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Degenerations of Leibniz and
Anticommutative Algebras

Nurlan Ismailov, Ivan Kaygorodov, and Yury Volkov

Abstract. We describe all degenerations of three-dimensional anticommutative algebras Acom3 and
of three-dimensional Leibniz algebras Leib3 over C. In particular, we describe all irreducible com-
ponents and rigid algebras in the corresponding varieties.

1 Introduction

Degenerations of algebras is an interesting subject that has been studied in various
papers (see, for example, [1–3, 6–9, 12, 15–17, 20–23, 25–27, 29, 30]). In particular,
there are many results concerning degenerations of algebras of low dimensions in
a variety deûned by a set of identities. One of the important problems in this direc-
tion is the description of so-called rigid algebras. hese algebras are of great inter-
est, since the closures of their orbits under the action of the generalized linear group
form irreducible components of a variety under consideration (with respect to the
Zariski topology). For example, rigid algebras were classiûed in the varieties of low-
dimensional unital associative, Lie, Jordan, and Leibniz algebras [19]. here are fewer
works in which the full information about degenerations was found for some variety
of algebras. his problem was solved for two-dimensional pre-Lie algebras in [6], for
three-dimensional Novikov algebras in [7], for four-dimensional Lie algebras in [9],
for four-dimensional Zinbiel algebras and nilpotent four-dimensional Leibniz alge-
bras in [21], for nilpotent ûve and six-dimensional Lie algebras in [15, 30], for nilpo-
tent ûve and six-dimensional Malcev algebras in [20], and for all two-dimensional
algebras in [22].

he most well known generalizations of Lie algebras are Leibniz, Malcev, and bi-
nary Lie algebras. he Leibniz algebras were introduced as a non-anticommutative
generalization of Lie algebras. he study of the structure theory and other properties
of Leibniz algebras was initiated by Loday in [28]. An algebra A is called a Leibniz

algebra if it satisûes the identity

(xy)z = (xz)y + x(yz).
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he classiûcation of all three-dimensional Leibniz algebras can be found in [29]. Mal-
cev algebras and binary Lie algebras are anticommutative. Gainov proved that there
are noMalcev and binary Lie three-dimensional algebras except Lie algebras [14]. he
description of all three-dimensional anticommutative algebras was given in [24], and
the central extensions of three-dimensional anticommutative algebraswere described
in [10]. In this paper, we consider anticommutative algebras as a generalization of Lie
algebras. Note that some steps towards a classiûcation of all three-dimensional alge-
bras have been done in [5].

In this paper, we give the full information about degenerations of three-dimensio-
nal anticommutative and Leibniz algebras over C. he vertices of this graph are the
isomorphism classes of algebras in the variety under consideration. An algebra A
degenerates to an algebra B if and only if there is a path from the vertex corresponding
to A to the vertex corresponding to B. We also describe rigid algebras and irreducible
components in the corresponding varieties.

2 Definitions and Notation

All spaces in this paper are considered over C, and we write simply dim, Hom, and
⊗ instead of dimC, HomC and ⊗C. An algebra A is a set with a structure of a vector
space and a binary operation that induces a bilinear map from A× A to A.

Given an n-dimensional vector space V , the set Hom(V ⊗V ,V) ≅ V∗ ⊗V∗ ⊗V

is a vector space of dimension n3. his space has a structure of the aõne variety Cn3
.

Indeed, let us ûx a basis e1 , . . . , en of V . hen any µ ∈ Hom(V ⊗V ,V) is determined
by n3 structure constants cki , j ∈ C such that µ(e i ⊗ e j) = ∑

n
k=1 c

k
i , jek . A subset of

Hom(V ⊗V ,V) is Zariski-closed if it can be deûned by a set of polynomial equations
in the variables cki , j (1 ≤ i , j, k ≤ n).

Let T be a set of polynomial identities. All algebra structures on V satisfying poly-
nomial identities from T form a Zariski-closed subset of the varietyHom(V⊗V ,V).
We denote this subset by L(T). he general linear group GL(V) acts on L(T) by
conjugations:

(g ∗ µ)(x ⊗ y) = gµ(g−1
x ⊗ g

−1
y)

for x , y ∈ V , µ ∈ L(T) ⊂ Hom(V ⊗ V ,V), and g ∈ GL(V). hus, L(T) is decom-
posed into GL(V)-orbits that correspond to the isomorphism classes of algebras. Let
O(µ) denote the orbit of µ ∈ L(T) under the action of GL(V) and let O(µ) denote
the Zariski closure of O(µ).

Let A and B be two n-dimensional algebras satisfying identities from T and µ, λ ∈
L(T) represent A and B, respectively. We say that Adegenerates to B andwrite A→ B
if λ ∈ O(µ). Note that in this case we have O(λ) ⊂ O(µ). Hence, the deûnition of a
degeneration does not depend on the choice of µ and λ. If A /≅ B, then the assertion
A→ B is called a proper degeneration. We write A /→ B if λ /∈ O(µ).

LetAbe represented by µ ∈ L(T). henA is rigid inL(T) ifO(µ) is anopen subset
ofL(T). Recall that a subset of a variety is called irreducible if it cannot be represented
as a union of two non-trivial closed subsets. Amaximal irreducible closed subset of a
variety is called an irreducible component. It is well known that any aõne variety can
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be represented as a ûnite union of its irreducible components in a unique way. he
algebra A is rigid in L(T) if and only if O(µ) is an irreducible component of L(T).

We denote byAComn the variety of n-dimensional anticommutative algebras and
by Leibn the variety of n-dimensional Leibniz algebras.

We use the following notation:

(1) AnnL(A) = {a ∈ A ∣ xa = 0 for all x ∈ A} is the le� annihilator of A;
(2) A(+2) is the space {xy + yx ∣ x , y ∈ A}.

Given spaces U andW , we simpy write U >W instead of dimU > dimW .

3 Methods

In this work we use the methods applied to Lie algebras in [9, 15, 16, 30]. First of all,
if A → B and A /≅ B, then Der(A) < Der(B), where Der(A) is the Lie algebra of
derivations of A. We will compute the dimensions of algebras of derivations and will
check the assertion A → B only for such A and B that Der(A) < Der(B). Secondly,
if A → C and C → B, then A → B. If there is no C such that A → C and C → B are
proper degenerations, then the assertion A → B is called a primary degeneration. If
Der(A) < Der(B) and there are noC andD such thatC → A, B → D,C /→ D, and one
of the assertionsC → A and B → D is a proper degeneration, then the assertionA /→ B
is called a primary non-degeneration. It suõces to prove only primary degenerations
and non-degenerations to describe degenerations in the variety under consideration.
It is easy to see that any algebra degenerates to the algebra with zero multiplication.
From now on, we use this fact without mentioning it.

To prove primary degenerations, wewill construct families ofmatrices parametri-
zed by t. Namely, let A and B be two algebras represented by the structures µ and λ

from L(T), respectively. Let e1 , . . . , en be a basis of V and cki , j (1 ≤ i , j, k ≤ n) be the
structure constants of λ in this basis. If there exist a j

i(t) ∈ C (1 ≤ i , j ≤ n, t ∈ C∗)
such that E t

i = ∑
n
j=1 a

j
i(t)e j (1 ≤ i ≤ n) form a basis of V for any t ∈ C∗, and the

structure constants of µ in the basis E t
1 , . . . , E

t
n are such polynomials cki , j(t) ∈ C[t]

that cki , j(0) = c
k
i , j , then A → B. In this case E t

1 , . . . , E
t
n is called a parametrized basis

for A→ B.
Also note the following fact. Let B(α) be a series of algebras parametrized by α ∈ C

and let e1 , . . . , en be a basis of V . Suppose also that, for any α ∈ C, the algebra B(α)
can be represented by a structure µ(α) ∈ L(T) having structure constants cki , j(α) ∈ C
in the basis e1 , . . . , en , where cki , j(t) ∈ C[t] for all 1 ≤ i , j, k ≤ n. Let A be an algebra
such that A → B(α) for α ∈ C ∖ S, where S is a ûnite subset of C. hen A → B(α)

for all α ∈ C. Indeed, if λ ∈ L(T) represents A, then we have µ(α) ∈ {µ(β)}β∈C∖S ⊂

O(λ) for any α ∈ C. hus, to prove that A → B(α) for all α ∈ C we will construct
degenerations that are valid for all but ûnitely many α.

Let us describe the methods for proving primary non-degenerations. he main
tool for this is the following lemma.
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Lemma 3.1 ([15]) Let B be a Borel subgroup of GL(V) and let R ⊂ L(T) be a B-

stable closed subset. If A → B and A can be represented by µ ∈ R, then there is λ ∈ R
that represents B.

In particular, it follows from Lemma 3.1 that A /→ B in the following cases:
(1) AnnL(A) > AnnL(B);
(2) A(+2) < B(+2).
In the cases where all of these criteria cannot be applied to prove A /→ B, we will
deûne R by a set of polynomial equations and will give a basis of V in which the
structure constants of µ give a solution to all these equations. Wewill omit everywhere
the veriûcation of the fact that R is stable under the action of the subgroup of upper
triangular matrices and of the fact that λ /∈ R for any choice of a basis of V . hese
veriûcations can be done by direct calculations.

If the number of orbits under the action of GL(V) on L(T) is ûnite, then the
graph of primary degenerations gives thewhole picture. In particular, the description
of rigid algebras and irreducible components can be easily obtained. Since the vari-
ety Leib3 contains inûnitely many non-isomorphic algebras, we have to fulûll some
additional work. Let A(∗) ∶= {A(α)}α∈I be a set of algebras, and let B be another al-
gebra. Suppose that, for α ∈ I, A(α) is represented by the structure µ(α) ∈ L(T) and
B ∈ L(T) is represented by the structure λ. henA(∗)→ Bmeans λ ∈ {O(µ(α))}α∈I ,
and A(∗) /→ B means λ /∈ {O(µ(α))}α∈I .

Let A(∗), B, µ(α) (α ∈ I), and λ be as above. To prove A(∗) → B it is enough to
construct a family of pairs ( f (t), g(t)) parametrized by t ∈ C∗, where f (t) ∈ I and
g(t) ∈ GL(V). Namely, let e1 , . . . , en be a basis of V and let cki , j (1 ≤ i , j, k ≤ n) be
the structure constants of λ in this basis. If we construct a j

i ∶ C
∗ → C (1 ≤ i , j ≤ n)

and f ∶ C∗ → I such that E t
i = ∑

n
j=1 a

j
i(t)e j (1 ≤ i ≤ n) form a basis of V for any t ∈

C∗, and the structure constants of µ f (t) in the basis E t
1 , . . . , E

t
n are such polynomials

cki , j(t) ∈ C[t] that cki , j(0) = c
k
i , j , then A(∗) → B. In this case E t

1 , . . . , E
t
n and f (t) are

called a parametrized basis and a parametrized index for A(∗)→ B respectively.
We now explain how to prove A(∗) /→ B. Note that if dimDer(A(α)) > dim

Der(B) for all α ∈ I, then A(∗) /→ B. One can use also the following generalization
of Lemma 3.1, whose proof is the same as the proof of Lemma 3.1.

Lemma 3.2 Let B be a Borel subgroup of GL(V) and let R ⊂ L(T) be a B-stable

closed subset. If A(∗) → B and for any α ∈ I the algebra A(α) can be represented by a
structure µ(α) ∈ R, then there is λ ∈ R representing B.

4 Classification and Degenerations of Three Dimensional
Anticommutative Algebras

First we consider the varietyACom3. Let us ûx the basis e1 , e2 , e3 of V . Any structure
µ ∈ ACom3 with structure constants cki , j (1 ≤ i , j, k ≤ 3) is determined by the 3 × 3
matrix Aµ whose (i , j)-entry is (−1)i−1c

j
u ,v , where (u, v) is a unique pair of numbers

such that u, v ∈ {1, 2, 3} ∖ {i} and u < v. Since C is an algebraically closed ûeld the
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structure λ belongs to O(µ) if and only if there is a nonsingular matrix X such that
Aλ = XTAµX by [24, Corollary 2.4]. hen the classiûcation of three-dimensional an-
ticommutative algebras modulo isomorphism can be obtained from the classiûcation
of bilinear forms modulo congruence given in [18].

We denote byW some four-dimensional space that contains V as a subspace and
by e4 some ûxed vector of W such that W = V ⊕ Ce4. Let us now consider four-
dimensional algebras A such that A(A2) = (A2)A = 0 and dimA2 ≤ 1. It is easy to see
that such an algebra can be represented by a structure χ on W such that χ(W ,W) ⊂
Ce4 and χ(W , e4) = χ(e4 ,W) = 0. Such a structure is deûned by the 3 × 3 matrix
Bχ , whose (i , j)-entry is d4

i , j , where dk
i , j (1 ≤ i , j, k ≤ 4) are the structure constants of

χ. It is clear that two such structures χ and η lie in the same orbit if and only if there
is a nonsingular matrix X such that Bη = XTBχX. Now we put in correspondence
to an anticommutative algebra structure µ on V the structure χµ on W satisfying the
properties abovewith Bχµ = Aµ . As itwas explained above,we get a bijection between
orbits of ACom3 and isomorphism classes of four-dimensional algebras A such that
A(A2) = (A2)A = 0 and dimA2 ≤ 1. Moreover, it is clear that if λ ∈ O(µ), then
χλ ∈ O(χµ). he converse assertion follows from [15,Proposition 1.7] and the fact that
the set of structures χ onW satisfying χ(W ,W) ⊂ Ce4 and χ(W , e4) = χ(e4 ,W) = 0
is a closed subset stable under the action of lower triangular matrices.

hus, isomorphism classes and degenerations of three-dimensional anticommu-
tative algebras can be transfered from the isomorphism classes and degenerations of
four-dimensional algebras A such that A(A2) = (A2)A = 0 and dimA2 ≤ 1. he last
problem is a part of the problems thatwere solved in [13,21]. Unfortunately both of the
mentioned works have problems. Some degenerations are missed in the paper [13].
All degenerations between algebras thatwe are interested in are described correctly in
[21], but the classiûcation used in this paper lost one algebra. In the current work, we
will use the results of [21]. Let us ûrst deduce the classiûcation of three-dimensional
anticommutative algebras using [21]. We do this in Table A.1,wherewe put the names
of anticommutative three-dimensional algebras in the ûrst column; in the second col-
umn, we put the corresponding names of algebras from [21]; in the third and fourth
columnswe put multiplication tables and dimensions of algebras of derivations of the
corresponding anticommutative algebras. We omit products of basic elements whose
values are zero or can be recovered from the anticommutativity and given products.
Note that if dimDer(µ) = k, then dimDer(χµ) = k + 4.

Here g1, g2, gα3 , and g4 are Lie algebras, andA2 corresponds to the algebramissed
in [21] that is denoted by N0 in this paper. We have gα3 ≅ g

β
3 and Aα

1 ≅ A
β
1 if αβ = 1

and there are no other nontrivial isomorphisms between the algebras in the table. All
degenerations and non-degenerations between the algebras from the column B that
do not involve N0 are described in [21]. hus, it remains to describe degenerations
involving A2.

Note that
dimAnnL(N0) > dimAnnL(N3(0)) = dimAnnL(N10),

dimDer(N0) < dimDer(N3(0)) = dimDer(N10),

and hence there are no degenerations between N0, N3(0) and N10. Note now that,
for any α ∈ C, we have
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● the degeneration A2 → gα3 given by the parametrized basis

E
t
1 = te3 , E

t
2 = te1 , E

t
3 = e1 + (α + t)e2 + e3;

● the degeneration Aα
1 → A2 given by the parametrized basis

E
t
1 = te2 , E

t
2 = −e1 , E

t
3 = αe1 − e2 + e3 .

hus, we get the following result.

heorem 4.1 he graph of primary degenerations for ACom3 can be obtained from

the graph given in Figure 1 by deleting all vertices labelled L.

SinceACom3 is isomorphic toC9 as an algebraic variety, it is irreducible and equals
O(Aα

1 ).

Figure 1: he graph of primary degenerations for Lie, anticommutative, and Leibniz three-
dimensional algebras.
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5 Degenerations of Three-dimensional Leibniz Algebras
he classiûcation of three-dimensional non-Lie Leibniz algebras is presented in Table
A.2.

heorem 5.1 he graph of primary degenerations for Leib3 can be obtained from the

graph given in Figure 1 by deleting all vertices labelledA.

Proof We prove all the required primary degenerations inTable A.3. Let us consider
the degeneration L

β
1 → L2 to clarify our formulas. Write nonzero products in L

β
1 in

the basis E t
i :

E
t
2E

t
2 = βt

2
E

t
1 , E

t
3E

t
2 = tE

t
1 , E

t
3E

t
3 = E

t
1 .

It is easy to see that for t = 0, we obtain themultiplication table of L2. he remaining
degenerations can be interpreted in the same way.
A part of non-degenerations is given in Table A.4. Whenever an algebra named by

Awith the basis f1 , f2 , f3 appear in this table, cki , j (1 ≤ i , j, k ≤ 3) denote the structure
constants ofA in the given basis andA i (1 ≤ i ≤ 3) denotes the subspace ofAgenerated
by f i , . . . , f3.

In the rest of the proof we will use ideas from the proof of [19,heorem 2]. All the
remaining degenerations involve only solvable non-nilpotent Leibniz algebras with a
two-dimensional nilpotent radical. Moreover, each of them is represented in Table
A.2 by a structure µ such that ⟨e1 , e2⟩ is the nilpotent radical and the structure con-
stants cki j (1 ≤ i , j, k ≤ 3) satisfy the conditions cki j = 0 if i , j ≤ 2 and k ≥ min(i , j)
and c j3i = c

j
i3 = 0 for any 1 ≤ i , j ≤ 2 such that j < i. During this proof we will

call a structure with three-dimensional nilpotent radical that satisûes the described
conditions a standard structure. Let us put in correspondence to a standard struc-
ture µ the 4-tuple Sµ = (c113 , c

1
31 , c

2
23 , c

2
32) ∈ C4. It is not diõcult to show that if

Sµ = (a1 , b1 , a2 , b2) and λ ∈ O(µ) is a standard structure, then there is some permuta-
tion σ ∶ {1, 2}→ {1, 2} and some c ∈ C∗ such that Sλ = (caσ(1) , cbσ(1) , caσ(2) , cbσ(2)).
Suppose now that {µs}s∈T is a set of standard structures, Sµs = (a1,s , b1,s , a2,s , b2,s),
and the homogeneous linear polynomials f1 , . . . , f l ∈ C[x1 , x2 , x3 , x4] are such that
fr(a1,s , b1,s , a2,s , b2,s) = 0 for all s ∈ T and 1 ≤ r ≤ l . If λ is a standard structure with
Sλ = (a1 , b1 , a2 , b2), then it easily follows fromLemma 3.2 that there is some permuta-
tion σ ∶ {1, 2}→ {1, 2} and some c ∈ C∗ such that fr(caσ(1) , cbσ(1) , caσ(2) , cbσ(2)) = 0
for all 1 ≤ r ≤ l . hus, we get

B /→ L0
6 for B ∈ {Lα≠06 ,L7} and B /→ L1

6 for B ∈ {Lα4 ,L5 ,Lα≠16 ,L9}. ∎

Corollary 5.2 he irreducible components of Leib3 are

C1 = O({gα3 }α∈C) = {g1 , g2 , gα3 ,C
3}α∈C ,

C2 = O(g4) = {g1 , g−1
3 , g4 ,C3},

C3 = O({Lα4}α∈C) = {g1 , g03 ,L
β
1 ,L2 ,L3 ,Lα4 ,L

0
6 ,C

3}α ,β∈C ,

C4 = O(L5) = {L2 ,L3 ,L2
4 ,L5 ,C3},

C5 = O({Lα6}α∈C) = {L0
1 ,L2 ,Lα6 ,L7 ,L8 ,L9 ,C3}α∈C .

In particular, the set of rigid algebras in the variety Leib3 is formed by g4 and L5.
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Proof All degenerations and non-degenerations that do not follow directly from
heorem 5.1 follow from Table A.5. ∎

A Appendix: Tables

Table A.1. Classiûcation of three-dimensional anticommutative algebras.

A B Multiplication tables Der

g1 NC2

1 e2e3 = e1 6
g2 NC

1 e1e3 = e1 , e2e3 = e2 6
gα3 NC

3 if α = −1,
NC

2 ( α
(1+α)2 ) otherwise

e1e3 = e1 + e2 , e2e3 = αe2 4

g4 N3(0) e1e2 = e3 , e1e3 = −e2 , e2e3 = e1 3

Aα
1 N4 if α = −1, N5 if α = 1,
N3 (

1+α
1−α i) otherwise

e1e2 = e3 , e1e3 = e1 + e3 , e2e3 = αe2 1

A2 N0 e1e2 = e1 , e2e3 = e2 2
A3 N10 e1e2 = e3 , e1e3 = e1 , e2e3 = e2 3

Table A.2. Classiûcation of three-dimensional Leibniz (non-Lie) algebras.

A [11] Sµ Multiplication tables Der

L
β
1 2(a) e2e2 = βe1 , e3e2 = e1 ,

e3e3 = e1

4

L2 2(b) e3e3 = e1 5
L3 2(c) e2e2 = e1 , e3e3 = e1 4
Lα4 2(e), 2( f ) ( β, 0, 1, −1 ) e1e3 = αe1 , e2e3 = e2 ,

e3e2 = −e2 , e3e3 = e1
3

L5 2(g) ( 2, 0, 1, −1 ) e1e3 = 2e1 , e2e2 = e1 ,
e2e3 = e2 , e3e2 = −e2 ,
e3e3 = e1

2

Lα6 2(d), 3(a) ( α, 0, 1, 0 ) e1e3 = αe1 , e2e3 = e2 2 + δα ,0 + 2δα ,1
L7 3(b) ( 1, 0, 1, 0 ) e1e3 = e1 + e2 , e2e3 = e2 2
L8 3(c) e1e3 = e2 , e3e3 = e1 3
L9 3(d) ( 0, 0, 1, 0 ) e1e3 = e2 , e2e3 = e2 ,

e3e3 = e1

2
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Table A.3. Degenerations of Leibniz algebras of dimension 3.

Degenerations Parametrized bases
E

t
1 E

t
2 E

t
3

L
β
1 → L2 e1 te2 e3

L
1/4
1 → g1 t

3
e1 −2te2 + te3 2t2e2

L3 → L2 e1 te2 e3

Lα≠2
4 → L

1−α
(2−α)2
1 t

2
e1

t
2−α e1

+
(1−α+t)t

2−α e3

1
2−α e2 + te3

L0
4 → g0

3 − t
−1
e1

+ te2

t
−1
e1 e3

L2
4 → L3 t

2
e1 ite1 + e2 − ite3 te3

L5 → L2
4 te1 te2

t−1
2 e1 + e3

L0
6 → L0

1 t
2
e2 te3 te1 + te2 + te3

L1
6 → L2 te1 e2 e1 + te3

Lα≠0,1
6 → L8 e1 + te2 (α − 1)te1 α

−1
t
−1
e1 + e2 + te3

L7 → L1
6 te1 e2 e3

L7 → L8 e1 + e2 te2 t
−1
e1 + te3

L8 → L0
1 te2 te3 e1 + te3

L9 → L0
6 t

−1
e1 t

−2
e2 e3

L9 → L8 t
2
e1 t

3
e2 te3

Table A.4. Non-degenerations of Leibniz algebras of dimension 3.

Non-degenerations Reasons

Lα≠2
4 ↛ B,B ∈

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

L
β≠ 1−α
(α−2)2

1 ,L3 ,
g1(α /= 0),
g2 ,gβ≠03

⎫
⎪⎪⎪⎪
⎬
⎪⎪⎪⎪
⎭

R =

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

A

RRRRRRRRRRRRRRRRRRRRRR

A = ⟨ f1 , f2 , f3⟩, c211 = 0,
c
2
21 = −c

2
12 , c

3
31 = −αc

2
12 ,

c
3
21 = (α − 1)c312 ,
A1A3 + A2A2 = 0,
A3A1 ⊆ A3 , A1A1 ⊆ A2

⎫
⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

Lα
4 ∈ O(R) (take f1 = e3 , f2 = e2 ,

f3 = e1),
but B /∈ O(R)

L5 ↛ B,B ∈ {L
β
1 ,g1 ,g2}

R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

A

RRRRRRRRRRRRRRRRRRRRRRRRRR

A = ⟨ f1 , f2 , f3⟩,
c
3
31 = 2c221 = −2c

2
12 ,

c
3
21 = c

3
12 ,

A1A3 + A3A2 = 0,
A3A1 + A2A2 ⊆ A3 ,
A1A2 + A2A1 ⊆ A2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

L5 ∈ O(R) (take f1 = e3 , f2 = e2 ,
f3 = e1),

but B /∈ O(R)

A ↛ B,A ∈ {Lα
6 ,L7 ,L9},

B ∈

⎧
⎪⎪
⎨
⎪⎪
⎩

L
β≠0
1 ,L3 ,

L1
4 ,g1 ,g2

⎫
⎪⎪
⎬
⎪⎪
⎭

AnnL(A) > AnnL(B)
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Table A.5. Orbit closures for some families of three-dimensional Leibniz algebras.

Degenerations Parametrized bases Indices
E t

1 E t
2 E t

3

L∗4 → L0
6 e2 e1 te3 є = t−1

L∗6 → L7 e1 + e2 te2 e3 є = 1 − t

L∗6 → L9 e1 + te2 (1 − t)e1 e1 + e2 + te3 є = t−1

L∗1 → L3 t4e1 t3e2 t2e3 є = t−2

Non-degenerations Reasons
L∗4 ↛ B,B ∈ {L1

6 ,L8} (Lα4)
(+2) <B(+2)

L∗4 ↛ B,B ∈ {g2 , g
β/=0
3 } AnnL(L

α
4) > AnnL(B)

L∗6 ↛ B,B ∈ {g1 , g2 ,L
β/=0
1 ,L3 ,L1

4} AnnL(L
α
6) > AnnL(B)
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