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ABSTRACT

Three ways to improve the theory and therefore the understanding of
the physical processes in the interplanetary medium (during both quiet
and disturbed periods of solar activity) are suggested. They are: (1)
the development and consequently the use of higher order moments (fluid)
equations as well as of more realistic closure conditions and tramsport
coefficients for the macroscopic description of the solar wind 5 (2)
the undertaking of computer simulation experiments on the nonlinear
collective relaxation process through particle-wave-particle interaction
due to the plasma electromagnetic instabilities which may develop under
conditions prevailing in the solar wind; and (3) the consideration of
collective interactions in the evaluation of the transport coefficients,
as deduced from the quasi-linear theory and computer simulation exper-
iments, and their incorporation into the higher order moment equations.

1. INTRODUCTION

It is now recognized that the solar wind phenomenon represents
that part of the solar corona which is not confined by the solar mag-
netic field, and therefore escapes into interplanetary space. Essen-
tially, the solar wind is a warm, magnetized, almost collisionless
multicomponent plasma whose space and time behaviour depends on the
activity of the sun's surface. The physical processes occurring in
such plasma systems are rather complex.

Since the pioneering work by Parker (1958), a large observational
and theoretical effort has been directed toward the understanding of
the solar wind phenomenon. The theoretical research followed two main
ways of investigation, namely the macroscopic (fluid) approach based
on the continuity, momentum and energy equations and the microscopic
(kinetic) approach based on Vlasov (correlationless Boltzmann) equation.
Significant progress has been achieved by these two methods; they are
summarized in the comprehensive review papers by Parker (1968, 1969)

Dessler (1967), Scarf (1970), Brandt (1970), Holzer and Axford (1970),
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Hundhausen (1972), Dryer and Cuperman (1972), Barnes (1975),
Dryer (1975, 1978), Burlaga (1975), Volk (1975), Hollweg (1975, 1978),
Holzer (1976), Cuperman (1977, 1979) and Suess (1978).

To further advance the understanding of the solar wind phenomenon,
besides additional detailed spacecraft observations, more advanced
theoretical methods are required. For example, the familiar fluid
theory used so far treats the particle density, streaming velocity and
temperature on a equal footing; however, it uses for the heat flux an
approximate expression which is invalid over most of the interplanetary
medium; also, it neglects higher order moments of the distribution
function which is equivalent to taking it to be a maxwellian distribu-
tion function, in contradiction to many of the actual observations
(c.f. Feldman et al., 1976).

On the other hand, the kinetic (collisionless) approach, which
correctly accounts for the shape of the particle distribution function
was developed for the case of infinite homogenous plasmas. Even in
that case, it adequately treats the linear stage of evolution and only
approximately the later (e.g., quasi-linear) stage. It is not able to
predict the dynamical behaviour of an unstable plasma system through
its nonlinear stage, as observed in the interplanetary medium (e.g.

Abraham-Shrauner et al., 1979).

This paper discusses three ways in which the theory of the solar
wind plasma can be advanced. They are: (1) the development and
consequently the use of higher order moments (fluid) equations as well
as of more realistic closure conditions and transport coefficients for
the solar wind; (2) the undertaking of computer simulation experi-
ments on the nonlinear collective relaxation process through particle-
wave-particle interaction due to the plasma electromagnetic instabili-
ties which may develop under conditions prevailing in the solar wind;
and (3) the use of "hybrid-models" in which collective contributions to
the transport coefficients as deduced from computer simulation experi-
ments are incorporated into the higher order moments equations in order
to describe the actual physical processes in the solar wind.

IT. A HIGHER ORDER FLUID THEORY

Recently, a generalized fluid theory which is required for the
description of time-dependent, spatially nonhomogeneous, anisotropic,
multi-species spherically systems of particles obeying an inverse-
square law of interactions was derived by Cuperman et al. (1979).

The generalization consists of the derivation —starting from the
Boltzmann equation—of a higher order, closed system of equations for
the moments of the particle velocity distribution £ (a=e, p, o, etc.).
Thus, in addition to the familiar equations for the particle demsity,
o, streaming velocity, <g?a and temperature, Ta’ this closed set of
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equations also includes equations for the heat flux, q as well as for
the fifth moment, ¢ = <(gf<g?)4> which characterizes the particles in
the tail of the disfribution function.

The particle-particle interaction terms in the Boltzmann's equa-
tion were calculated in the way indicated by the Fokker-Planck relaxa-
tion theory. Thus, the velocity distribution functions in the colli-
sional terms were represented by expansions in Legendre polynomials
corresponding to the particle distribution functions being functionals
of all the moments to be considered, i.e.

2 2

» VP YL a4, BT, €D

f =£f (n ,<v>
a( a’ r a’ 1 a’

a r a
(r, 1 indicate the radial and tangential directions, respectively).
This set of closed equations is relatively simple and mathemat-

ically tractable. Thus, the first five! moments of the distribution
function fa are defined as follows (VrE u, Vg = v, v¢ Zw):

_ 3
na(r,t): ffa(r,u,v,w,t) dv

_ -1 3
<u(r,t)>a: n Ju fa(r,u,v,w,t) d’v

_ 2

aa(r,t) = <(u-<u>a) > > kTa’r/ma

6 (r,6) = <vh> = > > kT /m (2)
a ’ a a a,1 a

e (r,t) = <(u-<u> )3> +> 1.2 q /n m

a ’ a a,r a a

E(r,t) = <(u<w)* - 32+ 0

a ’ a a

In these definitions, o_ and B_ are the mean squared random velocities
in the radial and tangential directions, respectively; € is related to
the radial heat flow; & represents the excess or deficiency of high
velocity particles in the tail of the distribution function relative

to a Maxwellian. In the case of a Maxwellian particle distribution
function, the quantities (2) take the values indicated by the arrows.

Following the procedure indicated above, Cuperman et al. (1979)
obtained the following closure conditions for the "mixed" higher order

moments

< (u-<u>) v2>= e/3

<(u—<u>)2v2>= z/3 - B(a-B) (3)
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where
B =(at+2B8 ) /3.

Finally, the closed set of moment equations read:
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In Eq. (4)
B@a GM0 ZaE
or Fa,r= rZ m ) (3)

where E is the electrostatic fieldz, G - the gravitational constant,
M0 - the solar mass, Za - the particle charge.

The r.h.s. of Eq. (4), representing the rate of change with time
of the moments of fa due to particle-particle interactions (i.e. the
transport coefficients) are given by the following expressions®:

8Ota _ 8 k(Tazr Tazl) "
Gt )™ " 15 m T {1+Z_Fb2}
c aa b#a i
m, b¥a m +mb Tab 27T T bfa Ma P2°
o€
_ay _ _ 174 _____L__ fﬁg
3t T T 400 n_m T L+ =) 7
a a aa b#a a
3, 6 sza . 6 Q,
Ge) = 7w (T, T, Die, 1320 T (e, )
a aa aa
m. KA(T,-T ) 0.4T
b b "a ‘TTa
+12 I & - ( -T. ) (8)
b#a ma+mb ™ Tab 1+lﬂ'b a,r

The expression for (3R /Bt) differs from that for (Ba/at)
only by the fact that (-8/15) is replaced by (+4/15) in the term
proportional to (T r-T ). Consequently, the following equation
giving the rate of changé of the thermal anisotropy (a B ) due to
particle-particle interaction is easily obtained:

__ 4 M ™
ey B} =~ 7 (T, ~T, ) {l+ T —=F ) (9
aa bfa a O’
In the Egs. (6)-(9), the "collision'" times are defined as (mab =
mamy/ (g )
2 3,2
_ 3m, [(kTa/ma)+(ka/m.b)] (10)

Tab- T 4(2m AN
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and

- 1/2 3,2 12,4 .
Taa Bma (kTa) /8m Zana 2nA (11)

. The quantities Fb,2’ Fb,o’ Lb,l’ Aga,Z and Aga,o and Qi.represent
simple algebraic expressions and are given in Cuperman et al. (1979).

At this point two remarks are in order:

(i) 1In Egs.(4) there exist three types of deviations from an
isotropic Maxwellian which are able to drive the system to a relaxed
state namely, the anisotropy factor (T _-T ), the heat flow q
and the non-thermal tail, £ . To thesgirong’ﬁas to add the dif-
ferences in the temperatures of the various species which act in the
same direction (i.e. Tb—Ta).

a,r

(ii) The evolution of a physical system described by such equa-
tions exhibits a global non-local behaviour.

For isotropic plasma components (Ti =T, L i = a,b), with the
notation TE(Tr+ 2Tl)/3=T;=Tl, the equatidons read":
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RPN '5£““’+ "2 Tor tk 5;'(naTa)+ r? - naZaE =0 12
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Q T ma k2 T, -T 0.6+l
T
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aa T2 b#a a&ﬂ% Tab l+I'b
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Finally, to recover the standard three-moment equations case, one
has to use the following simplifications:

. - -1 4 3 2 _
(1) g, =n, f(u_<u>a) £ d’v- 3(kTa’r/ma) = 0,

that is neglect the effect of the non-maxwellian tail of the particle
velocity distribution. Then, no equation for & is required;

(ii) in the Eq.(14), neglect in the 1.h.5.2 all the terms but the
fifth. One obtains

n oT
q - _ 6.9 aT K2T a,r
a,r 1+Z (nb/n )Lb 1M, aa a,r or

b#a

which is the familiar approximate relation used for the radial heat
flux. The simplifications implied by this expression are obvious.

III. COMPUTER SIMULATION EXPERIMENTS OF COLLECTIVE INTERACTIONS IN
MAGNETIZED PLASMAS

Computer simulations are able to provide information about the
time-evolution and the final state of an initially unstable plasma
system. They consist of the simultaneous solution of the Lorentz equa-
tion for each one of the many thousands of the plasma particles acted
upon by the external and collective electromagnetic fields (see, e.g.:
Haber et al., 1970; Morse and Nielson, 1971; Cuperman and Salu, 1972).
In the following two examples (relevant for the interplanetary medium)
are considered, namely one in which electromagnetic interactions are
dominant and another in which electrostatic interactions are dominant.

1. Ion-cyclotron (Alfvé%) electromagnetic instability.

For bi-Maxwellian particle distribution functions, the linearized
dispersion relation for electromagnetic ion-cyclotron waves (left-hand
polarization) propagating along a static and homogeneous magnetic field
-Eo may be written as (e.g. Cuperman and Landau, 1974):

we . f .[1+(kv“/w)A.]
22 (21272 = 1 + 5 —Blp _bd 1 v (17)
P wk v"-sj H

where the summation is overall + and -, warm and cold plasma components.
The notation used is as follows: complex frequency wr+iwi; real wave-

number of disturbance k; v, s Vv, are particle velocity components
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parallel and perpendicular to B , respectively; plasma frequency w_;

light velocity c; f is the—garticle distribution function de-

fined by 03
1 °V2 1 _VZI
f=ff= exp ( ). exp(5—z—) (18)
= SmeZ  eXp e 72 P52
o L2 n 2% en @MY en 2% L th
where V. th = (I(Tl/m)l/2 and V“,thz (I(T"/m)l/2 represent the

thermal velocity in the directions perpendicular and parallel to B ,
respectively. Other notations are Aj = (TL/T")j'l and s _(w_g )/k,

.

where Q, is the cyclotron frequency defined by Q. = B /m.c and
9;= ZJeJ is the particle charge. Expressing the 3

integral part in (17) in terms of the plasma dispersion function Z(i )
one may rewrite (17) as

212 2 2 _ 1
k= w’+ Zw  {A.- =

j P Il th, ]

For the case of a warm anisotropic plasma consisting of warm ions
and cold electrons, assuming (i) w,<< w_, (ii) v_=[(Q _-w)/k]>> v
, g (1) w,<< w, L@ D> v

(iii) k%c?/w?>> 1, and (iv) k is given by the 'cold' plasma dispersion
relation (Kennel and Petschek, 1966), from (19) one obtains the approx-
imate analytical expressions (B= 8‘rmkaII p/Bo), V" Alfvén speed)

’

Z(Ej)[(Aj+1)(Qj—w)—Qj]} . (19

1 1(1-x)° ?[(A+1) (1-x)-1] exp{_(l—x)3 }

Y E T G Py BM 28 o 0
2 o2¢q_y"1 -
(kvA/Qp) x“(1-x) -, x = wr/Qp . (21)
The maximum growth rate is (Cuperman et al., 1975)
n A (1-x,)-x (1-x,)°
_diy - Tyiz2 _P 1" 1.0 (5,2 _
e T @ Sramy o0 el T, @

where X, and Qm are simple algebraic expression given in Cuperman et al.

(1975). Notice that as a consequence of the assumptions (i)- (iv), the
results (20)-(22) only hold for plasma values such that PPE B A (A +1)<<1

As it is seen, even though significant information is provided by
the approximate theory based on the linearized Eq. (19), its use is
rather limited. Thus, it is only for small p_(i.e., small T /T" and
small B) values that the results hold. Moreover, the linear predlc—
tions hold only for the initial stage of the instability, which re-
presents a relatively small time period of evolution. Although addi-
tional important information can be achieved from a quasi-linear
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treatment, the only way to relieve the mathematical restrictions and
physical approximations required by analytical treatments is by per-
forming computer simulation experiments. This important point has now
been established by detailed examination of individually-measured pro-
ton velocity distribution functions in space (Abraham-Shrauner et al.,
1979) as discussed below.

Figures (1) and (2) give results obtained in the computer simula-
tion of the electromagnetic ion cyclotron instability in homogeneous
plasma systems with parameters kT = 25 keV, B=1 and T /T, = 100 (Cuper-
man and Sternlieb, 1975; see alsop’%uperman et al., 1976)]‘ As seen, a
strong electromagnetic ion cyclotron instability develops, as expected
from theoretical (linear) considerations. The initial low electro-
magnetic noise (WB(O)/Wt " " 0.0004) develops into a significant elec-
tromagnetic wave energy Yevel which, at its maximum represents about
10% of the total energy in the system; this represents an increase by
a factor of 230!

Inspection of Aﬁl and ﬁé curves shows that Aﬁ; p is always larger

, ’

than W_ by at least a factor of three. This indicates that significant
non-linear processes occur starting from the very beginning of the in-
stability. Thus, the electromagnetic field developed during the in-
stability heats (non-resonantly) the protons (mainly) in the plasma
system and, consequently appears to possess less energy than expected
from pure 'linear' considerations (which do not take into account such
processes). This suggests the true (nonlinear) measure of the insta-
bility developed to be the change in the total proton transverse kin-
etic energy, W (0) (which is the actual energy source available in
the the system}’?ather than the enhancement of the electromagnetic ion
cyclotron waves.

A natural result of the instability should be the tendency of the
system towards thermal equilibrium, (T /T,) - 1. This is indeed ob-
served to occur in the experiment as ifidicaled in Figure 2. Thus,
after a time about 800w __~+, the transverse kinetic energy Wl (0) has

decreased by about 25% and the parallel kinetic energy W" (05 has in-
creased by a factor of about 26! Consequently, the kinetiB anisotropy

0.5W_L p/W" P which at t = 0 represents the thermal anisotropy, (?L/T")p)
has decreased from '100' to '2.9'. The fact that the last value is

different from 'l' (as expected on the grounds of linear theory) may
be due to the fact that the quasi-final (from a collective point of
view) state in the experiment is one in which a significant amount of
electromagnetic wave energy is present. This suggests the establish-
ment of a non-linear quasi-equilibrium state for which the instability
criterion may well be different from that predicted by the linear
theory.

This result is of special interest for the solar wind. Indeed,
recently, Abraham-Shrauner et al. (1979) have analyzed electromagnetic
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Fig. 1 The evolution in time of AWL , the relative change_in the_ total
transverse kinetic energy of the warm anisotropic protons, wb (8m)~1
Zlehylﬁt)l /Weot the relative transverse magnetic wave energy and

W= =(8m) Zk Eh " (t)| /Wesy the relative longitudinal electrostatic
energy.

Fig. 2 The evolution in time of the total proton kinetic energies Wy ,P
and W|h9 (top) and of the anisotropy ratio (0. SQL/W“) (bottom). At

instabilities of field—allgned right-hand circularly polarized magneto-
sonic waves and left-hand circularly polarized Alfvén waves driven by
two drifted proton components for model parameters determined from Imp 7
solar wind data measured during high-speed flow conditions. The authors
found that (i) measured distributions are linearly unstable with respect
to Alfvén waves; (ii) the characteristic of the proton velocity distri-
butions in the high speed solar wind that is primarily responsible for
driving the Alfvén instability is the large thermal anisotropy of the
main proton component observed by Feldman et al. (1976) in high speed
streams (T /T = 3.1+ 0.7); and (iii) the instability of the Alfvén
wave is tnconszstent with the persistence of the model fits to the
measured proton velocity distribution function, since the calculated
e-folding times are very short — of the order of 1 min.

To explain the reason why' linear stability theory appears to fail

for the Alfvén instability the authors adopted the resolution suggested
by Cuperman and Sternlieb (1975) to explain the saturation value, ~ 3
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in the simulation experiment described above. Namely, the instability
criterion of the linear theory (Tl/T”>1) may not apply to the compo-
site wave-particle plasma state. Instead, stabilization may result
from the establishment of a nonlinear quasi-equilibrium state which
necessarily includes the wave field.

2. Beam-plasma instability.

The electrostatic dispersion relation for homogeneous unbounded
plasmas in a constant magnetic field B = Boz and for disturbances with
wave vectors k along B , may be written in the following form (Mont-
gomery and Tidman, 1964)

2 2 + oo [ afo'/avll
RzZ= - w'+ 2Tw ; w . I v"dw'fo vldvl E;;%Zr—- = 0, (24)

J

where the summation is over the plasma components. Here w is the com-
plex frequency of the disturbance, fo. is the equilibrium distribution
function and w_. is the plasma frequeﬁcy of the j-plasma component.
The notations | , L refer to parallel and transverse direction with
respect to B . The longitudinal electrostatic waves propagating par-
allel to §0 8%e unaffected by the magnetic field.

In the following we will not elaborate on the linear (or quasi-
linear) theories, as done for the case discussed in Section III.l.
Rather, we will discuss the non-linear simulation results. Computer
simulation experiments of the interaction between electron beams and
background plasmas have been carried out by a number of authors (see,
e.g. Cuperman et al., 1976). Both electrostatic and electromagnetic
interactions were simultaneously considered. The relative beam con-
centrations considered were €=n, /n. = 1,0.1 and 0.01 (cases A, B and C,
respectively). In all cases, the bgckgropnd plasma (1 eV thermal energy)

was penetrated by an electron beam of 1 keV streaming energy and 5%
thermal spread in the streaming direction. The following results emer-
ged (see also Fig. 3):

(1) All the systems were strongly unstable against the electro-
static beam-plasma instability; the electromagnetic interaction was
negligible. In the linear stage, the measured growth rates were in
satisfactory agreement with the linear predictions for cold beam-plasma
interacting systems.

(2) The maximum relative electrostatic energy developed, WX =
wza: /Wtot was 5.7, 8.8 and 6.3% for cases A, B and C, respectivéely.
Thus, although € varied by a factor of 100, WX yas almost unchanged.

This indicates an almost linear relationggip fedieen Wza: and W ot’
N 0.7 W for 102<e< 1. These W. values werS ®'reached

e.s. .S,
atter a time tswp v 18, 30 and 75, respectively.
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Fig. 3 The velocity distribution functions of the beam-plasma

systems at several times of evolution.

(3) At the same time t , the streaming energy of the beam repre-
sented the following fraction of its initial value: 49,.5%(A), 67.7%(B)
and 76.7%(C). The parallel thermal energy in the beam increased by a
factor of 4.5, 3 and 1.8, respectively. The largest change occurred
in the parallel thermal energy of the background plasma which increased
by a factor of 279, 136 and 2.1, respectively.

(4) At the end of the run, t in all three cases the kinetic
states of the beam and plasma electrons were almost the same as at the
saturation time, in spite of periodic changes which occurred between

t and t . (In case A, for example, at the time tw_ Vv 25 the
s end P —
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streaming energy in the beam decreased below the plasma thermal energy:
W, = 330eV and W_ = 430 eV.)
b,s P

(5) As a result of nonlinear wave-particle and wave-wave inter-—
actions, electromagnetic waves were generated in the unstable beam-
plasma configuration. However, the relative importance of electromag-
netic to electrostatic activity was small, We m /We w Vo107,

(6) At the end of the run, particle distribution functions which
were "nonlinearly" stable were obtained.

These results are relevant for the solar wind. Lemons et al.,
1979, performed a linear analysis of plasma configurations measured
with the Los Alamos instruments on Imp 7 and 8 during or close to times
when electrostatic fluctuations have been observed. The authors con-
cluded that the Zon-beam instability is more likely the cause of the
observed e.s. fluctuations. Since the time required by the Imp particle
analyzers to make a complete measurement of the particle distribution
is much larger than the periods of enhanced electrostatic fluctuations,
one expects the observed distribution functions to be stable.

The suggestions by Lemons et al. (1979) are consistent with the
results of the computer experiments of Cuperman et al., 1976, described
above. The experiments provide complete quantitative information on
the evolution of the beam-plasma systems through their nonlinear and
final stages, which are the ones mostly observed by the instruments;
this is so because of the short duration of the linear stages. Indeed,
the particle distribution functions in the last row of Figure 3 (cor-
responding to the end of the computer simulation experiments) are re-
presentative for the "stable" distribution functions discussed by
Lemons et al. (1979) in their work.

IV. HYBRID-MODELS

Both approaches indicated above are very useful for theoretical
solar wind studies. However, each one has its limitations. Indeed,
the fluid approach does not include the collective interactions which
could play a significant role. The computer simulations, on the other
hand assume specially uniform plasma systemss. A hybrid method exploit-
ing the capabilities of both approaches is obviously desired, and such
a method is being used for fusion plasmas in which electromagnetic tur-
bulence plays an important role (e.g., Krall and Liewer, 1973)%. The
model consists of a system of continuity, momentum and energy equations
to be integrated numerically and including the effects of turbulence,
selfconsistently considered through anomalous transport coefficients.
The last ones depend on the unstable modes which can develop in time
and space as the macroscopic parameters evolve; they are based on the
quasilinear theory in conjunction with nonlinear bounds as obtained in
computer simulation experiments. This method has been successfully
used for the investigation of theta pinches, for example.
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In the above models only, the case of collisionless plasmas was
treated. That is, the transport coefficients were purely anomalous,
as no particle-particle interactions were considered.

For the solar wind case in which collisions can play a non-negli-
gible role over a significant part of the interplanetary range, a gen-
eralization of the hybrid-model is indicated. Thus, the higher order
moment equations described in Section II (in which particle-particle
interactions are considered) should be complemented by anomalous con-
tributions to the collisional transport coefficients. The last ones
should be obtained from quasilinear theories bounded by the results of
computer simulation experiments as described in Section III.

V. NOTES

1. Actually the first six moments, if the radial and tangential
random kinetic energies are considered to be different moments.

2. This electric field is responsible for the maintenance of
both the equality in the particle fluxes (electrons and positive ions)
in the solar wind, and the charge neutrality of the sun.

3. Here, as in the previous equations, kT is used to denote the
mean random kinetic energy, rather than "thermal" energy (which is only
defined in the Maxwellian case).

4. TFor comparison, for the case a=e, b=p, from (9) one recovers
the following particular expression used by Braginskii (1965)

- 1/2 3/2 1/2 4
Tep 3me (KTe) /4(2m) e np nA ,

5. Particle-particle interactions can be also considered simul-
taneously in computer simulation experiments.

6. Sometimes, hybrid models consist of "fluid" electrons and
"particle" ions (e.g., Hamasaki et al., 1977).
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