Two Triplets of Circum-Hyperbolas.

By R. Tucker, M.A.

Part I.

1. Let one of the series of circles, which can be drawn so as to touch the sides AB, AC of a triangle, touch those sides in K, L; and let $\mathrm{AK}=\mathrm{AL}=\delta$.

Then the points K, L are

$$
b(c-\delta), a \delta, 0 ; c(b-\delta), 0, a \delta ;
$$

and the lines BL, CK are given by

$$
a a \delta=c(b-\delta) \gamma, a a \delta=b(c-\delta) \beta .
$$

Hence eliminating δ we get for the locus of \mathbf{P} the hyperbola

$$
\begin{equation*}
(b-c) \beta \gamma+a \gamma a-a a \beta=0 . \tag{i.}
\end{equation*}
$$

The allied hyperbolas are

$$
\begin{aligned}
-b \beta \gamma+(c-a) \gamma a+b a \beta & =0, & & \left(\mathbf{B}_{1}\right) \\
c \beta \gamma-c \gamma a+(a-b) a \beta & =0, & & \left(\mathrm{C}_{1}\right) .
\end{aligned}
$$

2. We shall in the main confine our attention to the consideration of the conic A_{1}.
3. Its centre is evidently the mid point of BC and the four fixed points through which the triple system passes are A, B, C and the Gergonne-point of ABC (or $a a(s-a)=b \beta(s-b)=c \gamma(s-c)$).
4. The polar of any point ($a^{\prime}, \beta^{\prime}, \gamma^{\prime}$) with respect to (i.) is

$$
\begin{equation*}
a a\left(\gamma^{\prime}-\beta^{\prime}\right)+\beta\left[(b-c) \gamma^{\prime}-a \alpha^{\prime}\right]+\gamma\left[(b-c) \beta^{\prime}+a a^{\prime}\right]=0 . \tag{ii.}
\end{equation*}
$$

The tangent at \mathbf{A} therefore is $\beta=\gamma$, i.e., the bisector of the $\angle \mathbf{A}$ touches the curve at A.

The tangents at B, C are

$$
a \alpha-(b-c) \gamma=0, a \alpha+(b-c) \beta=0,
$$

hence they intersect on the external bisector of $\angle \mathrm{A}$.

The tangent at the Gergonne-point is

$$
a(b-c)(s-a)^{2} \alpha+b^{2}(s-b)^{2} \beta-c^{2}(s-c)^{2} \gamma=0
$$

if this line, and the allied ones, cut the sides in p, q, r, then $\mathrm{A} p, \mathrm{~B} q, \mathrm{C} r$ cointersect in the point

$$
\begin{equation*}
a^{2}(s-a)^{2} \alpha=b^{2}(s-b)^{2} \beta=c^{2}(s-c)^{2} \gamma^{*} \tag{iii.}
\end{equation*}
$$

The polar of the incentre is $\beta(s-b)=\gamma(s-c)$, hence $\mathrm{A} p_{1}, \mathrm{~B} q_{1}, \mathrm{C} r_{1}$ cointersect in $\quad a(s-a)=\beta(s-b)=\gamma(s-c) \cdot \dagger \quad \ldots \quad$... (iv.)

The polar of the orthocentre is

$$
a \alpha \cos A(\cos B-\cos C)-b \cos B \beta(1-\cos A)+c \cos C \gamma(1-\cos A)=0
$$

and $\mathrm{A} p_{2}, \mathrm{~B} q_{2}, \mathrm{C} r_{2}$ meet in $a \cos \mathrm{~A} a=b \cos \mathrm{~B} \beta=c \cos \mathrm{C} \gamma$. ... (v.)
The polar of the circumcentre is

$$
a \alpha \cos \frac{\mathbf{A}}{2} \sin \frac{\mathrm{~B}-\mathrm{C}}{2}-b \beta \sin \left(\mathrm{C}-\frac{\mathrm{A}}{2}\right) \sin \frac{\mathrm{A}}{2}+c \gamma \sin \left(\mathrm{~B}-\frac{\mathrm{A}}{2}\right) \sin \frac{\mathrm{A}}{2}=0,
$$

hence $\mathbf{A} p_{3}, \mathbf{B} q_{3}, \mathbf{C} r_{3}$ intersect in

$$
a a \operatorname{cosec}\left(\mathrm{~A}-\frac{\mathrm{B}}{2}\right)=b \beta \operatorname{cosec}\left(\mathrm{~B}-\frac{\mathrm{C}}{2}\right)=c \gamma \operatorname{cosec}\left(\mathrm{C}-\frac{\mathrm{A}}{2}\right) \ldots(\text { vi. })
$$

The polars of the mid points of $C A, A B$ are
and

$$
a a+(b-2 c) \beta+c \gamma=0,(\therefore \text { parallel to CA })
$$

$$
a a+b \beta-(2 b-c) \gamma=0,(\therefore \text { parallel to } \mathrm{AB})
$$

and these meet in

$$
\frac{\beta}{b}=\frac{\gamma}{c}=\frac{-a \alpha}{(b-c)^{2}},
$$

i.e., on the symmedian line through \mathbf{A}.

The polar of the centroid is

$$
a a(b-c)+b \beta(b-2 c)+c \gamma(2 b-c)=0
$$

[^0]hence $\mathrm{A} p_{4}, \mathrm{~B} q_{t}, \mathrm{C} r_{+}$cointersect in
$$
a a /(b+c-3 a)=b \beta /(c+a-3 b)=c \gamma /(a+b-3 c) . \ldots \quad \text { (vii. })
$$
5. The circumcircle cuts (i.) in the additional point
$$
-a a \cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}-\mathrm{C}}{2}=b \beta \sin \frac{\mathrm{~A}}{2} \cos \left(\mathrm{C}-\frac{\mathrm{A}}{2}\right)=c \gamma \sin \frac{\mathrm{~A}}{2} \cos \left(\mathrm{~B}-\frac{\mathrm{A}}{2}\right),
$$
hence $\mathrm{A} p^{\prime}, \mathrm{B} q^{\prime}, \mathrm{C} r^{\prime}$ meet in
$$
a \operatorname{asec}\left(\mathbf{A}-\frac{\mathbf{B}}{2}\right)=b \beta \sec \left(\mathbf{B}-\frac{\mathrm{C}}{\overline{2}}\right)=c \gamma \sec \left(\mathbf{C}^{\cdot}-\frac{\mathbf{A}}{2}\right) . \ldots(\text { viii. })
$$
6. If
$$
\sigma \equiv a a+b \beta+c \gamma,
$$
then the asymptotes are given by the equations
\[

$$
\begin{equation*}
4 a b c a(\beta+\gamma)=(b-c)\left(\sigma^{2}-4 b c \beta \gamma\right) . \tag{ix.}
\end{equation*}
$$

\]

These cut CA in m_{1}, m_{2} determined by

$$
\begin{gather*}
4 a b c \gamma a=(b-c)(a \alpha+c \gamma)^{2}, \quad \cdots \\
\frac{a a}{c \gamma}=\frac{\sqrt{b}-\sqrt{ } c}{\sqrt{b}+\sqrt{c}}, \quad \text { or }=\frac{\sqrt{b}+\sqrt{c}}{\sqrt{b}-\sqrt{c}},
\end{gather*}
$$

whence
i.e., $\mathrm{B} m_{1}, \mathrm{~B} m_{2}$ are isotomic conjugate lines with respect to $\mathbf{C A}$:
7. The foci are determined from

$$
\begin{align*}
\frac{a^{2} b c}{4 \triangle^{2}} a_{1}{ }^{2}+\frac{(b-c)^{2}}{4} & =\frac{a^{2} b c}{4 \Delta^{2}} \beta_{1}{ }^{2}-\frac{a^{2} c}{2 \triangle} \beta_{1}+\frac{a^{2}}{4} \\
& =\frac{a^{2} b c}{4 \triangle^{2}} \gamma_{1}{ }^{2}-\frac{a^{2} b}{2 \triangle} \gamma_{1}+\frac{a^{2}}{4} . \tag{xi.}
\end{align*}
$$

8. Reverting to $\S 1$, and calling Q, R, the points corresponding to P, we see that, for the same value $\delta, \mathrm{AP}, \mathrm{BQ}, \mathrm{CR}$ meet in O , given by $\quad a a /(a-\delta)=b \beta /(b-\delta)=c \gamma /(c-\delta)$;
hence the locus of O is the incentroidal axis

$$
a \alpha(b-c)+b \beta(c-a)+c \gamma(a-b)=0 .
$$

If $\delta=8$, i.e., if the circles are the excircles, then O is the point

$$
a a /(s-a)=b \beta /(s-b)=c \gamma /(s-c) .
$$

9. The isogonal transformation of (i.) is

$$
(b-c) a+a \beta-a \gamma=0,
$$

if this, and the allied lines for $\mathrm{B}_{1}, \mathrm{C}_{1}$, meet the sides in l, m, n, then $\mathrm{A} l, \mathrm{~B} m, \mathrm{C} n$ meet in the incentre.
10. If we take the polars of any point $\left(a^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ with respect to the triple system, we find that they meet in a point (π), viz.,

$$
\begin{aligned}
& {\left[-a a^{\prime}(s-a)+b \beta^{\prime}(s-b)+c \gamma^{\prime}(s-c)\right],} \\
& {\left[\begin{array}{c}
\left.a a^{\prime}(s-a)-b \beta^{\prime}(s-b)+c \prime^{\prime}(s-c)\right], \\
{\left[a a^{\prime}(s-a)+b \beta^{\prime}(s-b)-c \gamma^{\prime}(s-c)\right] .}
\end{array},\right.}
\end{aligned}
$$

If the given point be the centroid, then π is the point (vii.) : if it be the in-centre, then π is the point $\tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{\mathrm{C}}{2}$.
11. If ($a^{\prime}, \beta^{\prime}, \gamma^{\prime}$) be taken on the line

$$
p a+q \beta+r \gamma=0,
$$

then the polar of any point on it with reference to A, passes through the point $a a /(b-c)=\beta=\gamma$, and therefore for the triple system the polars pass through the in-centre.
12. If ($a^{\prime}, \beta^{\prime}, \gamma^{\prime}$) be situated on the circumcircle then the envelope of its polar with regard to A, is the conic

$$
\begin{gathered}
a^{2} a^{2}(b+c)^{2}+\left(a^{2}-b c+c^{2}\right)^{2} \beta^{2}+\left(a^{2}-b^{2}+b c\right)^{2} \gamma^{2} \\
-2 a a \beta(b-c)\left(a^{2}+b c+c^{2}\right)+2 a a \gamma(b-c)\left(a^{2}-b^{2}-b c\right) \\
+2 \beta \gamma\left[b c(b-c)^{2}+a^{2}\left(b^{2}-c^{2}-a^{2}\right)\right]=0 .
\end{gathered}
$$

13. We may note that the equation to A_{1}, referred to the midpoint of $B C$ as centre and axes parallel to $A B, A C$, is

$$
b x^{2}-c y^{2}=b c(c-b) / 4
$$

Part II.

14. In the second system KL is an antiparallel to angle A , such that $\mathrm{AK}=\lambda, \mathrm{AL}=\mu$, hence

$$
c \lambda=h \mu .
$$

The equations to BL, CK are

$$
(b-\mu) c \gamma=a a \mu, a a \lambda=(c-\lambda) b \beta
$$

whence P is $\quad a \alpha \lambda \mu=(c-\lambda) b \mu \beta=(b-\mu) c \lambda \gamma$.
The locus of P is the rectangular hyperbola

$$
\begin{equation*}
\left(b^{2}-c^{2}\right) \beta \gamma+a b \gamma a-c a \alpha \beta=0 . \quad\left(\mathrm{A}_{2}\right) \quad \ldots \quad \ldots \tag{i.}
\end{equation*}
$$

15. The centre is at the mid point of BC.
16. The polar of any point ($a^{\prime}, \beta^{\prime}, \gamma^{\prime}$) with respect to A_{2} is

$$
\begin{equation*}
a a\left(b \gamma^{\prime}-c \beta^{\prime}\right)+\beta\left[\left(b^{2}-c^{2}\right) \gamma^{\prime}-c a a^{\prime}\right]+\gamma\left[\left(b^{2}-c^{2}\right) \beta^{\prime}+a b a^{\prime}\right]=0 . \tag{ii.}
\end{equation*}
$$

The tangent at A is the symmedian line through A; at B and C the tangents are

$$
c a \alpha=\left(b^{2}-c^{2}\right) \gamma, \quad-a b a=\left(b^{2}-c^{2}\right) \beta,
$$

these intersect in

$$
\frac{a a}{b^{2}-c^{2}}=\frac{\beta}{-b}=\frac{\gamma}{c},
$$

i.e., they are parallel.

The polar of the symmedian point is $\frac{\beta \cos B}{b^{2}}=\frac{\gamma \cos C}{\boldsymbol{c}^{2}}$, hence $\mathrm{A} p_{b}, \mathrm{~B} q_{s}, \mathrm{C} r_{s}$ meet in $\frac{a \cos \mathrm{~A}}{a^{2}}=\frac{\beta \cos \mathrm{B}}{b^{2}}=\frac{\gamma \cos \mathrm{C}}{\boldsymbol{c}^{2}}$. ... (iii.)

The polar of the centroid is

$$
a \alpha\left(b^{2}-c^{2}\right)+b \beta\left(b^{2}-2 c^{2}\right)+c \gamma\left(2 b^{2}-c^{2}\right)=0 . \quad \ldots \quad \text { (iv.) }
$$

17. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the extremities of the diameters through A, B, C, then the tangent at A^{\prime} is

\[

\]

The line (v.) has the point $-\left(b^{2}+c^{2}\right) / a, b, c$ on it.
The tangents themselves meet in

$$
\begin{equation*}
a^{9} a / \cos \Lambda=b^{2} \beta / \cos \mathrm{B}=c^{2} \gamma / \cos \mathrm{C}, \ldots \tag{vii.}
\end{equation*}
$$

which is the inverse of point (iii.) above.
The tangent at the orthocentre is given by

$$
2 \mathrm{R} \cos ^{2} \mathrm{~A} \sin (\mathrm{~B}-\mathrm{C}) \alpha+b \beta \cos ^{2} \mathrm{~B}-c \gamma \cos ^{2} \mathrm{C}=0, \quad \ldots \quad \text { (viii.) }
$$

hence $\quad \mathbf{A} p_{7}, \mathrm{~B} q_{7}, \mathrm{C} r_{7}$ meet in

$$
a \alpha \cos ^{2} \mathrm{~A}=b \beta \cos ^{2} \mathrm{~B}=c \gamma \cos ^{2} \mathrm{C} . \quad \text {... } \quad \text {.. } \quad \text { (ix.) }
$$

18. The curve A_{2} obviously cuts the circumcircle in a fourth point determined by producing the join of the orthocentre and the mid point of BC to meet the circle.

The polar of this point is

$$
\begin{equation*}
a\left(b^{2}-c^{2}\right)+a b \beta \cos ^{2} \mathrm{C}-c a \gamma \cos ^{2} \mathrm{~B}=0 \tag{x.}
\end{equation*}
$$

hence $\mathrm{A} p_{8}, \mathrm{~B} q_{8}, \mathrm{C} r_{3}$ meet in

$$
\begin{equation*}
a \alpha \sec ^{2} \mathrm{~A}=b \beta \sec ^{2} \mathrm{~B}=c \gamma \sec ^{2} \mathrm{C} . \tag{xi.}
\end{equation*}
$$

19. The asymptotes are

$$
\begin{align*}
& a \alpha(b-c)+b \beta(b+c)-c \gamma(b+c)=0 \tag{a}\\
& a \alpha(b+c)+b \beta(b-c)-c \gamma(b-c)=0 . \tag{b}
\end{align*}
$$

The (a) set pass through the point

$$
a \alpha /(b+c)=b \beta_{j}(c+a)=c \gamma /(a+b) ;
$$

hence they are readily constructed.
20. The polar of $(-a, b, c)$ is $\beta \cos C=\gamma \cos B$, i.e., the diameter of the circumcircle through A produced.

The polars of $(a,-b, c),(a, b,-c)$ are

$$
\begin{aligned}
& b a-c \cos \mathrm{~B} \beta+b \cos \mathrm{~B} \gamma=0 \\
& c a+\cos \mathrm{O} \beta-b \cos \mathrm{C} \gamma=0
\end{aligned}
$$

hence they meet BC where the symmedian line through \mathbf{A} meets it.
21. The condition that the polars of a point $\left(a^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$ with respect to A_{1} and A_{2} should be parallel is that the point should lie on the median parallel to $B C$.
22. The co-ordinates of the point of intersection of the polars of ($a^{\prime}, \beta^{\prime}, \gamma^{\prime}$) with regard to \mathbf{A}_{1}, A_{2} are

$$
-\alpha^{\prime}\left(a a^{\prime}+b \beta^{\prime}+c \gamma^{\prime}\right), \beta^{\prime}\left(a \alpha^{\prime}+b \beta^{\prime}-c \gamma^{\prime}\right), \gamma^{\prime}\left(a a^{\prime}-b \beta^{\prime}+c \gamma^{\prime}\right) .
$$

Hence for the centroid, the point is ($-3 b c, c a, a b$).
23. The polar of ($\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$) with regard to A_{1} meets the polars with regard to B_{2}, C_{2}, in

$$
\begin{aligned}
& a a\left(-a^{2}+b c+c^{2}\right)=b \beta\left(a^{2}-b c+c^{2}\right)=c \gamma\left(a^{2}+b c-c^{2}\right) ; \\
& a a\left(-a^{2}+b^{2}+b c\right)=b \beta\left(a^{2}-b^{2}+b c\right)=c \gamma\left(a^{2}+b^{2}-b c\right) .
\end{aligned}
$$

24. The equation to \mathbf{A}_{2} with reference to axes parallel to $A B, A C$ through the mid point of $B C$ is

$$
x^{2}-y^{2}=c x-b y .
$$

[^0]: * The mode of procedure adopted in the following paragraphs is the same, viz., p, q, r points are on BC, CA, AB respectively.
 + The polars of $(-1,1,1),(1,-1,1),(1,1,-1)$ are respectively

 $$
 \beta(s-c)=\gamma(8-b)
 $$

 (\therefore this is the isogonal conjugate of the polar of the incentre),

 $$
 a a-(s-b) \beta+(s-b) \gamma=0, \text { and } a a+(s-c) \beta-(s-c) \gamma=0 .
 $$

