Two Triplets of Circum-Hyperbolas.

By R. TUCKER, M.A.

PART I.

1. Let one of the series of circles, which can be drawn so as to touch the sides AB, AC of a triangle, touch those sides in K, L; and let $AK = AL = \delta$.

Then the points K, L are

 $b(c-\delta)$, $a\delta$, 0; $c(b-\delta)$, 0, $a\delta$;

and the lines BL, CK are given by

$$aa\delta = c(b-\delta)\gamma, \ aa\delta = b(c-\delta)\beta.$$

Hence eliminating δ we get for the locus of **P** the hyperbola

$$(b-c)\beta\gamma + a\gamma a - aa\beta = 0. \qquad (A_1) \qquad (i.)$$

The allied hyperbolas are

$$\begin{aligned} &-b\beta\gamma+(c-a)\gamma a+ba\beta=0, \qquad (B_1)\\ &c\beta\gamma-c\gamma a+(a-b)a\beta=0. \qquad (C_1). \end{aligned}$$

2. We shall in the main confine our attention to the consideration of the conic A_1 .

3. Its centre is evidently the mid point of BC and the four fixed points through which the triple system passes are A, B, C and the Gergonne-point of ABC (or $aa(s-a) = b\beta(s-b) = c\gamma(s-c)$).

4. The polar of any point (a', β', γ') with respect to (i.) is

$$aa(\gamma'-\beta')+\beta[(b-c)\gamma'-aa']+\gamma[(b-c)\beta'+aa']=0. \quad \dots \quad (ii.)$$

The tangent at A therefore is $\beta = \gamma$, *i.e.*, the bisector of the $\angle A$ touches the curve at A.

The tangents at B, C are

$$aa - (b - c)\gamma = 0$$
, $aa + (b - c)\beta = 0$,

hence they intersect on the external bisector of $\angle A$.

The tangent at the Gergonne-point is

$$a(b-c)(s-a)^{2}a+b^{2}(s-b)^{2}\beta-c^{2}(s-c)^{2}\gamma=0,$$

if this line, and the allied ones, cut the sides in p, q, r, then Ap, Bq, Cr cointersect in the point

$$a^{2}(s-a)^{2}a = b^{2}(s-b)^{2}\beta = c^{2}(s-c)^{2}\gamma * \dots$$
 (iii.)

The polar of the incentre is $\beta(s-b) = \gamma(s-c)$, hence Ap_1, Bq_1, Cr_1 $a(s-a) = \beta(s-b) = \gamma(s-c). + \ldots$ cointersect in ... (iv.)

The polar of the orthocentre is

$$aa\cos A(\cos B - \cos C) - b\cos B\beta(1 - \cos A) + c\cos C\gamma(1 - \cos A) = 0,$$

and Ap_2 , Bq_2 , Cr_2 meet in $a\cos Aa = b\cos B\beta = c\cos C\gamma$ (v.)

The polar of the circumcentre is

$$a\alpha\cos\frac{\mathbf{A}}{2}\sin\frac{\mathbf{B}-\mathbf{C}}{2} - b\beta\sin\left(\mathbf{C}-\frac{\mathbf{A}}{2}\right)\sin\frac{\mathbf{A}}{2} + c\gamma\sin\left(\mathbf{B}-\frac{\mathbf{A}}{2}\right)\sin\frac{\mathbf{A}}{2} = 0,$$

hence Ap_{3} , Bq_{3} , Cr_{3} intersect in

$$aacosec\left(\mathbf{A}-\frac{\mathbf{B}}{2}\right) = b\beta cosec\left(\mathbf{B}-\frac{\mathbf{C}}{2}\right) = c\gamma cosec\left(\mathbf{C}-\frac{\mathbf{A}}{2}\right). \dots (vi.)$$

The polars of the mid points of CA, AB are

$$aa + (b - 2c)\beta + c\gamma = 0$$
, (.: parallel to CA),
 $aa + b\beta - (2b - c)\gamma = 0$, (.: parallel to AB),

and

and these meet in
$$\frac{\beta}{b} = \frac{\gamma}{c} = \frac{-aa}{(b-c)^2}$$
,

i.e., on the symmedian line through A.

The polar of the centroid is

$$aa(b-c)+b\beta(b-2c)+c\gamma(2b-c)=0,$$

* The mode of procedure adopted in the following paragraphs is the same, viz., p, q, r points are on BC, CA, AB respectively.

+ The polars of (-1, 1, 1), (1, -1, 1), (1, 1, -1) are respectively $\beta(s-c)=\gamma(s-b)$

(.:. this is the isogonal conjugate of the polar of the incentre),

$$aa-(s-b)\beta+(s-b)\gamma=0$$
, and $aa+(s-c)\beta-(s-c)\gamma=0$.

hence Ap_4 , Bq_4 , Cr_4 cointersect in

$$aa/(b+c-3a) = b\beta/(c+a-3b) = c\gamma/(a+b-3c)$$
. ... (vii.)

5. The circumcircle cuts (i.) in the additional point

$$-a \alpha \cos \frac{\mathbf{A}}{2} \cos \frac{\mathbf{B} - \mathbf{C}}{2} = b \beta \sin \frac{\mathbf{A}}{2} \cos \left(\mathbf{C} - \frac{\mathbf{A}}{2}\right) = c \gamma \sin \frac{\mathbf{A}}{2} \cos \left(\mathbf{B} - \frac{\mathbf{A}}{2}\right),$$

hence Ap', Bq', Cr' meet in

$$aasec\left(\mathbf{A}-\frac{\mathbf{B}}{2}\right)=b\beta sec\left(\mathbf{B}-\frac{\mathbf{C}}{2}\right)=c\gamma sec\left(\mathbf{C}-\frac{\mathbf{A}}{2}\right).$$
 ... (viii.)

6. If $\sigma \equiv aa + b\beta + c\gamma$,

then the asymptotes are given by the equations

$$4abca(\beta + \gamma) = (b - c)(\sigma^2 - 4bc\beta\gamma). \qquad \dots \qquad (ix.)$$

These cut CA in m_1, m_2 determined by

$$4abc\gamma a = (b-c)(aa+c\gamma)^2, \quad \dots \qquad \dots \qquad (\mathbf{x}.)$$

 $\frac{aa}{c\gamma} = \frac{\sqrt{b} - \sqrt{c}}{\sqrt{b} + \sqrt{c}}, \text{ or } = \frac{\sqrt{b} + \sqrt{c}}{\sqrt{b} - \sqrt{c}},$

i.e., Bm_1 , Bm_2 are isotomic conjugate lines with respect to CA:

7. The foci are determined from

$$\frac{a^{2}bc}{4\Delta^{2}}a_{1}^{2} + \frac{(b-c)^{2}}{4} = \frac{a^{2}bc}{4\Delta^{2}}\beta_{1}^{2} - \frac{a^{2}c}{2\Delta}\beta_{1} + \frac{a^{2}}{4}$$
$$= \frac{a^{2}bc}{4\Delta^{2}}\gamma_{1}^{2} - \frac{a^{2}b}{2\Delta}\gamma_{1} + \frac{a^{2}}{4}. \qquad \dots \quad (xi.)$$

8. Reverting to § 1, and calling Q, R, the points corresponding to P, we see that, for the same value δ , AP, BQ, CR meet in O, given by $aa/(a-\delta) = b\beta/(b-\delta) = c\gamma/(c-\delta)$; hence the locus of O is the incentroidal axis

$$aa(b-c)+b\beta(c-a)+c\gamma(a-b)=0.$$

If $\delta = s$, *i.e.*, if the circles are the excircles, then O is the point $aa/(s-a) = b\beta/(s-b) = c\gamma/(s-c)$.

9. The isogonal transformation of (i.) is

$$(b-c)a+a\beta-a\gamma=0,$$

if this, and the allied lines for B_1, C_1 , meet the sides in l, m, n, then Al, Bm, Cn meet in the incentre.

10. If we take the polars of any point (a', β', γ') with respect to the triple system, we find that they meet in a point (π) , viz.,

$$\begin{bmatrix} -aa'(s-a) + b\beta'(s-b) + c\gamma'(s-c) \end{bmatrix},$$

$$\begin{bmatrix} aa'(s-a) - b\beta'(s-b) + c\gamma'(s-c) \end{bmatrix},$$

$$\begin{bmatrix} aa'(s-a) + b\beta'(s-b) - c\gamma'(s-c) \end{bmatrix}.$$

If the given point be the centroid, then π is the point (vii.): if it

be the in-centre, then π is the point $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$.

11. If (a', β', γ') be taken on the line

$$pa + q\beta + r\gamma = 0$$
,

then the polar of any point on it with reference to A, passes through the point $aa/(b-c) = \beta = \gamma$, and therefore for the triple system the polars pass through the in-centre.

12. If $(\alpha', \beta', \gamma')$ be situated on the circumcircle then the envelope of its polar with regard to A, is the conic

$$a^{2}a^{2}(b+c)^{2} + (a^{2} - bc + c^{2})^{2}\beta^{2} + (a^{2} - b^{2} + bc)^{2}\gamma^{3}$$

- $2aa\beta(b-c)(a^{2} + bc + c^{2}) + 2aa\gamma(b-c)(a^{2} - b^{2} - bc)$
+ $2\beta\gamma[bc(b-c)^{2} + a^{2}(b^{2} - c^{2} - a^{2})] = 0.$

13. We may note that the equation to A_{1} , referred to the midpoint of BC as centre and axes parallel to AB, AC, is

$$bx^2 - cy^2 = bc(c - b)/4.$$

PART II.

14. In the second system KL is an antiparallel to angle A, such that $AK = \lambda$, $AL = \mu$, hence

$$c\lambda = b\mu$$
.

The equations to BL, CK are

$$(b-\mu)c\gamma = aa\mu, \ aa\lambda = (c-\lambda)b\beta$$

whence P is $a \alpha \lambda \mu = (c - \lambda)b \mu \beta = (b - \mu)c \lambda \gamma$.

The locus of P is the rectangular hyperbola

$$(b^2 - c^2)\beta\gamma + ab\gamma a - caa\beta = 0. \qquad (A_2) \quad \dots \quad \dots \quad (i.)$$

- 15. The centre is at the mid point of BC.
- 16. The polar of any point (a', β', γ') with respect to A_2 is

$$aa(b\gamma' - c\beta') + \beta[(b^2 - c^2)\gamma' - caa'] + \gamma[(b^2 - c^2)\beta' + aba'] = 0.$$
 (ii.)

The tangent at A is the symmedian line through A; at B and C the tangents are

$$caa = (b^2 - c^2)\gamma, \quad -aba = (b^2 - c^2)\beta,$$

these intersect in $\frac{aa}{b^2-c^2} = \frac{\beta}{-b} = \frac{\gamma}{c},$ *i.e.*, they are parallel.

The polar of the symmedian point is
$$\frac{\beta \cos B}{b^2} = \frac{\gamma \cos C}{c^2}$$
,
hence Ap₅, Bq₅, Cr₅ meet in $\frac{\alpha \cos A}{a^2} = \frac{\beta \cos B}{b^2} = \frac{\gamma \cos C}{c^2}$ (iii.)

The polar of the centroid is

$$aa(b^2-c^2)+b\beta(b^2-2c^2)+c\gamma(2b^2-c^2)=0.$$
 (iv.)

17. Let A', B', C' be the extremities of the diameters through A, B, C, then the tangent at A' is

$$aa(b^2-c^2)+b^3\beta-c^3\gamma=0,$$
 ... (v.)

and
$$Ap_6$$
, Bq_6 , Cr_6 meet in $a^3a = b^3\beta = c^3\gamma$ (vi.)

The line (v.) has the point $-(b^2+c^2)/a$, b, c on it.

The tangents themselves meet in

$$a^2 a / \cos \Lambda = b^2 \beta / \cos B = c^2 \gamma / \cos C, \dots \dots \dots \dots$$
 (vii.)

which is the inverse of point (iii.) above.

The tangent at the orthocentre is given by

$$2\operatorname{Rcos}^{2}\operatorname{Asin}(B-C)a + b\beta \operatorname{cos}^{2}B - c\gamma \operatorname{cos}^{2}C = 0, \quad \dots \quad (\text{viii.})$$

hence Ap_7 , Bq_7 , Cr_7 meet in

$$aa\cos^{2}A = b\beta\cos^{2}B = c\gamma\cos^{2}C.$$
 ... (ix.)

18. The curve A_2 obviously cuts the circumcircle in a fourth point determined by producing the join of the orthocentre and the mid point of BC to meet the circle.

The polar of this point is

$$a(b^2 - c^2) + ab\beta \cos^2 C - ca\gamma \cos^2 B = 0, \qquad \dots \qquad (\mathbf{x}.)$$

hence Ap_8 , Bq_8 , Cr_8 meet in

$$aa \sec^2 \mathbf{A} = b\beta \sec^2 \mathbf{B} = c\gamma \sec^2 \mathbf{C}.$$
 ... (xi.)

19. The asymptotes are

$$aa(b-c) + b\beta(b+c) - c\gamma(b+c) = 0, \qquad (a)$$

$$aa(b+c)+b\beta(b-c)-c\gamma(b-c)=0.$$
 (b)

The (a) set pass through the point

$$aa/(b+c) = b\beta/(c+a) = c\gamma/(a+b);$$

hence they are readily constructed.

20. The polar of (-a, b, c) is $\beta \cos C = \gamma \cos B$, *i.e.*, the diameter of the circumcircle through A produced.

The polars of (a, -b, c), (a, b, -c) are

$$ba - c\cos B\beta + b\cos B\gamma = 0$$
,
 $ca + c\cos C\beta - b\cos C\gamma = 0$,

21. The condition that the polars of a point (a', β', γ') with respect to A_1 and A_2 should be parallel is that the point should lie on the median parallel to BC.

22. The co-ordinates of the point of intersection of the polars of $(\alpha', \beta', \gamma')$ with regard to A_1, A_2 are

$$-a'(aa'+b\beta'+c\gamma'), \beta'(aa'+b\beta'-c\gamma'), \gamma'(aa'-b\beta'+c\gamma').$$

Hence for the centroid, the point is (-3bc, ca, ab).

23. The polar of $(\alpha', \beta', \gamma')$ with regard to A_1 meets the polars with regard to B_2 , C_2 , in

$$aa(-a^{2}+bc+c^{2}) = b\beta(a^{2}-bc+c^{2}) = c\gamma(a^{2}+bc-c^{2});$$

$$aa(-a^{2}+b^{2}+bc) = b\beta(a^{2}-b^{2}+bc) = c\gamma(a^{2}+b^{2}-bc).$$

24. The equation to A_2 with reference to axes parallel to AB, AC through the mid point of BC is

$$x^2 - y^2 = cx - by.$$