) at some fiduciary value τ� ∈ R

along the conformal geodesic one finds that the value of Θ is fully determined

by Equation (5.52). If the initial value Θ� is chosen to vary smoothly along the

curves on the congruence, one readily obtains a conformal factor for the whole of

the spacetime. It is important to remark that this conformal factor depends on

the particular congruence of conformal geodesics; a different choice of congruence

would lead to a different Θ and, hence, to a different conformal metric g. Thus, if

the congruence of conformal geodesics is specified by a prescription of initial data

of the form given in (5.37) on an initial hypersurface S, then g is determined in

an implicit way by the initial data for the congruence and by Θ�. In the remainder

of this section it will be shown that for metrics g̃ satisfying the vacuum Einstein

equations this correspondence can be made explicit.

A direct consequence of Equations (5.38a) and (5.52) is that

∇̃ẋ (g(ẋ, ẋ)) = 0.

Hence, one sees that a conformal geodesic that is, respectively, timelike, null

or spacelike at a given point in M̃ preserves its causal character through-

out the whole curve. Further computations using the conformal geodesic

Equations (5.35a) and (5.35b) and the relations (5.38a)–(5.38c) and (5.52) show

that

Θ̈ =
1

2
Θg̃(ẋ, ẋ)g̃�(β,β) + ΘL̃(ẋ, ẋ), (5.53a)

...
Θ =

(
∇̃ẋ(L̃(ẋ, ẋ)) + L̃(ẋ,β�)g̃(ẋ, ẋ) + 〈β, ẋ〉L̃(ẋ, ẋ)

)
Θ. (5.53b)
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Moreover, if {ea} denotes a g-orthonormal frame, that is, g(ea, eb) = ηab,

propagated according to Equation (5.36) with e0 = ẋ, one readily finds that

∇̃ẋ(Θ〈β, ea〉) = ΘL̃(ẋ, ea) +
1

2
Θg̃�(β,β)g̃(ẋ, ea). (5.54)

Notice that for the frame {ea} one has, in addition, that ∇̃ẋ(g(ea, eb)) = 0. The

expressions discussed in the previous paragraph lead to the following result first

proven in Friedrich (1995):

Proposition 5.1 (the canonical conformal factor associated to a

conformal geodesic) Let (M̃, g̃) denote an Einstein spacetime. Suppose that

(x(τ),β(τ)) is a solution to the conformal geodesic equations (5.35a) and (5.35b)

and that {ea} is a g-orthonormal frame propagated along the curve according to

Equation (5.36). If g = Θ2g̃ is such that g(ẋ, ẋ) = 1, then the conformal factor

Θ satisfies

Θ(τ) = Θ� + Θ̇�(τ − τ�) +
1

2
Θ̈�(τ − τ�)

2, (5.55)

where the coefficients Θ� ≡ Θ(τ�), Θ̇� ≡ Θ̇(τ�) and Θ̈� ≡ Θ̈(τ�) are constant

along the conformal geodesic and are subject to the constraints

Θ̇� = 〈β�, ẋ�〉Θ�, Θ�Θ̈� =
1

2
g̃�(β�,β�) +

1

6
λ. (5.56)

Furthermore, along each conformal geodesic

Θβ0 = Θ̇, Θβi = Θ�βi�, (5.57)

where βa ≡ 〈β, ea〉.

Proof For an Einstein spacetime the Schouten tensor is given by L̃ = 1
6λg̃.

Substituting this expression into Equation (5.53b), one finds that
...
Θ = 0 so that

Equation (5.55) follows. The constraints (5.56) follow from Equations (5.52) and

(5.53a). Finally, the relations in (5.57) follow from (5.52) and (5.54).

5.5.6 The g̃-adapted equations

As a consequence of the normalisation condition (5.51), the parameter τ is the

g-proper time of the curve x(τ). In some computations it is more convenient to

consider a parametrisation in terms of a g̃-proper time τ̃ . To this end, consider

the parameter transformation τ̃ = τ̃(τ) given by

dτ

dτ̃
= Θ, so that τ̃ = τ̃� +

∫ τ

τ�

ds

Θ(s)
, (5.58)

with inverse τ = τ(τ̃). In what follows, write x̃(τ̃) ≡ x(τ(τ̃)). It can then be

verified that

x̃′ ≡ dx̃

dτ̃
=

dτ

dτ̃

dx

dτ
= Θẋ, (5.59)
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so that g̃(x̃′, x̃′) = 1. Hence, τ̃ is, indeed, the g̃-proper time of the curve x̃. Now,

consider, consistent with Equation (5.47b), the split

β = β̃ +�ẋ�, � ≡ 〈β, ẋ〉
g̃(ẋ, ẋ)

, (5.60)

where the covector β̃ satisfies

〈β̃, ẋ〉 = 0, g�(β,β) = 〈β, ẋ〉2 + g�(β̃, β̃). (5.61)

It can be readily verified that

g̃(ẋ, ẋ) = Θ−2, 〈β, ẋ〉 = Θ−1Θ̇, � = ΘΘ̇. (5.62)

Using the split (5.60) in Equations (5.35a) and (5.35b) and taking into account

the relations in (5.59), (5.61) and (5.62), one obtains the following g̃-adapted

equations for the conformal geodesics :

∇̃x̃′ x̃′ = β̃
�
, (5.63a)

∇̃x̃′ β̃ = β2x̃′� + L̃(x̃′, ·)− L̃(x̃′, x̃′)x̃′�, (5.63b)

with β2 ≡ −g̃�(β̃, β̃) – observe that as a consequence of (5.61) the covector β̃

is spacelike, and, thus, the definition of β2 makes sense. The Weyl propagation

Equation (5.36) can also be cast in a g̃-adapted form. A calculation shows that

∇̃x̃′(Θea) = −〈β̃,Θea〉x̃′.

Equation (5.63a) provides a clear-cut interpretation of the covector β̃ – it

corresponds to the physical acceleration of the conformal curve. Recalling that

g̃ = Θ2g and using (5.61) together with Equation (5.57) of Proposition 5.1 one

finds that

β2 = −g̃�(β̃, β̃) = −Θ2g�(β̃, β̃) = Θ2δijβiβj = Θ2
�δ

ijβi�βj�. (5.64)

That is, β2 is a constant along the conformal geodesic. Using Equation (5.63a) to

eliminate β̃ in Equation (5.63b), one obtains a third-order differential equation

for the curve x̃(τ̃):

∇̃x̃′∇̃x̃′ x̃′ = β2x̃′ + L̃
�
(x̃′, ·)− L̃(x̃′, x̃′)x̃′. (5.65)

A computation making use of the expressions derived in this section shows that

∇̃x̃′
(
g̃(β̃, β̃)

)
= 2L̃(x̃′, β̃).

Consequently, unless (M̃, g̃) is an Einstein spacetime the acceleration of the

curve cannot be constant. This is related to an open question concerning the

behaviour of conformal geodesics discussed in Tod (2012): if a conformal geodesic

γ enters every neighbourhood of a point p, does γ necessarily pass through

p with a finite limiting velocity and acceleration? This potential pathological

behaviour is known as spiralling ; see Figure 5.1. This does not happen for
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U

γ

U

γ

Figure 5.1 Spiralling of conformal geodesics: (left) a standard geodesic γ
entering a geodesically convex ball U must leave it in finite proper time; (right)
by contrast, a conformal geodesic γ′ may not leave U and spiral towards a
point.

standard geodesics, for if a geodesic enters a geodesically convex ball, then it

must leave it too; see Section 11.6.2 for a discussion of the notion of geodesically

convex ball. Using Piccard’s existence theorem for ordinary differential equations

– see, for example, Hartman (1987) – on Equation (5.65), it follows that spiralling

can occur only if either β̃ or x̃′ diverge.

5.5.7 The conformal geodesic deviation equations

An important issue arising in applications involving congruences of conformal

geodesics is that of deciding whether the congruence develops caustics, that

is, points where it becomes singular. To address this one needs to consider the

conformal geodesic deviation equations for the congruence. The deviation of these

equations is analogous to the one leading to the geodesic deviation equation for

standard geodesics; see Section 2.4.5.

In what follows let

(xη(τ),βη(τ)) ≡ (x(τ, η),β(τ, η))

denote a family of conformal geodesics depending smoothly on a parameter η ∈
R. Following the notation used in previous sections for fixed η, let ẋ denote

the tangent vector to the curves of the congruence. The deviation vector and

deviation covector are defined, respectively, by

z ≡ ∂ηx, ζ ≡ ∇̃zβ. (5.66)

A short computation shows that

[ẋ, z] = ∇̃ẋz − ∇̃zẋ = 0, (5.67)

so that z is a well-defined deviation vector ; compare Section 2.4.5. Moreover,

making use of the definition of the Riemann tensor given by Equation (2.9), one

has that
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Riem[g̃](ẋ, z)ẋ = ∇̃ẋ∇̃zẋ− ∇̃z∇̃ẋẋ. (5.68)

Hence,

∇̃ẋ∇̃ẋz = ∇̃ẋ∇̃zẋ = ∇̃z∇̃ẋẋ+Riem[g̃](ẋ, z)ẋ,

as a consequence of Equations (5.67) and (5.68). Now, using the conformal

geodesic equation (5.35a) in the form ∇̃ẋẋ = −S(β; ẋ, ẋ), where S(β; ẋ, ẋ)

corresponds to Sab
cdẋaẋbβc in abstract index notation, one finds that

∇̃ẋ∇̃ẋz = −∇̃z(S(β; ẋ, ẋ)) +Riem[g̃](ẋ, z)ẋ

= −S(∇̃zβ; ẋ, ẋ)− 2S(β; ∇̃zẋ, ẋ) +Riem[g̃](ẋ, z)ẋ. (5.69)

A similar computation shows that

∇̃ẋζ = ∇̃ẋ∇̃zβ = ∇̃z∇̃ẋβ − β ·Riem[g̃](ẋ, z)

=
1

2
∇̃z(β · S(β; ẋ, ·)) + ∇̃z(L̃(ẋ, ·))− β ·Riem[g̃](ẋ, z)

= −β ·Riem[g̃](ẋ, z) + ∇̃zL̃(ẋ, ·) + L̃(∇̃zẋ, ·) +
1

2
∇̃zβ · S(β; ẋ, ·)

+
1

2
β · S(∇̃zβ; ẋ, ·) +

1

2
β · S(β; ∇̃ẋz, ·) (5.70)

where, in the third line, Equation (5.35b) in the form

∇̃ẋβ =
1

2
β · S(β; ẋ, ·) + L̃(ẋ, ·)

has been used. Finally, taking into account the definitions in (5.66) in

Equations (5.69) and (5.70), one obtains the conformal geodesic deviation

equations:

∇̃ẋ∇̃ẋz = Riem[g̃](ẋ, z)ẋ− S(ζ; ẋ, ẋ)− 2S(β; ẋ, ∇̃ẋz), (5.71a)

∇̃ẋζ = −β ·Riem[g̃](ẋ, z) + ∇̃zL̃(ẋ, ·) + L̃(∇̃zẋ, ·) +
1

2
ζ · S(β; ẋ, ·)

+
1

2
β · S(ζ; ẋ, ·) + 1

2
β · S(β; ∇̃ẋz, ·), (5.71b)

where

S(β;u,v) ≡ 〈β,u〉v + 〈β,v〉u− g̃(u,v)β�,

α · S(β;u, ·) ≡ 〈α,u〉β + 〈β,u〉α− g̃�(α,β)u�,

for u,v ∈ T (M̃) and α ∈ T ∗(M̃). In standard abstract index notation S(β;u,v)

corresponds to the expression Sab
cduavbβc, while α · S(β;u, ·), to Sab

cduaβcαd.

A caustic in a conformal geodesic is a point along the curve for which z = 0.

Caustics of conformal geodesics are more complicated than caustics of metric

geodesics since, for a given tangent vector, there exists a three-parameter family

of conformal geodesics with the same tangent vector. Moreover, the analysis
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of Equation (5.71a) requires the simultaneous consideration of the evolution

equation of the deviation covector ζ, Equation (5.71b). This feature can be

useful in applications: Equation (5.71a) has two extra terms, −S(ζ; ẋ, ẋ) and

−2S(β; ẋ, ∇̃ẋz), not appearing in the standard geodesic deviation equation;

under suitable circumstances these terms may be used to counteract the natural

tendency of the curvature to develop caustics.

The g̃-adapted conformal geodesic deviation equations

Following the strategy discussed in Section 5.5.6, one can rewrite the conformal

geodesic deviation equations in a way adapted to the metric g̃. To this end define

the g̃-adapted deviation vector and covector

z̃ ≡ ∂λx̃, ζ̃ ≡ ∇̃z̃β̃.

Now, observing that [x̃′, z̃] = 0, a computation taking into account the g̃-

adapted conformal geodesic Equations (5.63a) and (5.63b) and the commutator

of covariant derivatives leads to the following g̃-adapted conformal geodesic

deviation equations:

∇̃x̃′∇̃x̃′ z̃ = Riem[g̃](x̃′, z̃)x̃′ + ζ̃
�
, (5.72a)

∇̃x̃′ ζ̃ = −β̃ ·Riem[g̃](x̃′, z̃) + (∇̃z̃β
2)x̃′� + β2∇̃x̃′ z̃�. (5.72b)

A computation exploiting the fact that the connection ∇̃ is assumed to be torsion

free gives

∇̃x̃′∇̃z̃β
2 = ∇̃z̃∇̃x̃′β2 = 0,

where the last equality follows from the fact that β2 is constant along a given

conformal geodesic; see Equation (5.64). Hence, the components of the terms

with x̃′� and ∇̃x̃′ z̃� in Equation (5.72b) are constant and can be evaluated at

some fiducial time.

5.6 Further reading

Basic references for applications of conformal geometry in general relativity

are Penrose and Rindler (1984, 1986) and Stewart (1991). A discussion of the

properties of the Weyl and Cotton tensor can be found in Garćıa et al. (2004).

The first systematic treatments of conformal geodesics in the context of general

relativity can be found in Schmidt (1986) and Friedrich and Schmidt (1987).

A discussion of Weyl connections making use of the more general language of

fibre bundles is given in Friedrich (1995); a brief presentation of the subject

in the spirit of this chapter can be found in Friedrich (2002). A discussion of

the properties of conformal geodesics in the context of general relativity can be

found in Friedrich (2003a); a more technical discussion can be found in the earlier
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reference Friedrich (1995). Properties of conformal geodesics have been explored

from a different perspective in Tod (2012).

The results of Proposition 5.1 strongly depend on the hypothesis that (M̃, g̃) is

an Einstein space – in other words, g̃ satisfies the vacuum Einstein equations. To

get around this restriction, a more general class of curves has been introduced in

Lübbe and Valiente Kroon (2012). These curves are a suitable generalisation

of the conformal geodesics which allow the recovery of the conclusions of

Proposition 5.1 for general spacetimes and, thus, provide a systematic way of

identifying the conformal boundary of non-vacuum spacetimes. A discussion

of the associated deviation equations with explicit expressions for the case of

warped-product spacetimes is given in Lübbe and Valiente Kroon (2013a).

A detailed mathematical theory of conformal connections can be found in

Ogiue (1967) and Kobayashi (1995). A more recent monograph on the subject

is Fefferman and Graham (2012). Conformal geometry is naturally related to

twistor theory; a discussion of this and related topics such as tractors can be

found in Eastwood (1996).

The reader interested in surveys on research in conformal geometry is referred

to Kulkarni and Pinkall (1988), Chang et al. (2007) and Branson et al. (2004)

as suitable entry points to the literature in the subject.
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