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A well-known theorem of Jacobson (1) states that if every element x of a 
ring R satisfies xn(x) = x where n(x) > 1 is an integer, then R is commutative. 
A series of generalizations of this theorem have been proved by Herstein 
(2; 3; 4; 5; 6), his last result in this direction (6) being that a ring R is com­
mutative provided every commutator u of R satisfies u{n)u = u. We now 
define a 7-ring to be a ring R in which un(u) — u is central for every commu­
tator u of R (where n{u) > 1 is an integer). In the present paper we verify 
the following conjecture of Herstein: every commutator of a 7-ring is central. 

1. Semi-simple y-rings. The main step in our paper consists in proving 

THEOREM 1. Every division y-ring D is a field. 

Proof. We will show that every commutator u G D satisfies um(u) = u where 
m{u) > 1 is an integer. It will then follow immediately from Herstein's theorem 
in (6) that D is a field. 

Suppose there exists a commutator u = xy — yx which does not lie in the 
centre Z. Let C be the prime field of D, where either C = R if the characteristic 
is zero or C = P in the case of characteristic p > 0. We denote by K = C{u) 
the subfield of D generated by C and u and let k = K C\ Z. We remark that 
k is a proper subfield of K containing C, since u(£k. For all X G k \u = X {xy — yx) 
= {\x)y — y{\x) is a commutator of D lying in K. We make the important 
observation that {\u)n(^ — {\u) G k for all X Ç k, where n{\) > 1 is an 
integer. Indeed, {Xu)n(X) — {Xu) Ç Z because D is a 7-ring, and {Xu)n(X) — (Xu) 
Ç K since both X and u 6 K. 

Only three possibilities may now arise, namely, 

(1) u is transcendental over C 

(2) u is algebraic over R 

(3) u is algebraic over P. 

In (1) we know by Luroth's Theorem that k is a simple transcendental 
extension C{t) of C. Our immediate objective is to rule out possibilities (1) 
and (2). In order to do so we shall require the assistance of two lemmas. 
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LEMMA 1. If {A*} is an infinite sequence of distinct non-zero elements of k, 
then n(\i) —»°°, where (A^)w(Xi) — (Xiu) Ç k, i = 0, 1, 2. . . . 

Proof. If the statement were not true, there would exist an infinite subse­
quence {A/} with the property that n(X/) = n, a constant. Setting A/' = A/ 
(Ao')"1) we can write our basic equations in the form 

(a) (X/'X0'«)n - (X/Vt t ) = ( A » n - ( A » e k, j = 0, 1, 2 . . . . Multi­
plication of the equation (\o'u)n — (Ao'w) Ç & by (X/')w gives us 

(b) (X//)w(Xo/w)n - (X/ ' ) n (*<>'«) G *, j = 0, 1, 2 Sub t rac t ion of (a) 
from (b) yields 

(c) [ ( A / T - X / W * ) 6 * , j = 0 , 1 , 2 . . . . 
Xo'̂  $ & because w $ k and Xo' ^ 0; it then follows from (c) that (A/')w — (A/7) 
= 0, j = 0, 1, 2 . . . . A contradiction results since we now have an infinite 
number of distinct elements of the field k satisfying the same equation 
fin - M = 0. 

LEMMA 2. In (1) and (2) suppose that V is non-trivial discrete non-Archi­
medean valuation of k and W an extension of V to K. Then k = K, where k 
and K are the completions of k and K relative to V and W, respectively. 

Proof. We begin by choosing a Cauchy sequence {A*} of non-zero distinct 
elements of k converging to a non-zero element X Ç k, where for all i 
V(\i) > 1 + |W(w)| i. For each A* of the sequence we pick an n(\i) > 1 
such that 

(\.u)n(*i) - (\iU) = y. g k, i = 0, 1, 2 . . . . 

n(\i) —>co by Lemma 1. The relationship 

W[(\iU)*<™] = n(A,)[F(A,) + W(u)] >n(\t) 

then shows that the element (\{u)n(-Xi) converges to 0 in K. \tu converges 
to \u, X ̂  0. It follows that {7^ is a Cauchy sequence in k and thus must 
converge to an element 7 G k. We have now analysed all the terms of the 
equations 

(\iU)HM) _ \.U = y u i = 0, 1, 2 . . . 

and , le t t ing i —»<», we can conclude t h a t \u = 7, X ̂  0. Hence u G k and 
k = K. 

W e are now in a position to rule ou t the possibilities (1) and (2). K is a 
finite separable extension of k since i ts genera tor u satisfies t h e separable 
polynomial nn(1) — 11 G k. In (1) we t a k e as our set of va lua t ions of k all those 
which ac t tr ivially on the pr ime field C, and in (2) we consider all those 
which reduce to p-adic va lua t ions of R. W e shall denote t he ring of integers 
of k by 0 and the discr iminant ideal of 0 by d. W e let G(V) s t and for the 
value group of a va lua t ion V of k. If B is a subgroup of a group A t hen t he 
index of B in A will be symbolized by (A : B). 

L e m m a 2 tells us t h a t no va lua t ion V of k can ramify in K. Indeed, K — k 
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implies that G(W) = G(V)y where V and W are the valuations of the com­
pletions k and K relative to V and any extension W. It follows then that 
the ramification number e = (G(W) :G(V)) = (G(W) : G(V)) = 1. To say 
that no valuation V ramifies means that no prime ideal of o divides the 
discriminant ideal d. Since any proper non-zero ideal of o is a product of 
prime ideals we must assume that d = o. But this forces K = k, a contra­
diction. We must therefore conclude that the possibility (3) does occur, in 
which case um(u) = u for suitable m{u) > 1, since P(u) is a finite field. (What 
we have actually done in ruling out the possibilities (1) and (2) has been 
to prove a slight generalization of a theorem of Krasner (7). The proof 
appearing in his paper could also have been used here, but the argument we 
have given is of a less complicated nature.) 

So far in the proof of Theorem 1 we have shown that if u is any commutator 
of D then either u £ Z or um{u) = u. Suppose that u — xy — yx ^ 0 £ Z. The 
commutator 

x = {xu)u~l = [x(xy) — (xy)x]u~1 = (xu~1)(xy) — (xy)(xu~1) 

does not lie in Z. Also the commutator ux $ Z, since 

{ux)y — y{ux) — u{xy — yx) = u2 9e 0. 

It follows that xn+l = x, that is, xn = 1, and (ux)m+l = um+1xm+1 = ux, that 
is, umxm = 1, for suitable m, n > 0. Therefore 

1 = (u
mxm)n = umnxnm = umn, t h a t is, umn+1 = u. 

We thus conclude that for all commutators u of D umW = u where m{u) > 1 
is an integer. This completes the proof of Theorem 1. 

At this point we remark that subrings and homomorphic images of 7-rings 
are themselves 7-rings. Using the Jacobson structure theory, we know that 
every primitive 7-ring is either a division ring or else contains a subring which 
has as a homomorphic image the set D2 of all two by two matrices over some 
division ring D. Since D2 is clearly not a 7-ring, we have by Theorem 1 : 

LEMMA 3. Every primitive y-ring is a field. 

The following easy lemma is useful in simplifying our problem: 

LEMMA 4. Suppose a ring R is a subdirect sum of rings Ra, each satisfying 
the polynomial identity /(MI> M2, . . . , Mm) = 0 with integer coefficients. Then R 
also satisfies this identity. 

THEOREM 2. Every semi-simple y-ring R is commutative. 

Proof. R is isomorphic to a subdirect sum of primitive rings Ra, each of 
which is a 7-ring and hence commutative by Lemma 3. Then R is commuta­
tive, from Lemma 4, if we choose as our polynomial/(/xi, M2) = M1M2 — M2Mi-

COROLLARY. If Ris any y-ring, then every commutator ofR lies in the radical N. 
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2. The general solution. Theorem 2 enables us to assume without loss of 
generality that the (Jacobson) radical X of our 7-ring is non-trivial. Further­
more, R may be taken to be subdirectly irreducible. Indeed, assuming for the 
moment that all commutators of subdirectly irreducible 7-rings are central, 
any 7-ring R is a subdirect sum of subdirectly irreducible 7-rings Ra, each 
of which satisfies the polynomial identity 

(M1M2 — M2Ml)M3 — M3(MlM2 — M2Ml) = 0 . 

Then by Lemma 4 R satisfies this same identity, which is precisely the 
property we wish R to have. 

Therefore from now on R will be a 7-ring with radical N 9^ 0, centre Z, 
and unique minimal two-sided ideal 5 9^ 0. 

LEMMA 5. S2 = 0.* 

Proof. S C N since N 9^ 0. Let 5 (~ S and x Ç R. (sx — xs)n — (sx — xs) G 
S C\ Z for some n = n(s, x) > 1. If (sx — xs)n — (sx — xs) = 0, then 
(sx — xs) = 0, since sx — xs f N and no non-zero radical element can be 
a radical multiple of itself. If 

u = (sx — xs)n — (sx — xs) 9^ 0, 

we consider the two-sided ideal T = uS C -S1- T must be trivial, for otherwise 
T = S, and uv = u for some v (î S forces a contradiction. Thus 

ut = [(sx - xs)n~l\[(sx - xs)]t - (sx - xs)t = 0 

for all t (z S, from which we get (sx — xs)t = 0, since (sx — xs)t is a radical 
multiple of itself. So far then in our proof we have shown that (sx — xs)t = 0 
for all s, t (z S and all x Ç R. 

Again let s 9e 0 Ç. S. The right ideal s5 is two-sided because 

(xs)t = (XS — SX)t + s(xt) = s(xt) Ç vS\S 

for all £ (E S and x € /^. s5 is trivial, for if sS 9e 0, then, since it is a two-sided 
ideal, sS = S, and we are faced with the familiar contradiction that st = s 
for some t 6\ S C Ar- Since the choice of 5 was arbitrary, S2 = 0. 

The next lemma is actually valid for any 7-ring. 

LEMMA 6. Let x, y G 7?. TT̂ ew (xy — yx)wcw — (xv — TX) G Z, n = 1 , 2 , . . . , 
where the cn are suitable polynomials in xy — yx. 

Proof. We set w = xy — yx and proceed with a proof by induction on n. 
For n = 1 we set m = n(w) and choose c\ = wm_1. We now assume the lemma 
true for k = n — I and prove it for k = n. Indeed, wn~lcn-\ — w Ç Z by 
assumption, where cw_i is a polynomial in w. We may as well suppose that 
m is odd, since a similar argument will prevail in case m is even. Then 

(wn-lcn^Y - w)m = wncn - wm f Z, 

*The proofs of this lemma and the succeeding ones are patterned after those given by 
Herstein in his papers (2; 4; 5) . 
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with cn clearly a polynomial in w. Combining this result with the fundamental 
condition wm — w G Z, we finally achieve 

wncn — w = (wncn — wm) + {wm — w) G Z. 

By choosing a sufficiently large n according to Lemma 6 we are able to 
state a useful 

COROLLARY. If xy — yx is nilpotent for some x, y G R} then xy — yx G Z. 

LEMMA 7. Every commutator of R is nilpotent. 

Proof. Suppose there exists a commutator w = xy — yx which is not nil-
potent. Consider the collection of all ideals of R which enjoy the property 
that all powers of w fall outside the ideal. The zero ideal is clearly a member 
of this collection. Partially ordering the collection by set inclusion, we are 
able to choose by Zorn's Lemma an ideal U which is maximal with respect 
to the property that wn $ U for n = 1, 2, 3 . . . . So if V contains U properly, 
where V is an ideal of R, then wn(V) Ç F. In other words, for any non-zero 
ideal V of R = R/ U there exists a natural number m, depending on V, such 
that wm G V, where w denotes the coset w + U. 

First of all, R cannot be subdirectly irreducible. Indeed, suppose that its 
minimal ideal T ^ 0. By the corollary to Theorem 2 w £ N} which means 
that w is a non-zero element in the radical M of R. Since M 9e 0, Lemma 5 
yields T2 = 0. A contradiction is quickly reached when we pick the m such 
that wm G T and see that iv2m = 0 or w2m Ç U. Hence we must assume that 
f = 0. 

Now let V be any non-zero ideal of R. wm G V for sufficiently large m. By 
Lemma 6 wmcm — w is in the centre Y of R, where cm is a polynomial in iv. 
Noting that wmcm Ç V, we see that 

(wmcm)f — f(wmcm) = wf — fw G V 

for all f G R. It follows that for all f Ç R wf — fw = 0 since the intersection 
of all the ideals of R is 0. In other words, w Ç Y. 

wx = xyx — yxx is also a commutator of R. As we have just shown that 
w G Y, (wx)k = wJcxk for all natural numbers k. Thus for any non-zero ideal 
V of R a sufficiently high power of wx lies in V. Using exactly the same argu­
ment as in the proof that w G Y but replacing w by wx, we can conclude 
that wx G Y. 

Because w and wx are both in F, ?Z)2 = w;(x^ — yx) = (wx)y — y(wx) = 0, 
or w2 G £/, a contradiction. 

Lemma 7 and the corollary to Lemma 6, together with the remarks made 
in the opening paragraph of this section yield the 

MAIN THEOREM. If R is a y-ring, then every commutator of R lies in the 
centre of R. 
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We cannot in general hope to arrive at the sharper conclusion that any 
7-ring is commutative. Indeed, the set of all three by three properly triangular 
matrices over any field is an example of a non-commutative 7-ring. 
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