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Abstract Working from a half-plane result of Fletcher and Langley, we show that if f is an integer-
valued function on some subset of the natural numbers of positive lower density and is meromorphic of
sufficiently small exponential type in the plane, then f is a polynomial.
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1. Introduction

An integer-valued function is one such that f(Z) ⊆ Z, a simple example being a poly-
nomial with integer coefficients, or sin(πz). Research in this field generally focuses on
functions that are integer valued on some subset of Z. Pólya proved an early result in
this field.

Proposition 1.1 (see [10]). Let f be entire, taking integer values on N ∪ {0}, and
suppose that

lim sup
r→∞

M(r, f)
2r

< 1,

where M(r, f) is the maximum modulus function of f . Then, f is a polynomial.

Langley, in [7], showed that the lim sup cannot be replaced by a lim inf. A corollary
to Pólya’s result is that 2z is the slowest growing transcendental entire function to take
integer values on the non-negative integers. Pólya further showed the following.

Proposition 1.2 (see [10]). Let f be an entire function such that f(n) ∈ Z for
n = 0, 1, 2, . . . and

lim sup
r→∞

log M(r, f)
r

� α � log 2.

Then, there exist polynomials Pj(z) such that

f(z) = P1(z)2z + P2(z).
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This was later improved to α � log 2 + 1
1500 by Selberg in [12], then further improved

by Pisot in [9].
Fletcher and Langley proved the following half-plane analogue to Pólya’s result [3].

Proposition 1.3 (see [3]). Let d, J and λ satisfy

0 < d < 1, J ∈ N, λ > 0,
16
J

(
1 + log

(
1 +

J

2

))
+ 8(J − 1)λ < d2.

Let E ⊂ N have lower density

D(E) = lim inf
n→∞

|E ∩ {1, . . . , n}|
n

> d,

let f be analytic of exponential type less than λ in the closed right half-plane, and assume
that f(n) ∈ Z for every n ∈ E. Then, f is a polynomial.

Further related work may be found in [1,2,8,11,14], among others. However, there
does not appear to have been any research into whether an analogue of Pólya’s result
can be obtained for meromorphic functions. In this paper, we generalize the result of
Fletcher and Langley to meromorphic functions, following the general method of their
proof, which was in turn based on a method of Waldschmidt [13]. Our result is restricted
to functions that are meromorphic in the whole plane rather than a half-plane, mainly
due to the Poisson–Jensen formula being significantly easier to use in the whole plane.
We use the standard Nevanlinna theory terminology of [4] throughout.

Theorem 1.4. Given d ∈ (0, 1), there exists some λ = λ(d) > 0 with the following
property. Let f be meromorphic in the plane, taking integer values on some set E ⊆ N

of lower density d0 > d, with T (r, f) � λr for all r � r0. Then, f is a polynomial.

In the appendix, we will calculate how small λ needs to be.

2. Lemmas

We begin with some lemmas. The first is an elementary result comparing the integrated
and unintegrated counting functions.

Lemma 2.1. Let 0 < s < S, and let h be a meromorphic function on the set |z| � S.
Then,

N(S, h) � n(s, h) log
S

s
+ n(0, h) log s.

This is a well-known result, and so we omit the proof. The next lemma is found in
many texts, including [5], where it is presented as a mass distribution result. A more
elementary proof can be found in [6].

Lemma 2.2 (the (Boutroux–)Cartan lemma). Let z1, . . . , zn ∈ C, and γ > 0.
Then,

V (z) =
n∑

j=1

log |z − zj | > n log γ (2.1)

for all z outside a union U of open discs of total radius at most 6γ.
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Remark 2.3. We may assume that the discs are disjoint, since if some point z0 is
within two discs, of radius r1 and r2, respectively, we may choose a new disc of radius
r3 < r1+r2 that encloses both original discs. We may also assume that each disc contains
at least one zj , as otherwise (2.1) applies on the boundary of that disc, and, since V is
harmonic inside the disc, we may extend (2.1) to the interior. We may, therefore, assume
that there are at most n discs.

We now apply the Boutroux–Cartan lemma to give a bound on the logarithm of the
modulus of a function in terms of its Nevanlinna characteristic.

Lemma 2.4. Let m � 0, s � 1, 0 < ε � 1, and let h be meromorphic on the set
|z| � 8s with at least m distinct zeros in |z| � s. Then,

log |h(z)| �
(

6 − log ε

log 2

)
T (8s, h) + m log 6

7 (2.2)

for all |z| � 2s lying outside a union U of at most n(4s, h) open discs of total radius at
most 24εs.

Remark 2.5. A disc of radius s > 0 contains at most 1 + 2s distinct integers, and,
thus, the number of integers in U is at most the number of discs plus double the total
radius.

Proof. Let S = 4s and let n = n(4s, h), and further let b1, . . . , bn be the poles of h in
|z| � S, repeated according to multiplicity. If m > 0, let a1, . . . , am be distinct zeros of
h in |z| � s. Finally, define the function g by

g(z) = h(z)
m∏

j=1

S2 − ājz

S(z − aj)

n∏
k=1

z − bk

S
,

where an empty product is taken as 1. Thus, g is analytic on |z| � S. Also, for |z| = S,
we have that ∣∣∣∣ S2 − ājz

S(z − aj)

∣∣∣∣ = 1 and
∣∣∣∣z − bk

S

∣∣∣∣ � 2,

and therefore
T (S, g) = m(S, g) � m(S, h) + n(S, h) log 2.

Since S > 1, we have, by Lemma 2.1, that

N(2S, h) � n(S, h) log 2,

and, consequently,

T (S, g) � m(S, h) + N(2S, h) � 2T (2S, h).

Thus, by the standard comparison between the maximum modulus and characteristic
functions for functions analytic on a disc centred at the origin, we have, for |z| � 2s = S/2,
that

log |g(z)| � S + S/2
S − S/2

T (S, g) = 3T (S, g) � 6T (2S, h) = 6T (8s, h).
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Also in this region we have that |z − aj | � 3s and |S2 − ājz| � 14s2, and, therefore,∣∣∣∣S(z − aj)
S2 − ājz

∣∣∣∣ � 4s3s

14s2 =
6
7
.

We apply the Boutroux–Cartan lemma with γ = εS to find that, outside a union U of
at most n open discs of total radius at most 24εs,

n∑
k=1

log |z − bk| � n log 4εs.

Thus, for |z| � 2s, z /∈ U ,

log |h(z)| = log |g(z)| +
m∑

j=1

log
∣∣∣∣S(z − aj)
S2 − ājz

∣∣∣∣ +
n∑

k=1

log S −
n∑

k=1

log |z − bk|

� 6T (8s, h) + m log 6
7 − n log 4εs + n log 4s

= 6T (8s, h) + m log 6
7 − n log ε,

where, by Lemma 2.1,

n = n(4s, h) � N(8s, h)
log 2

� T (8s, h)
log 2

,

from which the result follows. �

The following lemma allows us to say that if a function has some zeros in a certain
segment of the real line, then it has more zeros in a larger segment. Repeated application
of this allows us to cover the entire range [1,∞).

Lemma 2.6. Given d ∈ (0, 1), there exists ϑ = ϑ(d) > 0 with the following property.
Let R � 1, let E ⊆ N be such that |E∩[1, r]| � dr for all r � R, let F (E) ⊆ Z, where F is
meromorphic in C and has at least dR/2 distinct zeros in E ∩ [1, R], and let T (r, F ) � ϑr

for all r � R. Then, F has at least dR distinct zeros in E ∩ [1, 2R].

Proof. Let ε = d/96, and let m be the least integer such that m � dR/2. We apply
Lemma 2.4 with h = F and s = R to give, for |z| � 2R outside some union U of at most
n(4R, F ) open discs of total radius at most dR/4, that

log |F (z)| �
(

6 − log ε

log 2

)
8ϑR +

dR

2
log

6
7
. (2.3)

It is easy to check that, with small enough ϑ, this gives that log |F (z)| < 0. Furthermore,
by our earlier remark on Lemma 2.4, U encloses at most

n(4R, F ) + 48εR � T (8R, F )
log 2

+ 48εR �
(

8ϑ

log 2
+

d

2

)
R (2.4)

integers. Given that |E ∩ [1, 2R]| � 2dR, it is clear that if ϑ is small enough, then
after removing any points of E ∩ [1, 2R] ∩ U we are left with at least dR integers in
(E ∩ [1, 2R]) \ U , which, since F (E) ⊆ Z and |F (z)| < 1 at these points, must be zeros
of F . �
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We now consider several lemmas from [3], which form the main structure of the proof.
We first create a sequence of polynomials, then look at an application of linear forms,
and finally note that if a function is algebraic on a half-plane and takes integer values,
then it is a polynomial.

Lemma 2.7 (see [3]). Define the polynomials p0, p1, . . . by

p0(z) = 1, p1(z) = z, ph(z) =
z(z − 1) · · · (z − h + 1)

h!
, h = 2, 3, . . . .

Then, for R > 0, H ∈ N, 0 � h � H and |z| � R, we have ph(Z) ⊆ Z and

|ph(z)| � eH

(
R

H
+ 1

)H

.

Proof. It is easy to see that ph(Z) ⊆ Z. For the inequality, we write

|ph(z)| � (R + H)h

h!
� Hh

h!

(
R

H
+ 1

)H

� eH

(
R

H
+ 1

)H

.

�

Lemma 2.8 (see [3]). Let B � 1 and N � 2 be integers. Suppose that L1, . . . , Lm

are linear forms in the n variables x1, . . . , xn, with real coefficients aj,k for j = 1, . . . , m

and k = 1, . . . , n, such that Lj = aj,1x1 + · · · + aj,nxn. Suppose further that n > m and

max
j,k

|aj,k| � B.

Then, there exist integers x1, . . . , xn, not all zero, such that, for j = 1, . . . , m and k =
1, . . . , n,

|Lj | � 1
N

and |xk| � 2(2nBN)m/(n−m).

Lemma 2.9 (see [3]). Let the algebraic function f be analytic on the half-plane
Re(z) � 0 and satisfy f(E) ⊆ Z for some set E ⊆ N of positive lower density. Then, f is
a polynomial.

3. Proof of Theorem 1.4

Fix a large positive integer J , and, given J , let R be a large positive integer. How large
J must be will be determined later.

Apply Lemma 2.4 with h = f , m = 0, s = R/2 and ε = d/96 to give that, for |z| � R

outside a union U of open discs of total radius at most dR/8,

log |f(z)| �
(

6 − log(d/96)
log 2

)
4λR = ΛR. (3.1)

By (2.4), replacing R with R/2,

|Z ∩ U | � T (4R, f)
log 2

+ 24εR �
(

4λ

log 2
+

d

4

)
R <

dR

3
(3.2)
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for small enough λ. Since R is large, we therefore have m � dR/2 distinct integers
α1, . . . , αm ∈ E ∩ [1, R], where m/J ∈ N, for which f(αj) ∈ Z and (3.1) is satisfied.

Now, set n = 2m, H = n/J ∈ N, and form n = HJ functions

gk(z) = pµ(k)(z)f(z)ν(k) (3.3)

for µ = 0, 1, . . . , H − 1, ν = 0, 1, . . . , J − 1, where the pµ are as in Lemma 2.7. Note
that H is dependent on R, but that J is fixed. Let aj,k = gk(αj) ∈ Z. We obtain, by
Lemma 2.7 and (3.1), the estimate

|aj,k| = |gk(αj)| = |pµ(k)(αj)| |f(αj)|ν(k)

� eH

(
R

H
+ 1

)H

(eΛR)J−1

= A(R) � �A(R)� = B(R) � 2A(R),

where �x� is the smallest integer not less than x. We apply Lemma 2.8 with N = 2 and
n = 2m to give the integers A1, . . . , An, not all zero, such that

n∑
k=1

Akgk(αj) = 0

for j = 1, . . . , m, and
|Ak| � 8nB, where B = B(R).

Now set

F (z) =
n∑

k=1

Akgk(z). (3.4)

F is meromorphic, takes integer values on E and is 0 at the αj for j = 1, . . . , m. We
now estimate T (r, F ) for each r � R. Note first that, since the pµ(z) are polynomials, all
poles of F must come from poles of f , so

N(r, F ) � (J − 1)N(r, f).

Also, for non-negative x1, . . . , xn,

log+
( n∑

k=1

xk

)
� log n + max

1�k�n
log+ |xk|.

For r � R, we have, by Lemma 2.7, that

log |F (z)| � log n + max
1�k�n, |z|=r

(log+ |Akgk(z)|)

� log n + log 8nB + H

(
1 + log

(
r

H
+ 1

))
+ (J − 1) log+ |f(z)|.
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Thus, by integrating we obtain that

m(r, F ) � log n + log 8nB + H

(
1 + log

(
r

H
+ 1

))
+ (J − 1)m(r, f),

and therefore

T (r, F ) � log n + log 8nB + H

(
1 + log

(
r

H
+ 1

))
+ (J − 1)T (r, f)

� log n + log 16nA + H

(
1 + log

(
r

H
+ 1

))
+ (J − 1)T (r, f).

Now, for r � R, since Λ > λ by (3.1) and n = 2m � 2r and R is large, we have that

T (r, F ) � 4 log 2 + 2 log n + log
(

eH

(
R

H
+ 1

)H

e(J−1)ΛR

)

+ H

(
1 + log

(
r

H
+ 1

))
+ (J − 1)T (r, f)

� 4 log 2 + 2 log 2r + H

(
1 + log

(
R

H
+ 1

))
+ (J − 1)ΛR

+ H

(
1 + log

(
r

H
+ 1

))
+ (J − 1)λr

� 2H

(
1 + log

(
r

H
+ 1

))
+ 2(J − 1)Λr.

It is plain to see by differentiating that x−1(1 + log(x + 1)) is decreasing for x > 0. So,
for n = 2m � 2R � 2r, this gives that

r

H
� R

H
=

RJ

n
=

RJ

2m
� J

2

and

2H

(
1 + log

(
r

H
+ 1

))
= 2r

H

r

(
1 + log

(
r

H
+ 1

))

� 2r
2
J

(
1 + log

(
J

2
+ 1

))

=
4r

J

(
1 + log

(
J

2
+ 1

))
.

Thus,

T (r, F ) � 4r

J

(
1 + log

(
J

2
+ 1

))
+ 2(J − 1)Λr, (3.5)

and we can say that, for large enough R,

T (r, F ) < ϑr (3.6)
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for r � R, where ϑ > 0 can be arbitrarily small provided that λ is small enough and J is
large enough. We also have that F (αj) = 0 for j = 1, . . . , m, where m � dR/2. We apply
Lemma 2.6 to give at least dR zeros of F in E ∩ [1, 2R]. We apply this repeatedly to give
an infinite sequence of zeros of F on the real line. Assume that F (z) 	≡ 0. We have that
n(2tR, 1/F ) � 2t−1dR, so n(r, 1/F ) � dr/4 for all r � R. By application of Lemma 2.1
we find that N(er, 1/F ) � dr/4; thus, T (r, 1/F ) � dr/4e and, by the first fundamental
theorem,

T (r, F ) � dr

4e
− O(1). (3.7)

However, if ϑ is small enough, this is incompatible with (3.6). Hence, F (z) ≡ 0.
Now, recall from (3.3) and (3.4) that

F (z) =
J−1∑
ν=0

( H−1∑
µ=0

Aµ,νpµ(z)
)

f(z)ν ,

where at least one Aµ,ν is non-zero, and where pµ(z) has degree µ. Thus, these polynomi-
als cannot cancel each other out; hence, f is algebraic and must have only finitely many
poles. Therefore, there exists some x ∈ N such that there are no poles in the half-plane
Re(z) � x, so f is analytic in this region. We apply Lemma 2.9 to f(z − x), giving that
f(z − x) is a polynomial here. From this, we conclude that f(z) is polynomial in the
half-plane Re(z) � x and, thus, by the identity theorem f(z) must be a polynomial on
the whole plane. The proof is complete.

Appendix A. How small is λ(d)?

An obvious question to ask about this theorem is, how small must λ be? We will now
calculate this. We make no claim as to how sharp these values are, but have sought to
present a positive result in a reasonably accessible fashion.

We begin by calculating ϑ in Lemma 2.6. We use (2.3), substituting in d/96 for ε, and
noting that, since we want |F (z)| < 1 in order to force F (α) = 0 for α ∈ E \ U , we
require that log |F (z)| < 0. Hence,

ϑ <
d log(7/6)

16(6 − log(d/96)/ log 2)
= γ(d). (A 1)

We also require that U encloses at most dR integers, so by (2.4) we need
(

8ϑ

log 2
+

d

2

)
R � dR,

which simplifies to

ϑ � d log 2
16

. (A 2)

We further require, by (3.6) and (3.7), that

ϑ <
d

4e
. (A 3)
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However,
d log(7/6)

16(6 − log(d/96)/ log 2)
<

d log(7/6)
96

<
d

48
<

d log 2
16

<
d

4e
;

hence, both (A 2) and (A 3) are much looser bounds than (A 1) and may be ignored.
We now move on to λ. The proof of Theorem 1.4 by (3.2) requires that

λ <
d log 2

48
. (A 4)

It also requires, by (3.1) and (3.5), that

ϑ =
4
J

(
1 + log

(
J

2
+ 1

))
+ 2(J − 1)

(
6 − log(d/96)

log 2

)
4λ.

Suppose that we choose J so large that

4
J

(
1 + log

(
J

2
+ 1

))
<

γ(d)
2

,

and, given this J , choose λ such that

2(J − 1)
(

6 − log(d/96)
log 2

)
4λ <

γ(d)
2

.

The pair (J, λ) will then satisfy (A 1). Furthermore, we have that

λ <
γ(d)
96

<
d log(7/6)

962 <
d log 2

48
,

and (A 4) holds. Solving these inequalities using Mathematica for J in terms of d

produces the new inequality

J >
128 log(d/6144)
d log(7/6) log 2

W

(
d log(7/6) log 2 exp(d log(7/6) log 2/64 log(d/6144) − 1)

64 log(d/6144)

)
− 2,

where W is the Lambert W -function. Again using Mathematica, solving for specific
values of d gives the following results for J and λ:

d = 1, J � 130 000, λ � 2.9 × 10−11,

d = 0.5, J � 290 000, λ � 5.6 × 10−12,

d = 0.1, J � 2 000 000, λ � 1.2 × 10−13,

d = 0.01, J � 28 000 000, λ � 5.8 × 10−16.

Note that d = 1 is essentially meaningless here, as we require our set E to have lower
density greater than d, but it provides a useful upper bound.

By comparison, using a similar process on the Fletcher–Langley result (Proposition 1.3)
yields a maximal value of λ of roughly 3.6 × 10−4 for d close to 1.
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We conclude by asking a question about a topic that does not appear to have been the
subject of any research: can any results be obtained by restricting what integer values
may be taken? Specifically, for n ∈ {1, 2, 4}, is 2nz the slowest-growing transcendental
meromorphic function taking only nth powers of integers on the natural numbers? Pólya’s
result (the corollary to Proposition 1.1) proves this for n = 1, but beyond this the way
forward is unclear. The restriction to only three integer values of n is due to the sine
function: for odd n � 3, sin(πz/2) has the required properties and is smaller than 23z,
and for even n � 6, sin(πz) is sufficient.
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