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We demonstrate how to accelerate the computationally taxing process of deep
reinforcement learning (DRL) in numerical simulations for active control of bluff body
flows at high Reynolds number (Re) using transfer learning. We consider the canonical
flow past a circular cylinder whose wake is controlled by two small rotating cylinders.
We first pre-train the DRL agent using data from inexpensive simulations at low Re, and
subsequently we train the agent with small data from the simulation at high Re (up to
Re = 1.4 × 105). We apply transfer learning (TL) to three different tasks, the results of
which show that TL can greatly reduce the training episodes, while the control method
selected by TL is more stable compared with training DRL from scratch. We analyse for
the first time the wake flow at Re = 1.4 × 105 in detail and discover that the hydrodynamic
forces on the two rotating control cylinders are not symmetric.
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1. Introduction

Deep reinforcement learning (DRL) has been shown to be an effective way of selecting
optimal control of flows in diverse applications (Ren, Hu & Tang 2020), including fish
bio-locomotion (Gazzola, Hejazialhosseini & Koumoutsakos 2014; Verma, Novati &
Koumoutsakos 2018), optimization of aerial/aquatic vehicles’ path and motion (Reddy
et al. 2016; Colabrese et al. 2017; Novati, Mahadevan & Koumoutsakos 2019), active
flow control for bluff bodies (Ma et al. 2018; Bucci et al. 2019; Rabault et al. 2019; Ren,
Rabault & Tang 2021), shape optimization (Viquerat et al. 2021) and learning turbulent
wall models (Bae & Koumoutsakos 2022).

The flow past a smooth circular cylinder has been characterized as a ‘kaleidoscope’
(Morkovin 1964) of interesting fluid mechanics phenomena as the Reynolds number
(ReD = UD/ν) is increased from 20 to 2 × 105 (U is the inflow velocity, D is the diameter
of the cylinder, ν is the molecular viscosity of the fluid) (Dong et al. 2006; Cheng
et al. 2017). The flow develops from two-dimensional steady wake to three-dimensional
unsteady vortex shedding, followed by wake transition, shear layer instability and
boundary layer transition. Due to the large contrast among flow patterns of different scales,
accurate numerical simulations of turbulent flow are usually limited to small and moderate
ReD. For the same reason, using numerical simulation to study active control of the flow
at high ReD has rarely been reported.

In our previous study (Fan et al. 2020), an efficient DRL algorithm was developed to
discover the best strategy to reduce the drag force, by using the DRL to control the rotation
of two small cylinders placed symmetrically in the wake of the big cylinder. Specifically,
for the flow at ReD = 104, it has been demonstrated that DRL can discover the same
control strategy as experiments in learning from data generated by high fidelity numerical
simulation. Simulated data are noise free, but learning from the simulated data is restricted
by the simulation speed. For instance, in Fan et al. (2020), in the case of ReD = 104, it took
3.3 h to generate the simulated data for each episode, and one month to finalize the DRL
strategy. In contrast, in companion experimental work it only took a few minutes to learn
the same control strategy. As ReD increases to 1.4 × 105, one can expect that, even for the
simplest task in Fan et al. (2020), performing DRL from scratch could take months, and
hence it might not be practical to apply DRL directly to the more difficult tasks at higher
ReD.

In this paper, in order to tackle the aforementioned problem, we propose a learning
paradigm that first trains the DRL agent using the simulated data at low ReD and
subsequently transfers the domain knowledge to the learning at higher ReD. The rest of
the paper is organized as follows: § 2 gives the details of the simulation model, numerical
method and DRL algorithm; § 3 presents the DRL and transfer learning results for different
tasks at three different ReD, namely, ReD = 500, ReD = 104 and ReD = 1.4 × 105; § 4
gives the conclusion of the current paper. Finally, Appendix A presents the simulation
results of the cases that the control cylinders are rotating at constant speed, while
Appendix B presents the validation of the numerical method for simulations at high
Reynolds number.

2. Model and methods

In this paper, the bluff body flow control problem has the same geometry as the one
in Fan et al. (2020) but here we focus on demonstrating the feasibility of transferring
DRL knowledge from low ReD to high ReD, solely in the environment of numerical
simulation. As shown in figure 1, the computational model consists of a main cylinder
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Figure 1. Sketch of the flow control problem. Here, U is the inflow velocity, D is the diameter of the main
cylinder, d = 1

8 D is the diameter of the control cylinder, g = 1
20 D, θ = 120◦; ω1, ω2 are the angular velocities

of control cylinders 1 and 2, respectively. Specifically, ω1 = ε1 εmax, ω2 = ε2 εmax, where ε1 and ε2 ∈ [0, 1]
are given by the DRL agent, and εmax is a constant.

and two fast rotating smaller control cylinders. This configuration is used to alter the flow
pattern around the wake of the big cylinder, with the objective of reducing the effective
system drag, or maximizing the system power gain. We note that a similar control strategy
has been studied at low Reynolds number and it has been shown that, when the control
cylinders are placed at appropriate locations and rotating at a sufficiently fast speed, they
are able to change the boundary layers on the main cylinder, i.e. reattach the boundary
layer and form a narrower wake, resulting in notable drag reduction.

2.1. Numerical method
The numerical simulation of the unsteady incompressible flow past the cylinders of
different diameters is achieved by employing the high-order computational fluid dynamics
code Nektar that employs spectral element discretization on the (x–y) plane and Fourier
expansion along the cylinder axial direction (z) (Karniadakis & Sherwin 2005). In
particular, we employ entropy viscosity method based large-eddy simulations (LES),
which were originally proposed by Guermond, Pasquetti & Popov (2011a,b) and later
developed further for complex flows by Wang et al. (2018, 2019) and Du et al. (2023). In the
simulations, the computational domain has a size of [−7.5 D, 20 D] × [−10 D, 10 D] in the
x, y directions, respectively. A uniform inflow boundary condition (u = U, v = 0, w = 0)
is prescribed at x = −7.5 D, where u, v, w are the three components of the velocity
vector u. The outflow boundary (∂u/∂n = 0 and p = 0) is imposed on x = 20 D, where
p is the pressure and n is the normal vector. A wall boundary condition is applied on
the main cylinder surface, while the velocity on the control cylinders are given by the
DRL agent during the simulation. Moreover, a periodic boundary condition is assumed on
the lateral boundaries (y = ±10 D). Note that the spanwise length of the computational
domain depends on ReD, namely, it is 6 D and 2 D in the simulation of ReD = 104 and
ReD = 1.4 × 105, respectively.

The computational mesh is similar to the one used in Fan et al. (2020). At ReD = 500,
the computational domain is partitioned into 2462 quadrilateral elements, while at ReD =
104 and ReD = 1.4 × 105, it consists of 2790 quadrilateral elements. The elements are
clustered around the cylinders in order to resolve the boundary layers. Specifically, on the
main cylinder wall-normal directions, the size of the first layer element (�r) is designed
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carefully so that, at Re = 104, �r = 4 × 10−3; at ReD = 1.4 × 105, �r = 1.6 × 10−3 D.
On this mesh, with the spectral element mode 4, y+ < 1 can be guaranteed. In the
simulation, the time step (�t) satisfies the Courant condition CFL = �t |u|/�x ≤ 0.75.
Note that in all the DRL cases the time duration between two consecutive state queries is
fixed at 0.12(D/U), e.g. in the case of ReD = 1.4 × 105, �t = 10−4, the state data will be
collected every 1200 steps. It is worth noting that the reinforcement learning (RL) guided
LES starts from fully turbulent flow, which is the result of previous simulation of flow in
the same geometric configuration with the small cylinders held still.

2.2. Deep reinforcement learning and transfer learning
The DRL identifies the optimal control strategy by maximizing the expected cumulative
reward, using the data generated by the simulation. More details of the DRL can be seen
in Fan et al. (2020), but the main principle is summarized as follows:

J(π) = E(si,ai)∼pπ

T∑

i=0

γ iri, (2.1)

where J is the so-called cumulative reward, E denotes the calculation of the expected
value, γ ∈ (0, 1] is a discount factor and pπ denotes the state-action marginals of the
trajectory distribution induced by the policy π. Also, si ∈ S is the observed state, ai ∈ A
is the given actions with respect to the policy π : S → A and ri is the received reward, at
discrete time step i. As shown in (2.1), the objective of DRL is to discover the policy πφ

parameterized by φ, which maximizes the expected cumulative reward. Specifically, in the
current work, the state variable is the concatenation of CL, CD, Cf ,1 and Cf ,2, the action
is the concatenation of ε1 and ε2, where CD and CL are the drag and lift force coefficient,
Cf ,1 and Cf ,2 are the frictional force coefficient on control cylinders 1 and 2, ε1 and ε2 are
the action variables for control cylinders 1 and 2, respectively.

In this paper, the twin delayed deep deterministic policy gradient algorithm (TD3)
(Fujimoto, Hoof & Meger 2018; Fan et al. 2020) has been employed. The TD3 consists
of two neural networks, one for the actor and the other one for the critic, and both are
feedforward neural networks with two hidden layers and 256 neurons. The discount factor
γ is set as 0.99. The standard deviation of the policy exploration noise σ is set as 0.005.
The Adam optimizer with learning rate 10−4 is used, and the batch size is N = 256.

Before proceeding to the results, it is worth discussing the difficulties of training
the model-free DRL feeding with simulated data. The first difficulty is how to
generate more training data as fast as possible. To this end, this paper will propose
a multi-client-mono-server DRL paradigm, in which multiple simulations running
simultaneously and independently to provide training data to the single DRL server. In
each simulation, once a training data are collected, they will be provided to the DRL server.
Note that the data exchange between the DRL server and simulation clients is achieved by
the XML-RPC protocol.

The second difficulty concerns simulation at high Reynolds number, which makes the
multi-client-mono-serve DRL not practical, since a single simulation already requires a
significant amount of computing resource. To overcome this difficulty, initially, the DRL
agent will be trained using the data collected from the much cheaper simulations at low
ReD, and then the neural networks will be used in the simulation at high ReD, while the
network parameters will be re-trained using the new data.
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3. Results and discussion

In order to demonstrate the feasibility of using transfer learning (TL) in DRL for active
flow control, we consider three different tasks, in which the states, actions and reward
functions, corresponding to each task, are given as follows:

(i) Task 1. Minimizing CD: two states, CD and CL; two independent actions, ε1 and ε2;
reward function, r = −sign(CD)C2

D − 0.1C2
L.

(ii) Task 2. Maximization of the system power gain efficiency: four states, CD, CL, Cf ,1
and Cf ,2; one action, ε1 = −ε2; reward function r = −η, where

η = |CD| + πd
D

(|ε1|3Cf ,1 + |ε2|3Cf ,2)ε
3
max. (3.1)

(iii) Task 3: maximization of the system power gain efficiency: sates and reward functions
are the same as those in task 2; two independent actions, ε1 and ε2.

3.1. Learning from scratch at low Re
We start DRL for task 1 from scratch with εmax = 5, in a three-dimensional simulation of
flow at ReD = 500. Before presenting the results, we explain why εmax = 5 is chosen. As
shown in our previous study (Fan et al. 2020), CD decreases with εmax, which implies that
the generated state variables (CD, CL) will be located in a wider range with increasing εmax.
In order to enhance the generalization of the neural networks, it is beneficial to experience
the training data in a wider range before transferring to a more challenging task.

Figure 2 shows the evolution of ε1, ε2, CD and CL, as well as the variation of the vortex
shedding pattern due to active control by DRL at ReD = 500. Initially (for 40 episodes
approximately), DRL knows very little on how to minimize CD; small values of ε1, ε2 are
provided by DRL, thus the control cylinders have a small effect on the flow, hence regular
vortex shedding pattern can be observed, as shown by figures 2(A-i) and 2(A-ii). However,
around the 40th episode, DRL has figured out the correct rotation direction to reduce
CD, and the wake patterns are now hairpin vortices emanating from the gap between the
control and main cylinder. At this stage, ε1 /= ε2, and the wake behind the main cylinder
is not symmetric, which gives rise to a large CL, as shown in figures 2(B-i) and 2(B-ii).
Around the 110th episode, DRL finally identified the best rotation speed to minimize CD,
and, correspondingly, the vortex shedding from the main cylinder has been eliminated.

To sum up, when DRL networks are initialized randomly, the DRL agent can gradually
manage to learn the optimal policy. The learning process has lasted for more than 100
episodes, and the generated training data, CD and CL, are roughly in the ranges [−0.1, 2.0]
and [−1.5, 1.0], respectively.

3.2. Transfer learning from low Re to high Re
In the previous subsection, we have demonstrated that, for the flow at low Reynolds
number, although the training data from the simulation are noise free, it still takes DRL to
go through 100 episodes, i.e. 1000 data points, to discover the right policy. Hence, DRL
from scratch is impractical to apply to flow at high Re, since it will tax the computational
resources heavily as it will take much longer to generate the training data. In order to use
the data more efficiently and reduce the overall computing time, we employ a TL approach
at high ReD.
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Figure 2. Task 1: evolution of reinforcement learning and corresponding simulated three-dimensional vortex
shedding patterns at ReD = 500, εmax = 5. Note that the DRL is starting from scratch, but the simulation is
starting from a fully developed flow where the smaller controlling cylinders are stationary.

Figure 3 presents the time traces of ε1, ε2 and CD of task 1 with εmax = 3.66 at ReD =
104 and ReD = 1.4 × 105. In particular, the results of DRL from scratch at ReD = 104 are
plotted together. Note that, here, both cases of TL were initialized using the same DRL
network, which was obtained in task 1 at ReD = 500 shown in figure 2(a). We observe
that TL spent 60 episodes only to discover the optimal policy, while the DRL from scratch
went through over 200 episodes to reach a comparable decision. Moreover, ε1 (pink line,
in figure 3a) given by the DRL from scratch keeps oscillating even after 500 episodes,
but the value given by the TL shows less variation, although the same value of the noise
parameter (σ ) is used in both cases.

In particular, in the TL at ReD = 104, as shown in figure 3, the TL agent manages to find
the correct rotation direction in less than 10 episodes, and as it reaches the 20th episode,
the TL starts exploring a new policy, during which both ε and CD show notable variations,
associated with the so-called ‘catastrophic forgetting’ (Kirkpatrick et al. 2017). After the
55th episode, the TL can make the correct and stable decision.

In task 1, as ReD is increased from 104 to 1.4 × 105, the wake behind the main cylinder
becomes very complex, although the boundary layer is laminar at both values of ReD. The
learning process at ReD = 1.4 × 105 is very similar to that of ReD = 104. In 25 episodes,
the TL is able to identify the correct rotation directions. At the 50th episode, the rotation
speed on control cylinder 1 begins to show variation and and it starts a new exploration,
due to the catastrophic forgetting. Around the 80th episode, the rotation speed on control
cylinder 2 also starts to vary, but the rotation speeds on both control cylinders quickly
return to optimal value, i.e. |ε±1| = 1.

We would like to emphasize that the high fidelity LES of flow past a cylinder
accompanied by two rotating cylinders at ReD = 1.4 × 105 are still a challenge. To the best
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Figure 3. Task I: comparison between DRL from scratch and TL at different Re. (a) Learning from scratch at
ReD = 104; (b) TL ReD = 104; (c) TL at ReD = 1.4 × 105; (d) vortex shedding pattern, the control cylinders
are stationary (a,b), and the pattern at the 125th episode (d). Note that in (a–c) the pink and black lines are the
time traces of actions (ε̄/εmax, where εmax = 3.66) on control cylinders 1 and 2. Blue line is the time trace of
CD. The agent of the TL was initialized from the saved agent in the previous case at ReD = 500, as shown in
figure 2.

of the authors’ knowledge, the details of the flow pattern have not been studied before. In
figure 3(d), the top snapshot exhibits the vortical flow, while the control cylinders remain
stationary. The bottom snapshot shows the flow structures at the 125th episode, when
the control cylinders are rotating at optimal speed. We see that, as the control cylinder
is rotating, the large-scale streamwise braid vortices are mostly replaced by the hairpin
vortices emanating from the gap between the main cylinder and control cylinders, and the
wake becomes narrower, which is a sign of a smaller CD.
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Next we turn our attention to task 2, where the objective is to maximize the system power
gain efficiency, η, under the condition that ε2 = −ε1. Note that the objective of the current
task 2 is similar to the task 2 in our previous study (Fan et al. 2020), except that, here, we
have used the instantaneous Cf obtained from the simulation, while Cf is a pre-defined
constant in Fan et al. (2020). Nonetheless, our previous study has revealed that it is much
more difficult for DRL to identify the optimal control strategy in task 2 than that in
task 1. In task 2, we have started from the DRL from scratch using two-dimensional (2-D)
simulation at ReD = 500. In particular, since the 2-D simulation is relatively inexpensive
and fast, we have run 16 simulations concurrently to provide the training data to a single
DRL. For the TL at ReD = 104 and ReD = 1.4 × 105, the simulation is very expensive,
thus only a single simulation was performed. It is worth noting that η at low ReD is very
different from that at high ReD, as shown in Appendix A, thus it is expected that TL in
task 2 and task 3 will be more challenging.

Figure 4(a) shows the learning process of DRL from scratch for task 2 at ReD = 500.
In particular, the learning process using a single 2-D simulation (a–c) and 16 2-D
simulations (d–f ) are plotted together. In figure 4(a), DRL manages to find the correct
rotation direction after 75 episodes, but it barely makes the optimal decision, although
it has been trained over 300 episodes. On the other hand, in the case of 16 simulations
running concurrently, as shown in figure 4(d), DRL can identify the correct rotation
direction in less than 10 episodes, and is able to make the optimal decision before the 75th
episode.

Subsequently, the DRL networks trained in figure 4(a,d) are both applied to the TL at
ReD = 104, and the results are shown in figure 4(b,e). We observe from figure 4(b) that,
although the DRL of figure (a) has identified the correct policy, it gives a very chaotic
ε1 in the first 60 episodes in TL. On the other hand, as shown in figure 4(e), the TL is
able to give the correct rotation direction in less than 10 episodes, and after 30 episodes
it has managed to reach the optimal decision. When applied to the simulation flow at
Re = 1.4 × 105, the TL manages to give stable action values after the 30th episode, but in
a short period just after the 40th episode and until the end of the simulation, an unstable
action is given, as shown by the variation of ε1 and η in figure 4(c). To explain the variation
of the decision given by the agent, the policy at 5th, 15th, 25th and 65th episodes are
visualized in figure 4( f ). Specifically, the black boxes [−0.25, 0.25] × [0.3, 0.8], which
correspond to the concentrated intervals of CL and CD, respectively, are highlighted. We
observe that the policy in the highlighted regions has not reached the best strategy yet,
although the TL has been trained for 70 episodes. Next, we consider the hardest problem of
this paper, task 3, with the same objective as that of task 1, but ε1 and ε2 are independent.
Again, we start this task from scratch in a 2-D simulation at ReD = 500, as shown in
figure 5(a,b). Note that, here, 16 2-D simulations were used to provide training data. As
shown in figure 5(a,b), the RL agent was able to give correct rotation directions for both
controlling cylinders after 50 episodes. Between the 50th and 110th episodes, ε2 gradually
approaches −1, while ε1 oscillates around 0.7, the combination of which gives rise to
η ≈ 1.5. After the 110th episode, the DRL suddenly changes its actions, in a short period
of exploration: ε1 changes to 1, ε2 is −0.5 and the value of η goes down to 1.37. Meanwhile,
the DRL does not stop exploration on ε1, as shown by the variation in the black line,
starting around the 200th episode. Around the 280th episode, the DRL is able to reach a
near optimal decision, as demonstrated by the fact that η is close to 1.325, which is the
optimal value obtained from task 2.
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Figure 4. Task 2: TL from 2-D low ReD to 3-D high ReD. (a,d) Learning from scratch, ReD = 500: left – single
client; right – multi-client. Panels (b,e) show TL, ReD = 104: (a) and (d) are initialized by the corresponding
DRL agents shown in panels (a,d), respectively. Panels (c,f ) show TL, ReD = 1.4 × 105, initialized from the
agent corresponding to (e). Panel ( f ) shows visualization of the policy at the 5th, 15th, 25th and 65th episodes.
Note in all the simulations here εmax = 3.66.

The TL results of task 3 at ReD = 104 are plotted in figure 5(b,d). We observe that TL is
able to reach the correct decision on rotation directions in less than 10 episodes. As more
training data are obtained, ε2 keeps the maximum value 1, and ε1 is gradually increased to
around ε1 = −0.8, which gives rise to η ≈ 0.84, which is slightly greater than the optimal
value η = 0.78, obtained in task 2. The policy contours at the 5th, 50th, 110th, 220th and
285th episodes for ReD = 500 and the 5th, 30th, 80th, 100th and 140th episodes for ReD =
104 are plotted in figures 5(c) and 5(d), respectively. During the learning process, at ReD =
500, CD and CL are mostly in the range [0.1, 0.6] and [−1.25, −0.75], and at ReD = 104,
these two coefficients are mostly in the range [0.3, 0.8] and [−0.5, 0.0], respectively. The
corresponding CD, CL ranges are highlighted by black boxes in the two figures. We observe
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Figure 5. Task 3: ε1 and ε2 are independent. (a,c) The DRL from scratch using 16 2-D simulations at ReD =
500; (b,d) TL at ReD = 104. Panels (c,d) where the top row refers to ε1 and the bottom row refers to ε2, shows
the policy at the episodes indicated by the black circles in the corresponding figure of upper panel, respectively.

that, at both ReD, the policies for ε1 and ε2 both gradually approach the value that results
in optimal η, which clearly shows the exploration and exploitation stages at work.

4. Summary

We have implemented a DRL in the numerical simulation of bluff body flow active control
at high Reynolds number (ReD = 1.4 × 105). We demonstrated that, by training the DRL
using the simulation data at low ReD, and then applying TL at high ReD, the overall
learning process can be accelerated substantially. In addition, the study shows that the
TL can result in a more stable decision, which is potentially beneficial to the flow control.
Moreover, we proposed a multi-client-single-server DRL paradigm that is able to generate
training data much faster to quickly discover an optimal policy. While here we focus on a
specific external flow, we believe that similar conclusions are valid for wall-bounded flows
and different control strategies.
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Figure 6. Time series of CD and CL on the main and control cylinders: (a,c) ReD = 104; (b,d) ReD = 1.4 ×
105. Note that the control cylinders are rotating at constant speed at ε1 = −1, ε2 = 1, εmax=3.66. The red lines
are the hydrodynamic force coefficients on the main cylinder, while the blue and pink ones are on control
cylinders 1 and 2, respectively.
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Appendix A. Simulation results of control cylinders rotating at constant speed

In this section, the simulation results for the cases where both control cylinders are
rotating at constant speed |Ω| = εmax = 3.66. Figure 6(a–d) shows CD and CL on the
three cylinders at ReD = 104 and ReD = 1.4 × 105, respectively. We observe that, with
rotating control cylinders, the CD on the main cylinder at both ReD is reduced significantly.
With εmax = 3.66, the control cylinders are not able to cancel the vortex shedding on the
main cylinder, thus CL on the main cylinder at both ReD exhibits the frequency of vortex
shedding. In particular, at ReD = 1.4 × 105, the magnitudes of CL on control cylinders 1
and 2 show notable discrepancy from each other, which leads to symmetry breaking on the
average at this ReD. In addition, figure 7 plots Cf on the control cylinders at both ReD. As
shown in the figure, at both ReD, on average, the magnitudes of Cf on the control cylinders
are different.

In order to validate the optimal control strategy given by DRL in task 2 and task
3, additional simulations with ε2 = 0, ε2 = 0.6, ε2 = 0.75, ε2 = 0.9 and ε2 = 1.0 for
ReD = 500, and ε2 = 0, ε2 = 0.85, ε2 = 0.9 and ε2 = 1.0 for ReD = 104 are performed.
Figure 8 plots the power gain coefficient η as a function of ε2. Note that the value of η at
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Figure 7. Time series of frictional coefficient (Cf ) on the control cylinders at ReD = 104 and
ReD = 1.4 × 105, ε1 = 1, ε2 = 1, εmax=3.66.
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η

Figure 8. Power gain coefficient (η) varies with ε: blue, ReD = 500; red, ReD = 104. Note that, at
ReD = 104, the value of η has been enlarged by three times. Here, εmax = 3.66.

Re = 104 has been enlarged by three times in order to show the variation more clearly. We
observe that the minimum of η for ReD = 500 is around ε2 = 0.75, and it is ε2 = 0.9 for
ReD = 104.

Appendix B. Validation of simulation of cylinder flow at high ReD

In order to validate the numerical method (spectral element plus entropy–viscosity), LES
of flow past a cylinder at ReD = 1.4 × 105 have been performed. The computational
domain has a size of [−12 D, 16 D] × [−10 D, 10 D] in the streamwise (x) and cross-flow
(y) directions, respectively. The domain is partitioned into 2044 quadrilateral elements.
The size of elements around the cylinder in the radial direction is 0.0016 D in order to
resolve the boundary layer. The domain size in the spanwise (z) direction is 3D. Uniform
inflow velocity is prescribed at the inflow boundary, a homogeneous Neumann boundary
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Study CD CL St Lr φs

Present LES1 0.95 0.63 0.22 0.69 93
Present LES2 1.13 0.49 0.21 0.74 94
Breuer (2000) LES 1.29 — 0.203 0.46 92.59
Braza et al. (2006) experiment — — 0.21 0.78 —

Table 1. Sensitivity study of the simulation result to the mesh resolution: flow past a single circular cylinder at
ReD = 1.4 × 105. Here, CD is the mean drag coefficient, CL is the root-mean-square value of the lift coefficient,
St is the Strouhal number, Lr is the length of the recirculation bubble and φs is the separation angle. The (Breuer
2000) LES is case D2. LES1 and LES2 correspond to the mesh resolutions 1 and 2, respectively.

1

0
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–3
0

Cp

50 100 150 200 250 300 350

3

2

1

0

–1

–2

–3
0 50 100 150

Present LES Re = 140K

Present LES Re = 140K
Cantwell & Coles experiment Re = 140K
Achenbach experiment Re = 100K

Achenbach experiment Re = 100K

200

θ
250 300 350

τ/
�R
e

(a)

(b)

Figure 9. Local pressure and skin friction coefficient at ReD = 1.4 × 105; comparison with the literature.
Note that ‘Present LES’ is from the simulation using mesh LES2, ‘Cantwell & Coles experiment’ refers to
the experiment by Cantwell & Coles (1983), ‘Achenbach experiment’ refers to the experiment by Achenbach
(1968).

condition for velocity and zero pressure is imposed at the outflow boundary, and wall
boundary condition is imposed at the cylinder surface and a periodic boundary condition
is assumed at all other boundaries. In particular, two simulations of different resolution
are performed: LES1, third-order spectral element, 120 Fourier planes, �t = 1.5 × 10−4;
LES2, fourth-order spectral element and 160 Fourier planes, �t = 1.0 × 10−4.
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Figure 10. Validation of the LES: (a) mean centreline velocity ū/U∞; (b) mean velocity ū/U∞ at x/D = 1;
(c) mean turbulent shear stress u′v′/U2∞ at x/D = 1. Note that ‘Present LES’ is from the simulation using mesh
LES2, ‘Cantwell & Coles experiment’ refers to the experiment by Cantwell & Coles (1983).

Table 1 presents the statistical values of CD, CL, St, Lr and φs from the simulation at
ReD = 1.4 × 105. We observe that the simulation results agree with the values obtained
from literature very well, and the results are not sensitive to the mesh resolution. A further
validation with the experimental measurement is shown in figure 9, which plots the mean
local Cp and Cf . Again, the simulation results agree with experimental measurement
very well. Figure 10 exhibits the comparison between present LES and the experimental
measurement by Cantwell & Coles (1983). It could be observed that the LES results
of the mean streamwise velocity ū/U∞ along horizontal line y = 0 and vertical line
x/D = 1 are in good agreement with the experiments. Figure 11 shows the streamlines
and contours of the mean velocity and Reynolds stress in the near wake. The results
shown in the figures agree with figures 5 and 6 of Braza, Perrin & Hoarau (2006)
well.
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Figure 11. Validation of the LES: mean velocity and Reynolds stress field. Note that the reference results are
shown in the figures agree with figures 5 and 6 of Braza et al. (2006). The present simulation results are from
the simulation using mesh resolution LES2. (a) Streamlines; (b) ū; (c) v̄; (d) uu; (e) vv; ( f ) uv.
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