.14

PASA. .

Publ. Astron. Soc. Aust., 1997, 14, 11-14

4 Structure of Dark Halos:
Model-independent Information from H:1 Rotation Curves

Penny D. Sackett

Kapteyn Astronomical Institute, 9700 AV Groningen, The Netherlands
psackett@astro.rug.nl

Received 1996 October 28, accepted 1996 October 31

Abstract: Although the approximately flat rotation curves of gas in the outskirts of
spirals are generally taken as strong evidence for spherical, isothermal dark matter
halos, this conclusion is often incorrect and always model-dependent. A re-examination
of the old and (nearly) model-independent inversion technique for determining the
surface mass density of galaxies from their kinematics is presented. The method is
shown to be relatively insensitive to noise in the kinematics. Due to incomplete
kinematical knowledge at large radius, however, the surface mass density is reliable
only in the inner half of the galaxy, a result that also applies to traditional rotation

curve fitting techniques.
Keywords: galaxies: kinetics, dynamics

1 Fitting Rotation Curves:
Mass Models — Kinematics

Long before dark matter in galaxies became the
focus of two or three international conferences a year,
optical emission-line studies were used to measure the
kinematics and, indirectly, the mass distribution in
spirals. In those days, spiral galaxies were assumed
to be as flat as they looked, and it was natural to
devise a method of using the measured kinematics
of galaxies to infer the surface mass density of
the luminous disk. First attempts assumed that
the mass of a galaxy could be reasonably well
approximated by either a superposition of oblate
spheroidal shells of a given flattening (Burbidge,
Burbidge & Prendergast 1959; Brandt 1960) or an
infinitely thin disk (Toomre 1963; Nordsieck 1973;
Bosma 1981). The rotation curve was then inverted
via Poisson’s equation to produce the cylindrical
mass interior to a given radius.

Later, when more sensitive optical emission spec-
troscopy and, especially, H1 synthesis observations
consistently indicated that rotation speeds remained
nearly constant to large galactocentric radius, dark
matter was invoked and modelled as a spherical,
isothermal halo with p oc r~2, which produces ab-
solutely flat rotation curves at all radii. In order to
account for the slower speeds in the very inner regions
of galaxies and the contribution to the rotation curve
provided by the luminous mass, the spherical dark
halo was then modified to have a finite core. The
mass density of the luminous matter was assumed
to be proportional to the density of the light, scaled
by a radially constant mass-to-light ratio M/L.

Interestingly, much of the original observational
motivation for spherical, isothermal dark halos

has now been lost, especially over the radial range
(r < 40 kpc) probed by spiral rotation curves (Sackett
1996). One of the strongest constraints beyond this
radius relies on statistical arguments based on the
orbits of satellites (Zaritsky & White 1994) that
do seem to suggest that halos may be isothermal
at >100 kpc. On the other hand, the only known
measurement from a cold tracer at these radii, the
giant H1ring in Leo (r = 100 kpc), seems to indicate
that the halo has already truncated by ~60 kpc
(Schneider 1985). The kinematic advantage of H1
rings like that in Leo is the simple orbit structure
of the cold gas; unfortunately only one such ring
is known. The spatial resolution and sensitivity
of the Parkes Multibeam should make it an ideal
instrument to search for more.

With this separation of galactic mass into luminous
and dark components, the philosophy changed
from rotation curve inversion to rotation curve
fitting. Rotation curve fitting generally proceeds
by comparing kinematic observations with model
rotation curves resulting from multi-component mass
models built from at least three of the following
components:

e Stellar Bulge: assume M follows L, and fit for
M / LBulge

e Stellar Disk: assume M follows L, and fit for
M/ Lpiex

e Gaseous Disk: assume M follows known 21 cm
emission

e Dark Halo: assume a parametrised form, typically
fitting two free parameters that control the central
dark density and halo core radius.
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Scale lengths of the disk and bulge are typically
measured by photometry, with assumptions for
the flattening of the bulge and the scale height
of the stellar disk. The flattening of the dark
halo is also fixed by assumption (generally to be
spherical). Such a procedure produces ‘best-fit’ halo
parameters, or—if the mass-to-light ratios are fixed
by the maximum disk hypothesis (van Albada &
Sancisi 1986)—‘maximum-disk’ halo parameters.

Given the large number of implicit assumptions,
the complications of non-circular motions, the
degeneracy of the fitting parameters, and the fact
that rotation curves generally exhibit only two
or three distinct features (turn-over radius, peak
speed and outer slope), one might reasonably be
concerned that rotation curve fitting introduces
spurious, model-dependent trends in inferred dark
matter properties. We are therefore led to begin
again, reducing the number of model assumptions
and asking, ‘In what way is the radial distribution
of the total mass (luminous + dark) of a galaxy
constrained by its rotation curve?’

2 Back to the Future:
Inverted Kinematics — Mass

The simplest case of rotation curve inversion is, of
course, obtained under the (extreme) assumption
of a spherical potential. In that case, the circular
velocity vc(R) is all that is required to compute the
mass interior to R via the usual M(<r) = vr/G;
the density p(r) of a shell of radius r is thus given
by 4rGr?p = 2vcr(dve/dr) + v2. Computation of
the mass column within the cylindrical distance R,
however, requires an integration along the cylindrical
z coordinate, and thus knowledge of the kinematics
to very large R. Specifically,

1 © [dy? o2 dr
S(R) = —— R
(R) 27rG/R [dr+'r] 2 _R2’ )

(spherical geometry)

so that in general the rotation curve at infinity must
be known in order to compute the projected mass
density X(R). The other extreme is to assume that
the galaxy can be described by an axisymmetric,
infinitely thin disk; in this case the rotation v¢(R)
is influenced by mass outside R as well. Using
Laplace’s equation, Gauss’ law and Bessel function
identities, it is possible to show that the surface
mass density X(R) of such a disk is related to
the rotation curve and its derivative via (Binney &
Tremaine 1987),

1 [1 [Bdv? (R
YR) = ——|= | ==2K(=)dR
®= 5|5 ) (%)

© dv2 (R dR'
o w(®)F®) @

(thin disk geometry)
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which again formally requires kinematic information
at infinite distance. Integrating X(R) over the area
of the disk within R then gives the enclosed mass.

Effects of Extrapolation and Noise

Note that inverting the rotation curve to obtain
the surface mass column is not completely model-
independent: assumptions of axisymmetry and the
form of the vertical potential must be made. On
the other hand, having made these assumptions
(which are also made in rotation curve fitting) the
radial dependence of X(R) is then entirely fixed by
the kinematics. Two concerns remain about the
application of this technique to real data: (1) the
effect of missing kinematic information at very large
R, and (2) the effects of noise in the rotation curve
and its derivative. We now examine each of these
in turn.

The effect of extrapolating the rotation curve
beyond the measured kinematics is shown in Figure 1.
As a test, we begin with the theoretically-derived
rotation curve of a thin exponential disk extrapolated
beyond 10 disk scale lengths with one of two
extreme schemes that can reasonably be expected to
bracket reality: flat extrapolation [vc(R) = constant]
and Keplerian decline [vs(R) < 1/v/R.] For each
extrapolation, the rotation curve is inverted to
produce an inferred surface mass density X(R) for
both the spherical (Eq. 1) and flat disk (Eq. 2)
geometries. Note that in this case both the Keplerian
and flat extrapolations deviate from the true surface
mass density (shown as the solid straight line in
the log plot) by overestimating X (R) at large R
because the rotation of an exponential disk falls
faster than Keplerian, an exact result that can be
proved analytically. This departure does not begin
at the end of the ‘measured’ rotation curve, but at
half the kinematical radius, in this case at 5 scale
lengths.

The incorrect (in this example) assumption that
the mass is spherically distributed leads to inferred
surface mass densities that are too high in the inner
regions, and thus must be compensated for by outer
shells with unphysical negative X(R); this results
in an enclosed mass that actually declines with
radius in the outer regions. The flat extrapolation
scheme produces an overestimate of the enclosed
mass interior to the last kinematical point where
the departure has already reached ~30%. This then
has a very large effect on the local estimate for
the mass-to-light ratio, which, although taken to be
constant in this example, is overestimated by more
than a factor of 150 at the end of the rotation
curve.

The inversion procedure depends not only on the
measured rotation curve, but also on its derivative.
Binney & Tremaine (1987) have suggested that
the noise in real data will make the technique
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Figure 1—The input rotation curve vc(R) for a thin exponential disk (upper left) is inverted
to produce a surface mass column X(R) (upper right), enclosed mass M(<R) (lower left), and
local mass-to-light ratio M/L (lower right). Two extrapolation schemes are used for vc(R)
beyond 10 scale lengths: flat (long dash) and Keplerian (dotted).
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Figure 2—Same as Figure 1, but now inversion is performed under the assumption of disk
geometry for the H1 rotation curve for NGC 2903 (solid squares) and the same data to which
artificial Gaussian noise has been added (open squares). For each case both flat and Keplerian
extrapolations are shown. Also shown is a maximum-disk fit using a spherical, isothermal
halo and a luminous disk with M/Lp = 3-4; the vc(R) and X(R) of the resulting model halo
and disk are shown (solid lines) in the top panels.

unreliable, but as Figure 2 demonstrates, this effect with the result that the derived X(R) is noisier, but

is much smaller than the uncertainties introduced suffers no systematic offset. As for the exponential
by the extrapolation procedure. For this example, disk, inversion of this more realistic rotation curve
o = 10 kms™! Gaussian noise has been added to demonstrates that the flat extrapolation begins to
the rotation curve of NGC2903 (Begeman 1987), differ noticeably from a Keplerian one at half the
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kinematic radius; by the end of the rotation curve,
the two differ by a factor of 3 in X(R), and by
about 35% in the enclosed mass.

-For comparison, a traditional maximum-disk fit
has been done for NGC 2903 and is also displayed
in Figure 2. Not surprisingly, the mass column
of the resulting disk component, which has an
M/Lg =~ 3-4, agrees well with that derived from
the inversion technique in the inner regions. In the
outer half of the galaxy, the model isothermal halo
(with a core) has a X(R) that is indistinguishable
from an exponential disk with scale length equal to
that inferred from inversion with flat extrapolation.
Since the model halo is assumed to be spherical,
however, the mass normalisation must be larger by
the expected ~m/2 to produce the same rotation
curve. (Note that because the enclosed mass is
defined within a sphere of radius r rather than
within a cylinder of radius R, the inverted rotation
curve with flat extrapolation and the maximum-
disk + isothermal-halo fit produce similar enclosed
masses but quite different projected surface mass
densities.) The Keplerian extrapolation produces a
somewhat shorter outer scale length for the total
mass column than either the isothermal-halo fit or
the flat extrapolation.

3 What Have We Learned?

The results of the previous section can be summarised
as follows:

e For some disk geometries (e.g. an exponential
disk), v, can fall faster than 1/v/R and still be
physical. An unambiguous ‘faster-than-Keplerian
decline’ in v, is thus a sufficient, but not necessary,
signature of a flattened geometry for the total
mass of a galaxy.

e Kinematic noise at the 5-10% level has a very
small statistical effect and no systematic effect
on mass estimates derived from rotation curve
inversion.
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¢ Kinematic extrapolations beginning at R affect
mass estimates beginning at about R/2. Interior
to the last measured point, the enclosed mass is
uncertain by ~30% and surface mass density by
as much a factor of 3 for flattened geometries;
the certainties of both estimates deteriorate very
rapidly beyond the measured kinematics.

e Mass estimates from rotation curve fitting are
subject to these same uncertainties beginning at
half the kinematic radius since, by assuming a
functional form for the radial mass distribution,
they have implicitly adopted an extrapolation for
the kinematics of the galaxy.

e Over the radial range of Hi1 rotation curves,
isothermal halos have exponential surface mass
densities with scale lengths of a few times the
optical scale length. Rotation curve kinematics
are thus equally consistent with exponential and
isothermal dark matter distributions.

A fuller description of the inversion technique
and its advantages, as well as its application to a
sample of well-defined rotation curves, will appear
elsewhere (Sackett, in preparation).
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