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ADDENDUM TO THE PAPER
“A NOTE ON WEIGHTED BERGMAN SPACES AND
THE CESARO OPERATOR”

DER-CHEN CHANG* axD STEVO STEVIC

Abstract. Let H(D,) be the space of holomorphic functions on the unit
polydisk D,,, and let £%¢(D,,), where p,q > 0, a = (a1, ..., an) with a; > —1,
j=1,...,n, be the class of all measurable functions f defined on D,, such that

MI(f,r H 1—r;)%dr; < oo,
[0,1)n =

where Mp(f,r) denote the p-integral means of the function f. Denote the
weighted Bergman space on D, by A%4(D,,) = LE4(D,,)NH(D,). We provide
a characterization for a function f being in A%79(D,). Using the characteri-
zation we prove the following result: Let p > 1, then the Cesaro operator is
bounded on the space AEP(D,,).

§1. Introduction

Let D; =D = {z € C: |z| < 1} be the unit disk in the complex plane
and let D,, be the unit polydisk in the complex vector space C". Denote
the space of all holomorphic functions on D,, by H(D,,). For z,w € C",

we write z - w = (z1w1, . .., Znwy); € is an abbreviation for (e?1,. .. e¥n);
df = dby ---db, and r, 6, o are vectors in C". Wesay 0 <7 = (ry,...,r,) <
1 whenever 0 <r; < 1lforj=1,...,n.

For f € H(D,,) and p € (0, 0),

1 ) 1/p
M, = )P for 0 <7 <1
W)= (g [, O epan) 7 por 0% <

denote the integral means of f.

Received October 22, 2004.
2000 Mathematics Subject Classification: Primary 47B38; Secondary 46E15.
*Partially supported by a research grant from the U.S. Department of Defense DAAH-
0496-10301 and a competitive research grant at Georgetown University.

https://doi.org/10.1017/50027763000009193 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009193

78 D.-C. CHANG AND S. STEVIC

Let L2 = LBY(D,,), where p,¢ > 0 and a; > —1, j = 1,...,n, be the
class of all measurable functions f defined on D,, such that

£l .0 = / MA(f,r) H(l —1r;)%dr; < oo.
[0,1)" j=1

The weighted Bergman space (with classical weight) AL? is the intersec-
tion of £E? and H(D,,). When p = ¢ we denote AL? by A5 and LE? by
L. Weighted Bergman spaces of holomorphic or harmonic functions with
weights other than classical weights have been studied, for example, in [2],
[3], [4], [6], [7], [8], see also the references therein.

In [5] a family of Cesaro operators C7, called the generalized Cesdro
operators, was introduced on the polydisk D,,, by

CE =Y (Zﬁg‘s ol % ) 2,

n 'V]+1

where ¥ = (v1,...,7) € C", Re(vy;) > —1, j = 1,...,n, whenever f(z) =
Z(\ﬁ:o as2% is an analytic function on D,, (3 and ¢ are multi-indices from
(Z4)™). A simple calculation with power series then gives

n
(v + 1)1 —15)%
(1) / / f T1Z1y -5 Tnn J];Il 1_szj 'Yngl dr,
where dr = dm - - - d7,,.

From (1), the following formula also holds

(2)
n
v+ 1 (2j —wj)¥
/ / flwr,...,wn H 1—w, %Jrlw

Cﬂ?(f)(z) = [ "y]Jrl
It was shown in [5] that the generalized Cesaro operator is bounded on
the Hardy space when p € (0, 1]:

THEOREM A. Let0<p <1, 5= (y1,...,7) such that Re(vy;) > —1,
j=1,...,n, and 0 < r < 1. Then there is a constant C independent of f
and r such that

[ eipeetpase [ g,
[0,27]™

[0,27]™
for all f € H(D,,).
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It is easy to see by Theorem A that the generalized Cesaro operator
is bounded on the weighted Bergman space ALY (D,,), when p € (0,1] and
q>0.

In [1], G. Benke and the first author independently introduced and
considered the case ¥ = 0. They also considered the boundedness of the
operator C° on the weighted Bergman space in the case 1 < p < co. The
main ingredient of their method is based on the following result (Theo-
rem 1.8 in [1]):

THEOREM B. Letp € [1,00), oj > —1, j=1,...,n and m be a fized
positive integer and let k = (k1,...,kn) € (Z4)". Let f be a holomorphic
function defined on the polydisk D,, in C™. Then for a = (ai,...,an),
f € AL if and only if

- 12\k ol f » . B
[T =1z o ak(z)eca, vk with |k| =
Zl P Znn

j=1
Moreover,
1
n a\klf ‘
= 0
11 ( > |5 o
T 1- |52 k]i .
qumHLl_Il( 1) SR Ll | o

However, there is an apparent typo in the statement of the theorem. In
the paper [1], the authors did not mention the condition: for all k € Z" with
|k| = m, as above (Theorem 1.8 in [1]). This gap caused a misunderstanding
in the proof of Theorem 2.4 in [1]. However, it is a good idea to use
this kind of method to investigate the boundedness of Cesaro operator on
the Bergman spaces. In this note we would like to provide a complete
proof of Theorem 2.4 in [1], which is based on the idea in that paper when
1 < p < c0. In order to do that we put aside Theorem B and use another
characterization for f € H(D,) to be in A5(D,,) (see Theorem 2 below).
Our main result is the following theorem.

THEOREM 1. Let 1 < p < 00, a = (a1,...,0ap) such that o > —1,
j=1,...,n. Then the Cesdro operator is bounded on A% (D,,).

The authors are grateful to the referee for many helpful comments and
a careful reading of the manuscript.
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§2. Auxiliary results

In order to prove Theorem 1 we need some auxiliary results which can
be of independent interest. For f € H(D,,), set

__0"f(?)
nf(Z) N 821 e 8zn '

LEMMA 1. Let f € H(D,) such that f(z) = 0 when H] 12 = 0.
Then for p,q € [1,00) and aj > —1, j = 1,...,n, there is a positive
constant C independent of f such that

(3) MA(fr) [J(1=rj)®dr < C M0 f,r) [J(A—ry)tesdr.
7j=1

[0,1)n =1 [0,1)n

Proof. Let
1
I— / MI(f,r) (1 — r)®dry.

First suppose that f € H(D,,). Using integration by parts, and f(0, z2, ...,
zp) =0 in D,,_1, we obtain

1_/ MI(f,r)(1 = 7)™ dry = / S Mi(f, ) (1 —r)* .
1

Oél—|-1

At points z = r - €’ where f is not zero (almost everywhere) we have

| f(r P = gl e o)
T1 "
|f((r1+ hyrey...rp) - €i9)’ —|f(r- ez’@)‘

= Pl )P Tim

h—0 h ] )
< plf(r-e?)pt }Lli% |[f((r1 + h,ra,... ,FZL') ey — f(r - €?)]
= if(e- e | LU gy gyt 210 TD)

By the Dominated Convergence Theorem we have
ai My(fir) = ﬁ/mﬂn peCAG e”)|Pdf
< g o e 2
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Applying Hélder’s inequality with exponents p/(p —1) and p (when p > 1),
we have

@) - MP(f,r) < pME (L) My(0F [00.7)

Case p = 1 is clear. Now let us turn to the case 1 < p < co. Note that

S MY(,7) =

1 0
3 (M ()Pt S M(f ).

4
p
Using this and (4), we obtain

a%Mg(f,r) < QMI(f, P)M(DF /021, 7).

It follows that

1
: a «a
' a +1 /0 My HFr)Mp(0f /021, m) (1 — 1) Fdry

q g1 1 N 1/q
S (/O MO /021, 7)(1 — )™ qdrl) ,

where we used Holder’s inequality with exponents ¢/(¢ — 1) and ¢ when
g > 1. When ¢ = 1 the last inequality is obvious. Hence

' q al q o q aitq
[ g = roran < (ZL5) [ s o, n -y,

Multiplying this inequality by (1 —r9)*2drs, then integrating over [0,1) and
applying Fubini’s theorem it follows that

1 r1
/0 /o MF(f,r) (1 =r1)*dri (1 —r2)*drs

q 1 1
g( g )/0/0Mg(af/azl,r)u—r2)a2dr2(1—r1)al+mr1.

o+ 1
Applying the above procedure on the integral
1
/0 Mg(@f/azl,r)(l — 19)*%drg
and using the fact that

ME(Of/0z1,7)|, _, =0

ro=0
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since
0
a—i(2170)227"'7zn)
— lim f(z14+h,0,29,...,2,) — f(21,0,22,...,2,) 0
h—0 h ’
we obtain

/1 MIOf/0z1,7)(1 —re)*dry
0

q q 1 )
< (042 n 1) /0 Mg((‘??f/azl@zg,r)(l — 1)y

and consequently

//Mq fir) (X —r)® (1 —re)? 2dr1dr2<H<a]+1)q

></0 /0 Mg(82f/821822,7’)(1—Tl)a1+q(1—Tg)a2+qd?”1d7“2.

Repeating the same procedure for rs,...,r,, we obtain the result in this

case with the constant N
q
q
C = .
H (Oéj + 1)
J=1

If f € HD,), we use the functions f(pz) where p € [0,1), and the
Monotone Convergence Theorem to obtain the result.

Now we formulate and prove a useful characterization for f € H(D,,) to
be in ALY(D,,), which was discovered by the second author several years ago
and have already been presented at several talks. Here is a good occasion
to present the result since we apply it in the proof of Theorem 1.

THEOREM 2. (Binomial criterion) Let p,q € [1,00), o = (a1,..., ),
with oj > =1 for j=1,....n, and f € H(D,). Then f € ARYD,,) if and
only if the functions

oISl f
5)  Tsf =]l W(XS(U%XS(?)Z%---,Xs(n)zn%
JE J

JjES
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belong to the space LBY(Dy,), for every S C {1,2,...,n}, where xs(-)
is the characteristic function of S, |S| is the cardinal number of S, and
[jes0zj = 0zj, -+~ 0zj g, where jy € S, k=1,...,|S].

Moreover, || - || gpa and || - ||« are equivalent norms on AG?(Dy,), where

Hf”* = |f(07 . 50)| + Z ||TSfHLg!‘1.

SC{1,...,n}, S#D

Remark 1. To be more suggestive and to give an explanation why it
is called the Binomial criterion, we explain here what condition (5) exactly
means when n = 2 and n = 3. When n = 2, it means that the following
four functions

f(0’0)7 91(21’22):(1_|Zl|)%;;0)7 92(21722):(1—|22|)%Z’222)’

and 02 f( )
11— P 2)
g3(21,22) = (1 — |z1])(1 — [22]) 021029

belong to the space £5%(Ds).
Moreover, the norms || f{| 4.« and

3
1F 1 = 10, 0)] + D llgill -
=1

are equivalent.
When n = 3, it means that the following eight functions

8f(21,0,0) 8f(0,2’2,0) 8f(0,0, 2’3)
£(0,0,0), (1 - \Zlf)Ta (1- \22’)77 (1- ‘23‘)8722’
0% f (21, 22,0 0% f (21,0,
(1= a0 o) ZEEE (1 oo — o TLEL ),
O £(0, 29, 23) O f (21, 22, 23)

(1= [z)(1 = [z3])

are in L5 (Ds).

» (1= [z)) (1 = [z2])(1 = [23])

82’2823 82’182282’3 ’

Proof of Theorem 2. Sufficiency. First, we assume that f(0,...,0) =0

and f € H(D,,). In the case we have that

= 3 fs(Dz,..xs(n)za) +g(2),

Sc{l,...n}, S#£0
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where the function g is of the form 2125 - - - 2,h(2), h € H(D,,).
By Lemma 1 we have

n
g% < C / M3 (Bng, 7 Hl—r Jr+as gy

=C M(Iaf’ Hl_r q+a]d7.
[0,1)" j=1

since Opg = Op f.
We show that for each S C {1,...,n}, S #0

Hf(XS(l)Zlv <o ,XS(n)Zn)HAZ’q
can be estimated by || Tsf| z»9, i.e., by the integral

5]
[10 - D 5 (s xs(n)zn)

jes jESa J

D,q
Ly

Define fs(z) = f(xs(1)z1,...,xs(n)z,) for z € D,. Let S = {j1,...
Jsih 1< g1 <+ <jjg) < n, and ag = (ajl,...,ozj‘s‘). Then there exists

an fg € H(D)g|) such that fs(z) = f(zjl,...,zjm) for any z € D,,. A

simple calculation gives

1 -
HfS”ilg,q = H s HfS”ilg!g
J

as & +1
= M(fs,rs) TT (1 = re)*dry,
H g1 /0 INEl My klgg
where rg = (1,,... ,rj‘s‘). As in the proof of Lemma 1, we have
q
q f +
sl pa = ( > / MJ(Osfs,rs) | | (1 —re)™* " dry
Ao ]gg CM] + 1 [071)\S’| p kgs’
g \* 2
= (a, n 1) 1@ =120 fs
] JES ﬁg»sq
( q

11
JES
q
(o +1)
q

X

5]
T10 - b (es()an. - xs(n)zn)

jeSs jESa J

p,q
Lo
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Hence

1f(xs(Dz1s - - x5 () 2n) ||z
q
<11
jes Wi Tl

This gives the result in this case, that is,

£z < CNf Il

where C’ > 0 is a constant depending only on « and gq.
If £(0,...,0) # 0 we write f(z) = f(0,...,0)+g(z), then ¢(0,...,0) =
0. We have
£ Lags < 10, 0)lLage + llgllags = C() /£ (0, 0)[ + [lg]lags
< C(a)Y9£(0,...,0)[ + Cllg]l-
< (C(@)V 4+ C)(|£(0,...,0) + [lg]l-)
= (C@)M1+ )| fl+
where C(a) = 1/[]j_;(e; + 1), as desired. To remove the restriction of
the finiteness of the integrals we consider the holomorphic function f,(z) =

f(pz) with p < 1. By the Monotone Convergence Theorem, when p — 1,
we obtain the result.

[S|
T1¢- |zj|>Ha—f

jEs jes 0z

(xs(M)z1,- .., xs(n)zn)

D,q
Ly

Necessity. The proof of this part of the theorem is a special case of the
proof of Theorem 3 (a) in [3].

LEMMA 2. Let p > 0 and aj > —1, j = 1,...,n. Then for every
S CA{1,...,n}, there exists a constant C independent of f such that

1= 12D fller, < O [T 21 = Jzl)f

JjES

for every f € H(D,,) and k € {1,...,n}.

)

Lo

Proof. Without loss of generality we may assume that n = 2, k = 1,
and S = {2}. Let f € H(D3), then

1@ = = A1

12 p1/2 1/2 1 1 p1/2 1 e
L L e
0 0 0 172 Jiy2Jo 1/2 J1/2
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where g(r1,re) = MP(f,m1,72)(1—71)**TP(1—7r2)*2. Now we estimate these
four integrals, which we denote by I;, 1 =1,2,3,4.
Since f € H(D3), the function f is holomorphic in each variable sep-

arately on D and consequently Mp(f,71,72) is nondecreasing in r1 and ro.
Let

1/2 , 1 .
Co; = / (1- Ti)aiHld?"z‘// (1 =) 0dr;, i=1,2,
0 1/2

where 0] = p and 6% = 0.

Note that C,,, i = 1,2, are well defined and finite numbers since (1 —

r1)®+9 are positive integrable functions on (0,1).

Using the above mentioned facts and definitions we have

1/2 p1/2
(6) I < MP(f,1/2, 1/2)/ / (1 — 7)™ *P(1 — r9)*2drydrs
0 0
1 1
= Ca10a2M£(f, 1/2, 1/2) / (1 — Tl)a1+p(1 — T2)a2drld7"2
1/2J1/2

1 1
S Ca10a2 / Mg(f, 1, ?”2)(1 — T’l)al+p(1 — Tg)anTldTQ
1/2 J1/2

1,1
< 2PC,, Cy, / Mg(f, ri,7m2)(1 — Tl)aler(l - Tg)o‘Qrngldrg
/2J1/2

< 27Co, Cay [l22(1 = 21 f I 2 -

1 1/2
M k< My(f,1/2,m2)(1 - r2)°‘2dr2/0 (1 =) Pdry

1/2
1 1
~ Ca, / MP(f,1/2,r2)(1 — 1) P(1 — 19) 2 drydr
1/2J1/2
1 1
<Cu / ME(f,r1,m2) (1 —1r1)* P(1 = 19)*2dridry
1/2J1/2

1,1
< 2PC,, / Mg(f, r1,72)(1 — Tl)alﬂ’(l — 79)*2rbdrydry
1/2 J1/2

< 2PC,, ||z2(1 — |Zl|)f”2§;'
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Similarly

11
8 I3 <2PC, MP(f,r1,72)(1 — 1) P (1 — 7o) *20Bdrdry
2 P 2
/2J1/2
< 2°Ca, ||22(1 = [ )) fII7n

Finally, it is clear that

(9) Iy, <2° /;2 ;2 MP(f,r1,m2)(1 — 1) P (1 — 1) *2rhdrydrs
< P|lea(1 — | I
From (6)—(9) we obtain
11 =121 fllzp < 2°(Cay + 1)(Clay + Dll22(1 = [21) f 117
as desired.
§3. Proof of the main result

We are now in a position to prove the main result in this paper.

Proof of Theorem 1. Fix f € AL. Let Ca(f)(z) = F(z). We prove the
result in the case n = 2. The proof for n > 3 is only technically complicated.
First, we prove that (1 — |21|)|0F/dz1(z1,0)| € £L. In fact we prove the
equivalent result, (here we use Lemma 2), that z1(1 —|21|)|0F/0z1(21,0)| €
ch.

In view of formula (2) we have

8F w17w2)
dw1d,
071 g5, (21 22) = zle/ / (1 —wi)(1—ws) widw2

f(zlv‘*)?)
+ Z1%29 /0 (1 — Zl)(l — WQ)de’

and consequently

oF 1 Lol f(tiz1,taz2)
_ dt1dt
821 (217 22 /0 /0 1-— t121 1 — tQZQ) 1502

1 1 f(Zl,tQZQ)
+ — dts.
21 Jo (1 —Zl)(l—tQZQ) 2
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1
Zly ‘ / / ‘f tlzla dt dt +/ ’f(ZI’O)‘dtQ,
1—t12’1’ 0 ‘1—21‘

|Zl|

which implies

10) [l = D g ,0)

1 1 1
< / / [F(t122,0)|dbrdts + / F(z1,0)dt
0 0 0
1 1 1 1
—/ / ‘f(tlzlao)’dtldtQ‘i‘/ / |f(21,0)|dt,dts.
0 0 0 0

Let h(z1,22) = z1(1 — |21|)0F/0z1(21,0). Taking (10) to the p-th de-
gree, integrating obtained inequality over [0,1)? x [0, 27]? with respect the

measure d(%;d)? (1—=71)* (1 —79)*2dridry, then using Minkowski’s inequality

and finally using the monotonicity of the integral means M,(f,71,72) in
both variables, we obtain

1 1 1 )
11 hl| q» §/ / (—/ / t1r1€,0)|Pd; dO
(1) (Rl o o \ @2 Jouy ooy FAGES! )|PdO1d02

1/p
X (1 — T’l)al(l — T2)a2) dtldtQ

1 1 1 / / "
+ — r1e®t,0)|Pdf,db
/0 /0 <(27T)2 [0,1)2 [0,27r]2|f( ! )V dbrdb

1/p
X (1 — Tl)al(l — 7"2)012) dtldtg
< 2| ]z

Similarly we can say that

oF
(12) 21 = |z2l)5—(0,22)| < 2[flla-
Now we prove that
(13) (1 =]z = |z2) oF (z1,22)|| < A4[lfll
z129(1 — |2 — |z 21, 2 .
122 1 2 92107 1,22 o AP,
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We have

O*F flwi,w2)
’ dwid
207 122 zle/ / (L= w) (1 —wy) 12
1 = fwri, 22) 1 /22 f(z1,wo)
— dwi — dw
2522/0 (I—w)(l=2) ' z23)y T-z2)l-w) °
1 f(z1,22)
Z1%29 (1 — Zl)(l — 22)’

from which it follows that
2

821 82’2

leaz2l(1 — |y (1 — |z2r>\ (21, 22)

1 1
< / / ([f(trz1,t220)| 4+ | f(t121, 22)| + | f (21, taz2)| + | f(21, 22)| )dt1dts.
0 Jo

The rest of the proof is similar to that for the function z1(1—|z1|)0F/0z1 (#1,
0) and will be omitted.
Note that by (1)

(14) [7(0,0)] = [£(0,0)] < [(1 + 1)@z + D]YP||f || gz,
Using (11)—(14) and Lemma 2 we have that
IFl« < ClIfllaz»

where C' is a positive constant depending only on p and «. From this and
Theorem 2 the result follows.

Remark 2. We would like to point out that in the case n > 3 the result
is proved in a similar way. It can be shown that

oISIF
zi(1 — |2|) ——5—
[ = |J|)Hjesazj

JjeS

< 2801 £

L3

for every f € Ab and every S C {1,...,n}, S # 0, since the function

120120

JjeS

oISIF
HjeS 0z;

is estimated by 2!5! integrals which are similar to the integrals in (10).
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