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HYPERMETRIC SPACES AND THE HAMMING CONE 

DAVID AVIS 

1. Definitions and preliminary results. We denote by d = (d12} 

• . • , din} d2z, . . . , dn-i>n) a vector of I 9 I distances between n points. 

Such a vector d is called a metric if it satisfies the triangle inequalities 

(1) d{j + djk ^ dik IS i,j, k S n. 

The set of all metrics on n points forms a convex polyhedral cone, the 
extremal properties of which are discussed in [4]. We will be concerned 
with a sub-cone that is spanned by metrics of the form 

(2) dtJ(t) = {* \-tJeV \Si<jSn 
JK (0 otherwise, J 

where / ^ 0, F is a proper subset of {1, 2, . . . , n) and the symbol 1_ is 
used for "exclusive or": i JL j £ V means i G V, j £ V or i (? V,j(z V. 
The metrics (2) are extreme rays of the metric cone and are called 
Hamming rays. The convex hull of these rays is called the Hamming cone 
Hn and we call d Hamming, if d Ç Hn. Such metrics are also called 
Ll-embeddable (e.g., [2]) or addressable (e.g., [5]). 

Let Q be a finite set and let {A t\l ^ i ^ n) be a collection of n subsets 
of 12 that will be called addresses. Then it can be shown that a metric d is 
Hamming if and only if for some finite set 12, there exist addresses A t and 
non-negative weights Wj (j G 12) so that 

(3) di3- = X) wfc, 
k£AiAAy 

where A denotes symmetric difference. In the case where the weights are 
binary valued, the metrics are just the usual Hamming metrics that 
appear in coding theory. 

Let Fn denote the (2W_1 — 1)-tuple of all proper subsets of 
{1, 2, . . . , n] that contain the element 1. Then from the definition, d is 
Hamming if and only if the following primal problem has a solution: 

P. 2^ h s — dtj 
SÇFn 

1 ^ i < j ^ n 

A s è O s e Fn. 
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This formulation has two consequences. First, if P has a solution it has 

a solution that uses at most I I non-zero variables. Thus we may assume 

that |Q| ^ l 9 j and that the address lengths are similarly bounded. 

Second, an application of Farkas' Lemma (see [13]) states that P is 
feasible if and only if the following system is infeasible: 

D. Z y(iJ) ^ 0 S £ Fn (4) 
i±j£S 

yd > 0. 

A vector satisfying (4) is called dual feasible. Let B denote the set of all 
facets (maximum dimensional faces) of Hn, so that 

Hn= {d\b.d^0,b € B}. 

If zs is the Hamming ray that corresponds to some S Ç Fni and b Ç B, 
then bzs ^ 0 reduces to 

£ 6(*,i) ^ o. 
i±i€S 

ft) Therefore dual feasible vectors are facets if I 0 ) — 1 linearly independent 

constraints in (4) are satisfied as equations. 
We now consider vectors y that have the form y(i,j) = ctCj for 

suitably chosen real numbers ci, c2, • • • , cn. In this case, if 

n 

^2 ct = t, 

then row (i,j) of (4) becomes 

X) CiCj = 12 c\l2 cj) + 12 \ 12 cA 

\ ies / \ its I 

This proves the following theorem. 

THEOREM 1.1. If there exist real numbers Ci, c2, . . . , cn with sum t ^ 0 
satisfy 

(i) 52 ci: = 0 or 12 ci = I for aM $ £ Fn, and 
i^S i£S 

(ii) 12 CiCjdii > 0, 

then d d Hn, 
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Kelly [11] calls a metric space, d, hypermetric if for all integers 
dy . . . , cn which sum to one, 

(5) 2^ CiCjdij ^ 0. 

The notion of hypermetricity, but not the term, seems to have been first 
introduced by Deza [8]. Theorem 1.1 has the following corollary, which 
has been proved independently by Deza [7], [8] and Kelly [11]. 

COROLLARY 1.2. If d £ Hn then d is hypermetric. 

Observe that the triangle inequality is obtained from (5) by setting 
Ci = Cj = 1 and ck = —1 for i,j, k £ {1, 2, . . . , n\. This is the first of 
a series of inequalities, the next being the pentagon inequality, see [7] 
and [11], where three indices are set to + 1 and two indices are set to — 1. 
The reader interested in a full treatment of hypermetric spaces is referred 
to [12]. In the next section we show that the converse of Corollary 1.2 is 
false in general and give some specific instances when it is true. We also 
exhibit a facet of Hn that does not have the form of Theorem 1.1. 

2. Main resul t s . This section deals with the converse of Corollary 1.2. 
First, Deza [7] has shown that every 5 point hypermetric is Hamming. 
Second, as we now demonstrate, a theorem of Djokovic [9] can be used 
to prove that all hypermetric bi-partite graphs are Hamming under the 
normal shortest distance metric for graphs. Indeed, following Djokovic, 
a subset Vo of vertices of a bi-partite graph G is closed if for every a and b 
contained in Vo and any vertex w satisfying 

dG(a, w) + dG(w, b) = dG(a, b) 

we have w £ VQ. Here, dG is the shortest distance metric induced by the 
graph G. For every edge ab, let G (a, b) denote the set of points closer to a 
than b. Note that the fact that G is bipartite implies that if w g G(a, b)y 

then w £ G(b, a), for any vertex w. 

THEOREM 2.1. (Djokovic [9], see also [5]) For a connected bi-partite 
graph G, dG is Hamming if and only if G (a, b) is closed for adjacent vertices 
a and b. 

We now show that this theorem has the following corollary. 

COROLLARY 2.2. For a connected bipartite graph G = (F, E), dG is 
Hamming if and only if the pentagon inequality is satisfied. 

Proof. (=») Assume dG (£ Hn. By Theorem 2.1 there exist adjacent 
vertices ayb Ç V with G (a, b) not closed. Therefore there exists u, 
v £ G(a} b) and w G G(b, a) with 

dG(u, w) + dG(w} v) = dG(u, v). 
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Now u 9^ a, for otherwise 

dG(a, v) = dG(a, w) + dG(w, v) = 1 + dQ(b, w) + dG(wy v) 

è 1 + d0(b,v) 

and so v C? G (a, 6), a contradiction. Similarly v ^ a. Also w 9e b, for 
otherwise 

dG(w, A) = dG(w, ô) + d<?(&, v) > dG(w, a) + dG(a, V), 

violating the triangle inequality. We must therefore have the situation 
in Figure 2.1. Let 

1 i = u, b,v 
ct = \ — 1 i = a,w 

0 otherwise. 

G (a, 6) G(5, a) 

FIGURE 2.1 

Note that dG(u,b) = 1 + dG(u, a) since w Ç G(a,b). Using similar 
simplifications we have 

E CiCjdG(iyj) = [3 + d G 0 , a) + d<?(v, a) + dG(fr, w)] 

- [1 - dG(u, a) + d©(v, a) + dG(by w)] 

= 2 > 0. 

Therefore d^ violates the pentagon inequality and is not hypermetric. 

Complete results for graphs in general are known only for \G\ ^ 6. 
An examination of graphs with 6 or fewer vertices (listed in [10]) pro­
duced the five minimal nonhypermetric graphs shown in Figure 2.2. The 
integers attached to the vertices of the graphs in Figure 2.2 correspond 
to the integers cit c2l . . . , cn that form the coefficients of the hypermetric 
inequality (5) that is violated. All nonHamming graphs with 6 or fewer 
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FIGURE 2.2. All minimal nonhypermetric graphs on 6 or fewer vertices 

vertices contain an isometric nonhypermetric subgraph. Thus the con­
verse of Corollary 1.2 is true for graphs G with \G\ ^ 6. For \G\ ^ 5, this 
also follows from results in [7]. 

We now show that the converse to Corollary 1.2 is false for |G| è 7, 
by exhibiting a nonHamming hypermetric graph. Consider the graph G 
formed from i^7 by deleting edges ViV2 and V\Vz. 

THEOREM 2.3. G is a nonHamming hypermetric graph. 

Proof. We begin by proving that dG is hypermetric. Assume conversely 
that there exists integers cit c2, . . . , Ci such that 

7 

J2 Ci = 1 and 2Z CiCjdG{iJ) ^ 1. 
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Using the identity 

( 7 \ 2 7 

] L
 ci) - X) °i 

and the structure of G we have 
7 

2 J j CiCjdG(iJ) = 2cf(c2 + c3) + 1 — ] £ ci2-

Therefore Ci, . . . , c7 satisfy 
7 

(6) 2Cl(<;2 + c 3 ) ^ c,2. 
i= i 

Consider the function/ defined over integer vectors c = (ci, . • • , £7) by 

7 

f(c) = 2ci(c2 + c3) — X Ci2-
i= i 

Set k — ci + C2 -\- Cz and define g by 

g(clt c2, cz) = 2d(c2 + Cz) - Ci2 - c2
2 - cz2 - (1 - &)2/4. 

Then g bounds/ from above for fixed cu c2 and c3 since it sets C\ = c5 = 
c6 = C7 (their optimal values). We are interested in the values of k that 
allow g to be nonnegative. To this end we seek to solve the quadratic 
program 

maxg(ci, c2, cz) 

subject to 

c\ + c2 + cz = k. 

Inspection shows that, for fixed k, the maximum occurs for c2 = c3. 
Making the indicated substitutions, 

g(cu c2j cz) = Sc2k - Uc2
2 - k2 - (1 - &)2/4. 

The maximum (ci*, c2*, c3*) therefore occurs at (3fe/7, 2^/7, 2&/7) and 

g(ci*,c2*fc3*) = fc2/7 - (1 - ^)2 /4. 

By inspection this maximum is negative outside of the range 1 g fe ^ 4. 
Therefore we need only look at values of fc in this range to seek a solution 
to (6). For these values it is easy to compute the maximum of the left 
side and the minimum of the right side of (6) independently. The details 
are omitted. Therefore (6) is never satisfied and dG is hypermetric. 

To show that dG is nonHamming we exhibit an inequality that is satis­
fied by all Hamming extreme rays, but is not satisfied by dG. We define 
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c € R{1) by 

5 * = 1 j = 2, 
3 i = 1 i è 4 

(7) c(i,j) = < 3 t = 2 j = 3 
t = 2, 3 i è 4 
* ^ 4 i è 5. 

\ 3 

h We now check that 

(8) Z cfej) g O for all T 6 ft. 

Recall that 1 6 T for every T Ç Fn. The notation [5, t] will refer to 
elements T of Fw that contain s members of {2,3} and t members of 
{4, 5, 6, 7}. The left side of (8) is given in Table 2.1. 

Table 2.1 

LHSoi (8) 

0 - 2 0 0 - 2 - 6 - 2 + 3/ - /2 

1 - 1 2 - 6 - 2 0 0 - 1 2 + It- t1 

2 - 2 8 - 1 8 - 1 0 - 4 — - 2 8 4- 11* - t2 

Therefore (3) is satisfied for all T 6 Fn hence ex ^ 0 for all extreme rays 
x of Hn and hence for all x (E -#«. Since c-dG = 1, dG is nonHamming. 

It can be shown that the vector c defined in (7) is in fact a facet of Hi. 
Inspection of Table 2.1 shows that equality holds in (3) for the subsets T 
corresponding to [s, t] = [0, 1], [0, 2], [1, 3] and [1, 4]. Now there are 4 
subsets of the first type, namely, {1, 4}, {1, 5}, {1, 6} and {1, 7}. Similarly 
there are 6 of the second type, 8 of the third type and 2 of the fourth for 

a total of 20 = [A — 1 subsets. The corresponding 20 extreme rays can 

be shown to be independent. 
Thus the facets of the Hamming cone are not all of the type b(i,j) = 

ctCj (1 S i < j ^ n). This answers a question posed by Deza, who has 
given a list of facets of this type for w g 8 [6]. 

3. Concluding remarks. The results of this paper first appeared in 
the author's Ph.D. thesis that is reprinted in part as [3]. Independently, 
P. Assouad [1] has shown that the Hamming cone is properly contained 
in the hypermetric cone using a different proof based on the corresponding 
dual cones. Many related topics may be found in the monograph in 
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preparation by Assouad and Deza [2] that contains a survey of all known 
results on embeddability in L1. 
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