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Abstract
This study examines the pursuit-evasion game involving unmanned aerial vehicles (UAVs), with a specific focus
on the scenario of N-pursuers-one-escapee. The primary objective is to develop an optimal strategy for the escapee
when the pursuers possess superior capabilities. To obtain this objective, we conduct the following study. Firstly, to
enhance realism, a non-cooperative differential game model is formulated, incorporating multiple motion character-
istics, including aerodynamics, overloading, and imposed constraints. Secondly, the end-value performance index is
subsequently converted to an integral one, simplifying the solution process of the Hamilton-Jacobi-Bellman (HJB)
equation. An iterative method is utilised to determine the covariates using the Cauchy initial value problem, and
its convergence and uniqueness are established. The optimal avoidance strategy is subsequently derived from the
covariates. Finally, the superiority of the proposed strategy is validated through simulation experiments and com-
pared to three advanced optimal avoidance strategies. A total of 1,000 anti-jamming simulation experiments are
conducted to verify the robustness of the proposed strategy.

Nomenclature
x, y, z the coordinates in the North Celestial Inertial System
V the magnitude of velocity
D the aerodynamic drag
L the aerodynamic lift
m the mass
g the local gravitational acceleration
Di, (i = 1, 2) the i-th pursuer
M the escapee
VDmi the velocity projection of MDi the firing plane of M
VDdi the velocity projection of MDi the firing plane of Di

VTmi the component of velocity of M in the horizontal plane
VTdi the component of velocity of Di in the horizontal plane
RDi the relative distance of the firing plane
R̄Di the transformed relative distance of the firing plane
R̄Ti the transformed relative distance of the horizontal plane
xi the relative velocity
fDi the MDi of the firing plane system M control volume coefficient
gDi the MDi of the firing plane system D control volume coefficient
hDi the MDi of the firing plane system coefficient
fTi the MDi of the horizontal plane system M control volume coefficient
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gTi the MDi of the horizontal plane system D control volume coefficient
hTi the MDi of the horizontal plane system coefficient
uDm the firing plane control variable
uTm the horizontal plane control variable
J the perferomance index
tfi the terminal moment of MDi

t0 the initial time
li the time operator
H the Hamiltonian function
p(t) the left term of the Cauchy’s initial value equation
q(t) the right term of the Cauchy’s initial value equation
Q the upper bound of

(|I(q(x, t))| + ∫
R̄iβi+R̄i0βi0

t
lidt + 2R̄iβili

)
S the upper bound of

∣∣λ(n)
i (x, t) − λ

(n−1)
i (x, t)

∣∣
L A sufficiently large constant (used in the Section 3.3.2)
N A sufficiently large constant (used in the Section 3.3.3)
n number of iterations

Greek symbol
� the trajectory angle
� the trajectory yaw angle
ν the velocity pitch angle
α the angle-of-attack
λTi the line-of-sight azimuth
λDi the line-of-sight elevation angle
φTmi the front angle of the horizontal plane of M
φDmi the front angle of the MDi firing plane of M
φTdi the front angle of the horizontal plane of Di

φDdi the front angles of the MDi firing plane of Di

γTmi the horizontal plane velocity angle of M
γDmi the firing plane velocity angle of M
γTdi the horizontal plane velocity angle of Di

γDdi the firing plane velocity angle of Di

αDi conversion factor
βi the weight of the terminal value index
βi0 the initial weight of the terminal value index
κT the weight of the energy metric
φ Hamiltonian variation
λi the covariant variable
ζ the moment in (t, t0) in proof of convergence
ξ the moment in (t, t0) in proof of uniqueness

1.0 Introduction
In a pursuit-evasion game, the escapee avoids the pursuer to reach a goal. Meanwhile, the pursuer aims
to catch the escapee before it arrives. The escapee’s situation changes over time, demanding a dynamic
avoidance strategy. Differential games are often applied here. Problems vary, based on the number of
players on each side. For example, there are games with one pursuer and one escapee, or with N pursuers
and one escapee, or with N pursuers and N escapees. In a game with multiple players, the one-pursuer-
multi-escapees scenario is the subject of concern. An example is the ‘two cutters and a ship’ game.
Here, two fast pursuers team up to catch a slower escapee quickly. This game has sparked much research.
Differential games have applications in economics, sports, robotics and air combat [1].

This study focuses on the best strategy for UAVs in pursuit-evasion games. It is important to note that
the applications of these mathematical tools may not be suitable for the scenario. However, the motion
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of the vehicle is non-linear and complex. Moreover, directly solving the joint multiple equations will
lead to a dimensional disaster. Therefore, it highlights the growing in the optimal avoidance problem
with nonlinear differential games for multiple vehicles in recent years [2, 3].

Existing studies often use linearisation and geometric methods to solve the optimal avoidance strategy
of an escapee.

(1) Linearisation method: Solving the UAV’s non-linear dynamic equations with Linear Quadratic
Differential Game (LQDG) makes it simple [4–9]. However, the variable zero effort miss (ZEM), an
important factor, only works for slower, closer scenarios [10–13]. LQDG uses a transfer matrix to solve
ZEM, leading to large errors. Additionally, simplifying the evasion problem with many pursuers into
a two-player game and merging strategies overlooks multiple interceptors’ impact [14]. This, in turn,
weakens the evasion effect.

(2) Geometric approach: The geometric approach uses Apollo circles [15], Tyson polygons [16] and
the Voronoi diagram [17, 18] to define escapee and pursuer dominance zones. It also sets the boundary
where they meet [19–22]. Geometric methods avoid nonlinear solution problems but assume uniform
motion, a big limitation. Real-world relationships are complex and change. This flawlessly simplifies
spatial relationships. However, it impacts the vehicle’s evasion effectiveness.

Scholars have solved differential game problems using various methods. These include the viscous
solution [23–25] and weak Kolmogorov-Arnold-Moser theory (KAM) theory [26], etc. S. Hamadene
[27] proposed the solution of the mixed zero and stochastic differential game by applying the oriented
stochastic differential equations with local solutions. Shipei [28] established a nonlinear parabolic vari-
ational inequality for the HJB equation under sufficiently smooth conditions, proving that the value
function is the unique viscosity solution of its inequality with applications. However, the above mathe-
matical derivation is valid under limited conditions, such as the time periodicity of the viscous solution
[29], the control variable tends to 0, and so on. Therefore, a solution method with high applicability and
low error is needed for the flying vehicle game problem

This paper suggests an optimal strategy for the ‘N-pursuers-1-escapee’ game. It is adapted to UAV
dynamics. To obtain this strategy, we conduct the following study. First, a differential game model is
constructed from the UAV’s position-velocity relationship. Secondly, the final avoidance amount is taken
as the performance index and converted to integral type to construct the Hamiltonian function to reduce
the number of joint equations and avoid falling into dimensional catastrophe. Then, the covariates that
satisfy the Cauchy initial value problem are constructed, and its convergence and uniqueness are proved.
So the optimal avoidance strategy is obtained. Compared to three advanced optimal avoidance strategies,
the simulation results show strong feasibility and robustness of the proposed strategy in this paper.

The contribution of this paper to the problem of pursuit-evasion game by UAVs can be summarised
as follows:

(1) This method simplifies complex dynamics and finds a solution for vehicle games.
(2) It solves HJB system covariates. It works with the Cauchy problem, proving their convergence

and uniqueness.

2.0 Problem description and modelling
2.1 Description of problems
This paper’s research objects are both the escapee and pursuers. It focuses especially on the escapee. Its
task is to avoid pursuit and reach its destination.

The confrontation scenario is shown in Fig. 1: M is the escapee, D1 and D2 are pursuers and T is
M’s destination.

Where λD1, λD2 are the elevation angles of the line of sight, and λT1, λT2 is the azimuth angle of the
line of sight. Pursuers D1 and D2 pursue escapee M at different heights and directions, respectively. S1
and S2 are the target coordinate systems of D1 and D2.
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Figure 1. Confrontation scenario.

2.2 System model
2.2.1 dynamical model
The UAV dynamics are modeled as Equation (1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ= V cos � cos �

ẏ= V sin �

ż= V cos � sin �

V̇= −D

m
− g sin �

�̇= L cos ν

mV
− g cos �

V

�̇= L sin ν

mV cos �

(1)

Where V is the magnitude of velocity, � is the trajectory angle, � is the trajectory yaw angle, x, y, z is
the coordinates in the North Celestial Inertial System, D is the aerodynamic drag, L is the aerodynamic
lift, ν is the velocity pitch angle, g is the local gravitational acceleration, and m is the mass.
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Firing plane

Horizontal plane

(a)

(b)

Figure 2. Planar motion decoupling.

2.2.2 Relative motion model
In the differential game model, we simplify the target coordinate system. First, we switch from the
Northeastern system to the one in Fig. 1. It’s split into the firing and horizontal planes, as shown in
Fig. 2.

Where λDi is the line-of-sight elevation angle, VDmi, VDdi are the velocitys projection of the firing plane
M and Di, (i = 1, 2), γDmi, γDdi are the firing plane velocity angles, φDmi, φDdi are the front angles of the
firing planes of escapee M and pursuer Di. λTi is the line-of-sight azimuth, VTmi, VTdi are the velocity
projections of M and Di(i = 1, 2) in the horizontal plane, γTmi, γTdi are the horizontal plane velocity
angles, and φTmi, φTdi are the front angles of the horizontal plane M and Di(i = 1, 2).

Modeling of relative motion in the firing plane is as Equation (2):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φDmi= γDmi − λDi

φDdi= γDdi − λDi

ṘDi= VDmi cos φDmi − VDdi cos φDdi

RDiλ̇Di= VDmi sin φDmi − VDdiφDdi

(2)

Where RDi is the distance between M and Di(i = 1, 2).
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Let VDm1
VDd1

= αD1,
VDm2
VDd2

= αD2, then let the transformed relative distance be as Equation (3):{
R̄D1= αD1 cos φDm1 − cos φDd1

R̄D2= αD2 cos φDm2 − cos φDd2

(3)

Let the transformed relative distance R̄D1, R̄D2 be the state variable x1, x2 for the differential game
model and the angular velocity of the plane γ̇Dmi, γ̇Ddi be the control variable uDmi, uDdi, then the system
state is as Eqaution 4: {

ẋ1= fD1(x, t)uDm1 + gD1(x, t)uDd1 + hD1(x, t)

ẋ2= fD2(x, t)uDm2 + gD2(x, t)uDd2 + hD2(x, t)
(4)

Where fDi(x, t) = −αDi sin φDmi, gDi(x, t) = sin φDdi, hDi(x, t) = λ̇Di (αDi sin φDmi − sin φDdi), (i = 1, 2).
γ̇Dmi are synthesised as the total firing plane control variable as the angular velocity command uDm for

the trajectory angle, i.e., �̇ = uDm. The same is true for the horizontal plane. But, the control variable
there is the angular velocity command for the trajectory yaw, so �̇ = uTm1 = uTm2 = uTm. The control
variable in the horizontal plane is the angular velocity command for the trajectory yaw.

Combining Equation (1) gives the lift as Equation (5):

L =
√

(mVuDm + mg cos �)2 + (mV cos �uTm)2 (5)

The overload is N = L
mg

, and after the overload constraint, the real aerodynamic lift L and aerodynamic
drag D are obtained using atmospheric interpolation, and the real trajectory angular velocity �̇ and
trajectory yaw angular velocity �̇ are obtained from Equation (1).

3.0 Non-cooperative differential game optimal avoidance strategy design
This section solves the problem of avoiding two pursuers in the UAV pursuit-evasion scenario. The
solution revolves around a function and key variables. The study introduces a new method for solving
complex differential games. It directly uses three-degree-of-freedom equations. First, it sets up a perfor-
mance index to manage the game dynamics. Then, it creates a Hamiltonian function. This function is
derived from the initial index. It determines the best control variable with the covariate. The study then
introduces a fresh approach. It integrates the Cauchy initial value problem. This integration helps to
systematically derive solutions for the variables. The paper also proves the convergence and uniqueness
of these solutions. This work improves the practical and theoretical strategies for UAV evasion.

The process is illustrated in Fig. 3.
Where um is the optimal avoidance strategy for UAV.

3.1 Performance indicators
The firing plane and the horizontal plane are decoupled. From the perspective of evasion, the horizontal
plane is taken as an example, and the design performance index is:

min
uTm

J =−1

2
β1

(
tf 1

)
R̄2

T1

(
tf 1

) − 1

2
β2

(
tf 2

)
R̄2

T2

(
tf 2

) + 1

2
κT

∫
u2

Tmdt (6)

Where βi(t) = VTdi(t)
Vd1(t)+Vd2(t)

is the weight of the terminal value index, tfi (i = 1, 2) is the terminal moment
and R̄T1, R̄T2 is the transformed relative distance from the escapee and pursuer on the horizontal plane
corresponding to the transformation in (3). κT is the weight of the energy metric.

The performance index aims to increase the distance between the escapee and pursuer. It also aims
to reduce the escapee’s energy use. This index shows the evasion and energy. The parameter βi(t) is
modifiable to dynamically adjust according to the capabilities of the pursuer, thereby augmenting the
significance of the threat of a proficient pursuer. This adaptive mechanism serves to mitigate the inherent
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Figure 3. Process.

limitation of relying solely on distance metrics for evaluating the dynamics of the game. Parameter κT

based on engineering experience.
To represent the amount of last-minute avoidance, which can’t be estimated or predicted, it is

converted to an integral index [30]:

1

2
βiR̄

2
Ti

(
tfi

) = 1

2
βi0R̄

2
Ti (t0) + 1

2

∫ tfi

t0

d
(
βiR̄

2
Ti

)
dt

= 1

2
βi0R̄

2
Ti (t0) +

∫ tfi

t0

(
βixiR̄Ti + 1

2
β̇iR̄

2
Ti

)
dt (7)

Thereby the performance index is converted to:

min
uTm

J = −1

2
β10R̄2

T10 − 1

2
β20R̄2

T20 −
∫ tf

t0

[
l1

(
β1x1R̄2

T1 + 1

2
β̇1R̄2

T1

)

+l2

(
β2x2R̄2

T2 + 1

2
β̇2R̄

2
T2

)]
dt + κT

∫ tf

t0

1

2
u2

Tdt (8)

where β10, β20 is the value of β1, β2 taken at the initial moment and R̄T10, R̄T20 the initial distance
between the escapee M and the pursuer Di(i = 1, 2) after the transformation. tf = max

{
tf 1, tf 2

}
. l1 ={

1, t < tf 1

0, t � tf 1

, l2 =
{

1, t < tf 2

0, t � tf 2

are the time operators.

This procedural change streamlines the solution process. It maintains the integrity of the solution and
avoids adding errors.
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3.2 HJB equations solving
The Hamiltonian function is:

H = −l1

(
β1x1R̄T1 + 1

2
β̇1R̄

2
T1

)
− l2

(
β2x2R̄T2 + 1

2
β̇2R̄2

T2

)
+ 1

2
κTu2

Tm

+ λ1(fT1(x, t)uTm + gT1(x, t)uTd1 + hT1(x, t))

+ λ2(fT2(x, t)uTm + gT2uTd2 + hT2(x, t)) (9)

According to the reference [31], let the

φ = −l1

(
β1x1R̄2

T1 + 1

2
β̇1R̄2

T1

)
− l2

(
β2x2R̄T2 + 1

2
β̇2R̄2

T2

)

+ 1

2
κTu2

Tm + λ1(fT1(x, t)uTm) + λ2(fT2(x, t)uTm) (10)

Where uTm reaches the optimal solution.

∂φ

∂uTm

= −l1

(
β1x1R̄2

T1 + 1
2
β̇1R̄2

T1

) − l2

(
β2x2R̄T2 + 1

2
β̇2R̄2

T2

)
∂uTm

+ κTuTm + λ1(fT1(x, t)) + λ2(fT2(x, t)) (11)

Taylor expands Ri, xi to obtain {
R̄i = R̄i0 + xit + 1

2
ẋit2 + o(t3)

xi = xi0 + ẋt + o(t2)
(12)

solving for uTm is

uTm = 1

κT

(
β1fT1(x, t)R̄1l1t + 1

2
fT1(x, t)

(
β̇1R̄1 + β1x1

)
l1t

2 + β2fT2(x, t)R̄2l2t

+1

2
fT2(x, t)

(
β̇2R̄2 + β2x2

)
l2t

2

)
− (λ1fT1(x, t) + λ2fT2(x, t)) (13)

3.3 Solving for covariates using Cauchy’s initial value
3.3.1 Iterative solution method
Using the regular equation, Equation (14) is obtained:⎧⎪⎪⎨

⎪⎪⎩
λ̇1(x, t) = −∂H

∂x1

= β1R̄1l1

λ̇1(x, t) = −∂H

∂x1

= β1R̄1l1

(14)

Let λ̇i(x, t0) = β0R̄i0, from Equation (12), and Equation (14) we know that

λ̇i = βili

(
R̄i0 + xit + 1

2
ẋit

2, λ̈i = βili(xi + ẋit)

)
(15)

Then, the Cauchy initial value problem is satisfied:

λ̈i + p(t)λ̇i = qi(x, t) (16)

Where p(t) = 2
t
, qi(x, t) = −βili

(
xi + 2R̄i0

t

)
(i = 1, 2).

Referring to the reference (32), it is deduced that:

λi(x, t) = 1

p(t)

(
I(qi(x, t)) + I(λi(x, t)ṗ(t)) − λ̇i(x, t) + βi0R̄i0

)
(17)
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An iterative approach was used to calculate λi(x, t)⎧⎪⎨
⎪⎩

λ
(n)
i (x, t) = 1

p(t)

(
I(qi(x, t)) + I

(
λ

(n−1)
i (x, t)ṗ(t)

) − λ̇i(x, t) + βi0R̄i0

)
λ(0)(x, t) = − t

2

(
R̄iβi + βi0R̄i0

)
li

(18)

Taking the value of the 5th iteration, λi is obtained:

λi = li

(
1

48
R̄i0βi0t ln4 t + 1

48
R̄iβit ln4 t − 1

6
R̄iβit ln3 t + 1

6
R̄i0βi0t ln3 t

+ 1

6
R̄i0βi ln3 t + 1

2
R̄iβit ln2 t − 1

4
R̄i0βi0t ln2 t + 1

2
R̄i0βit ln2 t

−R̄iβit ln t + 1

2
R̄i0βi0t ln t + R̄i0βit ln t + R̄iβit − 1

2
R̄i0βi0t

)
(19)

3.3.2 Proof of convergence
From Equation (18), we know that

λ(n)
i (x, t) − λ(n−1)

i (x, t) = 1

p(t)

(
I
(
λ(n−1)(x, t)ṗ(t)

) − I
(
λ(n−2)

i (x, t)ṗ(t)
))

(20)

When n = 1, from Equations (17) and (18):

λ(1)
i (x, t) − λ(0)

i (x, t) = 1

p(t)
[I(q(x, t)) + I

(
λ(0)

i (x, t)ṗ(t)
) − 2R̄iβli

= − t

2

[
I(q(x, t)) −

∫
R̄iβi + R̄i0βi0

t
lidt − 2R̄iβili

]
(21)

Since R̄i, R̄i0, βi, βi0 > 0, t0 > 0, 0 < t < tf and xi,
2Ri0

t
are bounded, Equation (22) is deflated to obtain

∣∣λ(1)
i (x, t) − λ(0)

i (x, t)
∣∣≤ t

2

(
|I(q(x, t))| +

∫
R̄iβi + R̄i0βi0

t
lidt + 2R̄iβili

)
≤ Qt (22)

where Q is the upper bound of
(
|I(q(x, t))| + ∫

R̄iβi+R̄i0βi0
t

lidt + 2R̄iβili

)
When n = 2, from Equation (18):∣∣λ(2)

i (x, t) − λ(1)
i (x, t)

∣∣= ∣∣∣∣ 1

p(t)
(I) )λ(1)

i (x, t) − λ(0)

i (x, t))ṗ(t))| ≤
∣∣∣∣− t

2
· Qt

∫
2

t2
dt

∣∣∣∣ = Qt (23)

When n = 3, from Equations (18) and (23):∣∣λ(3)

i (x, t) − λ(2)

i (x, t)
∣∣= ∣∣∣∣ 1

p(t)

(
I((λ(2)

i (x, t) − λ(1)
i (x, t))ṗ(t))

)∣∣∣∣ ≤ Qt (24)

And so on to get
∣∣λ(n)

i (x, t) − λ
(n−1)
i (x, t)

∣∣ ≤ Qt, so
∣∣λ(n)

i (x, t) − λ
(n−1)
i (x, t)

∣∣ bounded.
When n � 3,

λ(n)
i (x, t) − λ(n−1)

i (x, t) = 1

p(t)

(
I
(
λ(n−1)

i (x, t)ṗ(t)
) − I

(
λ(n−2)

i (x, t)ṗ(t)
))

= 1

p(t)

(
p(t)

(
λ(n−1)

i (x, t) − λ(n−2)

i (x, t)
))

− 1

p(t)

∫ (
1

p(t)

)′

ṗ(t)
(
λ(n−2)

i (x, t) − λ(n−3)

i (x, t)
)

p(t)dt

= (
λ(n−1)

i (x, t) − λ(n−2)

i (x, t)
) + t

2

∫
2

t3

(
λ(n−2)

i (x, t) − λ(n−3)

i (x, t)
)

dt (25)
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There exists ξ ∈ (t0, t), which is obtained by using the median theorem of the integral

λ(n)
i (x, t) − λ(n−1)

i (x, t) = (
λ(n−1)

i (x, t) − λ(n−2)

i (x, t)
) + t

2
· 2

t3
0

∫ ξ

t0

(
λ(n−2)

i (x, t) − λ(n−3)

i (x, t)
)

dt

= (
λ(n−1)

i (x, t) − λ(n−2)

i (x, t)
) + t

t3
0

∫ ξ

t0

(
λ(n−2)

i (x, t) − λ(n−3)

i (x, t)
)

dt (26)

Combining Equation (24) that∣∣∣∣ t

t3
0

∫ ξ

t0

(
λ(n−2)

i (x, t) − λ(n−3)

i (x, t)
)

dt

∣∣∣∣ = ∣∣λ(n)
i (x, t) − λ(n−1)

i (x, t) − (
λ(n−1)

i (x, t) − λ(n−2)

i (x, t)
)∣∣

≤ ∣∣λ(n)
i (x, t) − λ(n−1)

i (x, t)
∣∣ + ∣∣λ(n−1)

i (x, t) − λ(n−2)

i (x, t)
∣∣

≤ 2Qt (27)

Therefore,
∣∣∣ 1

t0

3 ∫ ξ

t0

(
λ

(n)
i (x, t) − λ

(n−1)
i (x, t)

)
dt

∣∣∣ is bounded, and let the upper bound of∣∣λ(n)
i (x, t) − λ

(n−1)
i (x, t)

∣∣ be S. Then∣∣∣∣ 1

t3
0

∫ ξ

t0

(
λ(n)

i (x, t) − λ(n−1)
i (x, t)

)
dt

∣∣∣∣ ≤
∣∣∣∣ 1

t0
3
S (ξ − t0)

∣∣∣∣ = S(ξ − t0)

t3
0

(28)

There exists L > 0 such that S(ξ−t0)

t30
≤ L, then S ≤ Lt30

(ξ−t0)
, when n → ∞, t0 → 0, S → 0, so∣∣λ(n)

i (x, t) − λ
(n−1)
i (x, t)

∣∣ → 0, λ
(n)
i (x, t) converge.

3.3.3 Proof of uniqueness
The following is a proof of uniqueness by contradiction.

Known from 3.3.2, λ
(0)

i is bounded,
∣∣λ(n)

i (x, t) − λ
(n−1)
i (x, t)

∣∣ is bounded and λ(n)(x, t) converges, so
λ(n)(x, t) is bounded.

Assuming that the solution of λi(x, t) is not unique, there exists a bounded function μ(x, t) that is a
solution of λi(x, t), and there exists N > 0 that satisfies⎧⎪⎨

⎪⎩
μ(x, t) = 1

p(t)

(
I(q(x, t)) + I(μ(x, t)ṗ(t)) − λ̇t(x, t) + βi0R̄i0

)
0 <

∣∣μ(x, t) − λ(n)
t (x, t)

∣∣ < N

(29)

Then

μ(x, t) − λ(n)
i (x, t) = 1

p(t)

(
I(μ(x, t)ṗ(t)) − I

(
λ(n−1)

i (x, t)ṗ(t)
))

= − t

2

∫ t

t0

2

t2

(
μ(x, t) − λ(n−1)

i (x, t)
)

dt (30)

By the integral median theorem, there exists ζ ∈ (t0, t) such that

μ(x, t) − λ(n)
i (x, t) = − t

2

∫ t

t0

2

t2

(
μ(x, t) − λ(n−1)

i (x, t)
)

dt

= − t

t2
0

ζ∫ (
μ(x, t) − λ(n−1)

i (x, t)
)

dt (31)

Equation (30) deflates to give:

N >
∣∣μ(x, t) − λ(n)

i (x, t)
∣∣ =

∣∣∣∣ t

t2
0

∫ ζ

t0

(
μ(x, t) − λ(n−1)

i (x, t)
)

dt

∣∣∣∣ (32)

Downloaded from https://www.cambridge.org/core. 27 Sep 2024 at 05:17:56, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


The Aeronautical Journal 11

Table 1. Simulation parameterst (normalised)

M D1 D2
Initial position (0.350,0.180,0.150) (0.240,0.200,0.050) (0.100,0.150,0.200)
Initial speed 0.500 0.800 0.667
Initial trajectory angle 0.028 0.014 0.028
Initial trajectory yaw angle –0.472 0.167 –0.111
Capture radius 0.5c c c
Angle-of-attack limit 0.139 0.139 0.139
Overload limit 0.333 1 1

Three-dimensional trajectory x-z trajectory

x-y trajectory z-y trajectory

(a) (b)

(c) (d)

Figure 4. Comparison of experimental trajectories with method 1.

Let 0 < L ≤ N, L is the lower bound of
(
μ(x, t) − λ

(n−1)
i (x, t)

)
. So when n → ∞, there are

∣∣μ(x, t) − λ(n)
i (x, t)

∣∣= ∣∣∣∣ t

t2
0

∫ ζ

t0

(
μ(x, t) − λ(n−1)

i (x, t)
)

dt

∣∣∣∣� Lt(ζ − t0)
2
0

(33)

Therefore

L ≤ Nt2
0

t(ζ − t0)
(34)

When n → ∞, t0 → 0, t0 < t < tfj, then L → 0, which contradicts 0 < L ≤ N. Therefore, the assump-
tion is not valid and the solution of λi(x, t) is unique.
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Three-dimensional trajectory x-z trajectory

x-y trajectory z-y trajectory

(a) (b)

(c) (d)

Figure 5. Comparison of experimental trajectories with method 2.

This section details the development of an optimal avoidance strategy for UAVs based on a nonlin-
ear dynamical model. It demonstrates the convergence and uniqueness of the key variables, known as
covariates, within this strategy. Consequently, the proposed approach offers a rigorously validated solu-
tion to the nonlinear optimal strategy, addressing the shortcomings of traditional analytical methods.
This advancement holds significant implications for improving UAV evasion tactics.

4.0 Simulation results and comparison
4.1 Simulation condition
The simulation experiment uses the non-cooperative differential game given in this paper for a game
scenario with two pursuers D1, D2 and one escapee M. The simulation stops when the escapee evades
pursuit and reaches the destination. Or, it stops if the escapee is not pursued. The shooting plane energy
metrics are weighted κD = 10, and the horizontal plane energy metrics are weighted κT = 100. The des-
tination is set at the origin (0, 0, 0), and c is a constant. The simulation parameters are set as in Table 1.

4.2 Simulation results
The escapee M uses the strategy designed in this paper, and the pursuers D1 and D2 use proportional
guidance. Under Table 1, the evasion is successful, M evades 112.633c against D1, and 2.533c against
D2. The final distance between M and T is 0.133c, the final velocity of M is 0.192, and the time when
M reaches T is 44.180.

According to the Apollo circle method described in reference (33), as method 1, the comparison
experiment involving escaping with optimal avoidance strategy is conducted. The simulation yielded
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Three-dimensional trajectory x-z trajectory

x-y trajectory z-y trajectory

(a) (b)

(c) (d)

Figure 6. Comparison of experimental trajectories with method 3.

successful results, reaching the destination and M escaping against D1 49.366c and D2 1.067c. The
final distance between M and T was 0.2376c, while M’s final velocity was 0.190, and it took 73.600s
for M to reach T .

According to the method using lift coefficients as control quantities, as method 2, described in refer-
ence (6), the comparison experiment involving escaping with optimal avoidance strategy is conducted.
M only succeeds in avoidance but not reaching T , and M escaping against D1 226.342c and D2 765.333c.
The final distance between M and T was 30c.

According to the method based on a dynamic multi-objective algorithm, as method 3, described
in reference (34), the comparison experiment involving escaping with optimal avoidance strategy is
conducted. The simulation yielded successful results, reaching the destination and M escaping against
D1 1.027c and D2 1.816c. The final distance between M and T was 0.333c, while M’s final velocity
was 0.160, and it took 200.600s for M to reach T .

The trajectories are shown in Figs 4, 5 and 6, where M is the escapee’s trajectory and D1 and D2
are the pursuers’ trajectories. The dashed line shows the control experiment, contrast-M is the escapee’s
trajectory, contrast-D1 and contrast-D2 are the pursuers’ trajectories.

Through the analysis depicted in Figs 4–6, it is evident that the optimal avoidance strategy delin-
eated in this study surpasses the methodology expounded in the existing methods. This superiority is
demonstrated by the heightened efficacy in enabling entity M to more adeptly evade the pursuers D1 and
D2. Subsequent to the successful evasion, M systematically employs the optimal avoidance strategy to
navigate towards the target point T . Using this method greatly reduces the final distance between M and
T . It also cuts the task completion time. The final speed greatly rises with the best avoidance strategy.
These results highlight the strategy’s high effectiveness and superiority.
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Curve of nx over time (Compar-

ison with method 1)

Curve of ny over time (Compar-

ison with method 1)

Curve of nz over time (Compar-

ison with method 1)

Curve of nx over time (Compari-

son with method 2)

Curve of ny over time (Compari-

son with method 2)

Curve of nz over time (Compari-

son with method 2)

Curve of nx over time (Compari-

son with method 3)

Curve of ny over time (Comparison

with method 3)

Curve of nz over time (Com-

parison with method 3)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Overload variation curve.

Comparison with method 1 Comparison with method 2 Comparison with method 3

(a) (b) (c)

Figure 8. Track angle variation curve.

Figures 7–10 serve as visual representations of the simulated outcomes arising from the evasion
process for both the proposed optimal avoidance strategy and the control group experiment, denoted by
the dashed line. The simulation results distinctly illustrate that the optimal avoidance strategy delineated
in this study empowers entity M to execute manoeuvers of heightened versatility, characterised by a
smaller angle-of-attack, able to efficiently complete the escape to reach T .
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Table 2. Intrusion process interference settings

Serial number Restraint σ3
1 Initial speed (%) 10
2 Initial trajectory angle 0.2
3 Initial trajectory yaw angle 0.2
4 Initial height (%) 10
5 Pneumatic coefficient (%) 5
6 Atmospheric density (%) 5

Comparison with method 1 Comparison with method 2 Comparison with method 3

(a) (b) (c)

Figure 9. Track yaw angle variation curve.

Comparison with method 1 Comparison with method 2 Comparison with method 3

(a) (b) (c)

Figure 10. Angle-of-attack variation curve.

In order to test the effectiveness of the optimal avoidance strategy proposed in this paper, we con-
ducted 1,000 anti-jamming simulation experiments [35]. We establishes a Gaussian distribution of the
interference factors and recorded the results in Table 2. During the experiments, we observes that M’s
evasion against D1 ranged from 128.133c to 90.233c, while M’s evasion against D2 ranged from 2.699c
to 1.911c. These distances are greater than the capture radius of the pursuer, indicating that M was able
to evade successfully in all 1,000 experiments.

During the experiments, we observes that M’s evasion against D1 ranged from 128.133c to 90.233c,
while M’s evasion against D2 ranged from 2.699c to 1.911c. These distances are greater than the capture
radius of the pursuer, indicating that M was able to evade successfully in all 1,000 experiments.

The results of the experiment are depicted in Figs 11–13. These figures demonstrate that the non-
cooperative differential game optimal avoidance strategy is robust enough to meet different constraints,
even in the presence of disruptive factors.

In comparison, methods 1 and 2 have poor robustness, while method 3 has a 30% probability of
successful escape and has no comparative value, so no graphs are shown.
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proposed method method 1 method 2

(a) (b) (c)

Figure 11. Angle-of-attack variation curve.

proposed method method 1 method 2

(a) (b) (c)

Figure 12. Track angle variation curve.

proposed method method 1 method 2

(a) (b) (c)

Figure 13. Track yaw angle variation curve.

The simulation comparison indicates that for the ‘two pursuing one’ UAV pursuit-evasion scenario,
the proposed method in this paper excels in evading pursuit and conserving energy. It also demon-
strates strong robustness under various interferences. In three-dimensional simulations, the method
shows significant potential for engineering applications.

5.0 Conclusion
In response to the challenge posed by UAVs pursuit-evasion scenarios, this paper presents an optimal
avoidance strategy based on non-cooperative differential game theory. Embracing the intricate dynam-
ics inherent to UAVs, this strategy is tailored for practical multi-vehicle game scenarios, leveraging
a three-degree-of-freedom nonlinear dynamic model. A pivotal aspect of this investigation entails the
analytical resolution of nonlinear HJB equations. This analytical solution is attained via the Cauchy
initial value problem, with its convergence and uniqueness meticulously proofed. Comparative analy-
sis juxtaposes the simulation outcomes of the proposed optimal evasion strategy against those of three
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traditional advanced game strategies. The results unequivocally highlight the superior efficacy of the
proposed strategy in evasion manoeuvers, accompanied by notable energy conservation. Subsequently,
systematic anti-jamming simulation experiments are conducted to validate the viability and robustness
of the proposed evasion strategy under diverse uncertainties. Demonstrating applicability and effective-
ness, in scenarios where the pursuer possesses superior capabilities to the evading party, this strategy
holds promise in addressing UAV pursuit-evasion dynamics. The insights gleaned from this study enrich
the discourse surrounding the avoidance of moving obstacles and adept pursuers by UAVs, pertinent to
dynamics of real-world UAV operations.
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