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Picard curves over Q with good reduction away from 3

Beth Malmskog and Christopher Rasmussen

Abstract

Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves
over Q with good reduction away from 3, up to Q-isomorphism. A correspondence between the
isomorphism classes of such curves and certain quintic binary forms possessing a rational linear
factor is established. An exhaustive list of integral models is determined and an application to
a question of Ihara is discussed.

1. Introduction

Let k0 be a field of characteristic other than 2 or 3. A Picard curve C/k0 is a smooth, projective,
absolutely irreducible cyclic trigonal curve of genus 3. Over any extension k/k0 possessing a
primitive cube root of unity, the required degree 3 morphism x : C → P1 is Galois, and one
always may recover from this map a smooth affine model of the form

y3 = F (x, 1),

where F (X,Z) ∈ k0[X,Z] is a binary quartic form. Picard curves are always non-hyperelliptic,
and provide the simplest examples of curves of gonality 3. They have generated interest from
geometric, arithmetic and computational perspectives. Picard curves and their moduli arise in
connection with some Hilbert problems (see [13]) and the monodromy of such moduli spaces
have been studied in [1]. Efficient algorithms have been found for arithmetic on the associated
Jacobian varieties over finite fields (see [5, 10, 11]). Algorithms for counting points (see [6])
and statistics on point counts for Picard curves and the associated Jacobian varieties have also
been studied (see [8, 25]).

In the present article, we enumerate all Q-isomorphism classes of Picard curves C/Q with
good reduction away from 3. Because both the geometry and the arithmetic of such curves is
exceptional, they have some applications to an open question of Ihara, which we discuss briefly
at the end of the paper.

1.1. Blueprint of Smart

In [23], Smart enumerated all curves C/Q, up to Q-isomorphism, subject to the constraints:
• C has genus 2; and
• C has good reduction away from the prime 2.

Because all such curves are hyperelliptic, they are naturally equipped with a degree 2 morphism
to P1. To carry out the exhaustive search, Smart first establishes a one-to-one correspondence

Q-isomorphism classes

of genus 2 curves C/Q
good away from 2


/twists

∼=←→


Z[ 12 ]-equivalence classes

of binary sextic forms

good away from 2

 .
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(The definition of Z[ 12 ]-equivalence is explained in § 2.) The correspondence is straightforward:
given a representative F (X,Z) of a class from the set on the right, the associated curve C has
an affine model of the form y2 = F (x, 1). However, this association is not quite one-to-one;
if K/Q is a quadratic extension unramified away from 2, then the set on the right cannot
distinguish between a curve C and its quadratic twist by K. The subscript ‘twists’ indicates
that the association is a bijection up to this family of twists; of course, recovering the distinct
twists is trivial once one curve in the family is known, since there are only a finite number of
extensions K/Q with the necessary properties.

Any class from the right-hand set has a representative F (X,Z) whose numerical invariants
may be expressed in terms of solutions to an S-unit equation over the splitting field
of F . By [7, Lemma 3], this field is bounded in degree and may ramify only at 2. Hence,
there are only finitely many fields to consider, and each yields only finitely many solutions to
the S-unit equation. Smart then gives the results of a complete search; first finding all possible
S-unit equation solutions (and thus all possible numerical invariants), and then determining
at least one representative for each of the desired classes of sextic forms. Recovering the genus
2 curves is now immediate from the correspondence. The process does not boil down to brute
force, however. Smart employs several non-trivial algorithms to reduce the search to one of
manageable size.

1.2. Picard curves via Smart’s approach

As a hyperelliptic curve C/k is equipped with a degree 2 morphism C → P1, one might suspect
that the generalization of Smart’s approach to the case of Picard curves will be immediate.
That is, should one expect the association

Q-isomorphism classes

of Picard curves C/Q
good away from 3


/twists

−→


Z[ 13 ]-equivalence classes

of binary quartic forms

good away from 3


also to be a one-to-one correspondence, up to twists? Unfortunately, not: the association of
classes of forms to isomorphism classes of Picard curves is not even well defined, as there are
Z[ 13 ]-equivalent quartic forms F , G whose associated Picard curves

CF : y3 = F (x, 1), CG : y3 = G(x, 1)

are not isomorphic over Q. In § 3, we introduce a finer notion of equivalence which will let
us establish a correspondence between isomorphism classes of Picard curves and equivalence
classes of forms.

Once this correspondence is established, the search for Picard curves with good reduction
away from 3 follows Smart’s program in many important respects. However, the project
diverged from Smart’s work in the more delicate nature of the curves involved, which
necessitated developing modified algorithms for determining all equivalence classes. This paper
also includes one theoretical improvement to Smart’s approach: Lemma 6.3 makes the use of a
p-adic Lenstra–Lenstra–Lovácz (LLL) reduction unnecessary. We may avoid using the bounds
on p-adic logarithmic forms established by Yu [26] as well as the p-adic LLL algorithm used
by Smart [22, § 4]. The primary result of the paper is the following theorem.

Main Theorem. Up to Q-isomorphism, there are exactly 63 Picard curves C/Q with good
reduction away from 3. Moreover, up to cubic twists, there are 21 classes of such curves; each
of these contains exactly three Q-isomorphism classes of Picard curves (corresponding to the
twists by α = 1, 3, 9).
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1.3. Outline

In § 2, we introduce some notation and review some background on binary forms from Smart’s
methods. In § 3, we introduce a finer notion of equivalence and establish the desired one-to-
one correspondence between classes of Picard curves and classes of objects called quintic-linear
pairs. In §§ 4 and 5, we explain how to recover a representative from each equivalence class of
quintic-linear pairs over Q with good reduction away from 3. In § 6, we describe the methods
used to solve the S-unit equation. In § 7, we provide explicit models for the classes of Picard
curves and discuss further directions and applications of the work.

2. Notation and background

2.1. S-integers and S-units

Let K/Q be a number field with n1 real embeddings and n2 pairs of conjugate complex
embeddings (so [K : Q] = n1 + 2n2), and let

S = {p1, . . . , ps, ps+1, . . . , ps+n1 , ps+n1+1, . . . , ps+n1+n2}

be a finite set of places of K that includes all the infinite places of K and exactly s finite
places. By convention, we enumerate first the finite places, then the real, then the complex
infinite places. Let OK be the ring of integers of K and let OS be the ring of S-integers in K.
If K = Q and S = {p1, . . . , pr,∞}, then the ring OS has the form

OS = S−1Z = Z
[

1

p1
, . . . ,

1

pr

]
.

For any OS-ideal a, let a∗ denote an OK-ideal, coprime to the finite places of S, such that
a = a∗OS . The OS-norm of a is

|a|S := NK/Q(a∗)1/[K:Q].

For any α ∈ OS , we set |α|S = |αOS |S . We let O×S be the group of S-units in K.
Let SQ be a fixed, finite set of rational primes, together with ∞, the infinite place of Q.

Often the set S will contain precisely those places of K lying above a place of SQ. Even more
explicitly, we usually have in mind SQ = {3,∞}. We record the following fact for later use in
solving S-unit equations.

Lemma 2.1. Suppose K is a number field with [K : Q] 6 6, for which the extension K/Q is
unramified away from {3,∞}. Then:

(i) there is a unique, totally ramified prime p in OK above (3); and
(ii) the class number of K is 1.

Proof. There are only finitely many fields K which satisfy the hypotheses of the lemma; a
complete list may be found from the number field database of Jones and Roberts [14]. The
verification of (i) and (ii) is immediate for each field by explicit computation.

Table 1 records all the number fields for which the lemma applies and which either have
degree 6 4 or are the Galois closure of such a field. In particular, fields K0,K1,K2 are Galois,
K3, K ′3, K ′′3 are conjugate and L3 is the Galois closure of K3. (There are two additional sextic
fields unramified away from {3,∞}, but we will not need these in the subsequent work.)

https://doi.org/10.1112/S1461157016000413 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000413


picard curves over Q good outside 3 385

2.2. Binary forms over number fields

Keep K and S as in the previous section. Let

F (X,Z) = arX
r + . . .+ a2X

2Zr−2 + a1XZ
r−1 + a0Z

r ∈ OS [X,Z]

be a homogeneous binary form of degree r with coefficients in OS . Then F (X,Z) factors over
some finite extension L/K as

F (X,Z) =

r∏
i=1

(αiX + βiZ), αi, βi ∈ L.

It is useful to write this in the shorthand

F (X,Z) =

r∏
i=1

〈ai,X〉,

where X = (X,Z)T and ai = (αi, βi)
T .

2.2.1. Discriminant. The discriminant of F (X,Z) is the quantity

D(F ) =
∏

16i<j6r

(αiβj − αjβi)2 ∈ K.

It vanishes if and only if one linear factor of F is a scalar multiple of another linear factor
(that is, if F (x, 1) has a repeated root or Z2 | F (X,Z)). We note that, for any µ 6= 0,
D(µF ) = µ2r−2D(F ).

Since the form F has integral coefficients, we may consider its reduction modulo any prime p
of OK . This gives a binary form F over the residue field OK/pOK . If degF > 1, we say F
has good reduction at p if the reduced form F has no repeated linear factors up to scaling.
Equivalently, D(F ) 6= 0 in the residue field, or p - D(F )OK , which is the same. We say that F
has good reduction outside S if F has good reduction at every p 6∈ S. This is equivalent to the
condition D(F ) ∈ O×S . In case when F is linear (in which case the discriminant is always 1),
we say that F = αX + βZ has good reduction at p if p - (α, β)OK . Thus a linear form has
good reduction outside S if and only if (α, β)OS = OS .

2.2.2. OS-equivalence. Let R be a commutative ring with 1 and let F ∈ R[X,Z] be a
binary form of degree r. For a matrix

U =

(
a b
c d

)
∈ GL2(R),

Table 1. Number fields of small degree unramified outside {3,∞}.

Field Degree Minimal polynomial

K0 1 x− 1
K1 2 x2 + x+ 1
K2 3 x3 − 3x+ 1
K3 3 x3 − 3
K′

3 3
K′′

3 3
L3 6 x6 + 3
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we define FU (X,Z) = F (UX) = F (aX + bZ, cX + dZ). We say that two binary forms F ,
G ∈ R[X,Z] are R-equivalent, and we write F ∼R G if there exist U ∈ GL2(R) and λ ∈ R×
such that G = λFU . This is an equivalence relation on binary forms of degree r. It is also the
notion of equivalence of forms mentioned in the introduction when R = Z[ 12 ] or R = Z[ 13 ].
The form FU has discriminant

D(FU ) = (detU)r(r−1)D(F ).

If R = OS and D(F ) ∈ O×S , then D(G) ∈ O×S for any G ∼OS F . Thus the property of
possessing good reduction outside S is preserved under OS-equivalence.

2.2.3. Proper factorizations. We recall the notion of field systems from [23]. Let us assume

that K = Q and S = SQ. Fix an algebraic closure Q of Q. Then a binary form F ∈ OS [X,Z]
has a factorization over Q of the form

F = λF1 . . . Fm, λ ∈ Q×, Fj ∈ Q[X,Z] irreducible.

For each 1 6 j 6 m, let Mj ⊆ Q be a minimal extension of Q over which Fj(x, 1) admits a
root, or Mj = Q if Fj = Z. The field Mj is unique up to conjugation. The field system of F is
the m-tuple (M1, . . . ,Mm). It is well defined up to conjugation of the Mj and the indexing
of the irreducible factors of F . Moreover, the field systems of two OS-equivalent forms must be
the same up to conjugation.

Let M be the Galois closure of the compositum M1 . . .Mm. If ri = [Mi : Q], then each Mi

admits ri embeddings ψij : Mi ↪→ Q. We extend the field system to a list of exactly r fields
(M1, . . . ,Mm,Mm+1, . . . ,Mr) by appending the conjugate fields ψij(Mi). Of course, we may
have repeated fields in this list or even in the field system. The field systems considered in this
project are listed in Table 2.

Let Σr denote the permutation group on {1, . . . , r}.

Lemma 2.2. After rescaling λ, reindexing the ai and reindexing the fields Mi for 1 6 i 6 r,
we may assume that the factorization F = λ

∏
〈ai,X〉 satisfies ai ∈M2

i . Moreover, there exists
an injective group homomorphism ι : Gal(M/Q) → Σr such that, for every i with 1 6 i 6 r,
aσi = aι(σ)(i).

Proof. The proof follows by enumerating the various embeddings of the Mi and then
reindexing carefully; the details are explained in [23, pp. 273–274].

Remark. The homomorphism ι allows us to identify Gal(M/Q) as a subgroup of Σr in a
way that respects the action on the ai. For the remainder of the paper, we will abuse notation
and suppress the homomorphism ι. Hence, we simply write aσ(i) for aι(σ)(i).

A factorization of F (X,Z) satisfying the conclusion of Lemma 2.2 is called a proper
factorization. For each field Mi, let Si denote the set of places in Mi which lie above a place

Table 2. Relevant field systems for r = 4.

M M0 M1 M2 M3 M

(K0,K0,K0,K0) K0 K0 K0 K0 K0

(K0,K0,K1) K0 K0 K1 K1 K1

(K0,K2) K0 K2 K2 K2 K2

(K0,K3) K0 K3 K′
3 K′′

3 L3

(K1,K1) K1 K1 K1 K1 K1
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of S, and let T denote the set of places in M which lie above a place of S. A proper factorization
of F is called S-proper if:

(1) D(F ) ∈ O×S ;
(2) λ = 1;
(3) ai ∈ O2

Si
for each i; and

(4) the OSi-ideal (ai) = (αi, βi)OSi is OSi .
By [23, Lemma 1], each OS-equivalence class of binary forms of degree r with good reduction
outside S contains a representative F which has an S-proper factorization.

2.3. Arithmetic data of binary forms

We keep K = Q, S = SQ in this section. Throughout, let F (X,Z) ∈ OS [X,Z] be a binary
form of degree r with D(F ) ∈ O×S , with a known S-proper factorization F =

∏
i〈ai,X〉. For

any indices i, j with 1 6 i, j 6 r, define

∆i,j = det(ai aj) = (αiβj − αjβi).

We know that ∆i,j = −∆j,i and ∆i,i = 0. Moreover, each ∆i,j ∈ O×T if i 6= j, and D(F ) =
±
∏
i6=j ∆i,j . We let ∆(F ) = (∆i,j) ∈ Mr×r(OT ). This is called the companion matrix of the

S-proper factorization.
For any index i with 1 6 i 6 r, we also define

Ωi =
∏
k 6=i

∆i,k ∈ O×T .

In fact, we may be sure that Ωi ∈ O×Si : if σ acts trivially on Mi, then it fixes ai, and so
∆σ
i,j = ∆i,σ(j). Thus Ωσi =

∏
k 6=i ∆σ

i,k =
∏
k 6=i ∆i,σ(k) = Ωi.

Let {ρj}tj=1 be a Z-basis for the torsion-free part of O×T . Then there exists a root of unity
ζi ∈M and aj,i ∈ Z such that

Ωi = ζi ·
∏
j

ρ
aj,i
j,i . (1)

For a particular S-proper factorization, we have little control over the exponents aj,i. However,
up to OS-equivalence, we are guaranteed small exponents for the values Ω1, . . . ,Ωm.

Lemma 2.3. Suppose that F ′ is a binary form of degree r with D(F ′) ∈ O×S . Then F ′ is
OS-equivalent to a binary form F with an S-proper factorization for which the exponents aj,i
of (1) simultaneously satisfy

0 6 aj,i < (r − 2)(2r − 2)

for every 1 6 i 6 m.

Proof. This is [23, Lemma 2].

When r > 4, we also define cross ratios of F (X,Z), as follows. For any choice of pairwise
distinct indices i, j, k, `, the cross ratio [i, j, k, `] is the quantity

[i, j, k, `] =
∆i,j∆k,`

∆i,k∆j,`
∈ O×T .

Directly from the definition of ∆i,j , we see that the cross ratios satisfy the identity

[i, j, k, `] + [k, j, i, `] = 1. (2)
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Thus, in any S-proper factorization, the cross ratios are T -units which satisfy the equation
x+ y = 1. The classical result of Siegel [21] implies each cross ratio has only finitely
many possible values. Győry, in [12], provided the first effective bounds for the number of
such solutions, using Baker’s method (see [3]). Smart demonstrated algorithms for finding all
solutions in certain cases.

Fix indices i, j with 1 6 i, j 6 r, i 6= j. From [23, p. 276],

∆
(r−1)(r−2)
i,j = (−1)r

(ΩiΩj)
(r−1)∏∗[i, j, k, `]
Ω1 . . .Ωr

, (3)

where
∏∗

is taken over the pairs (k, `) for which k 6= i, j and ` 6= i, j, k. From this formula, the
values ∆i,j may be recovered from the values of the Ωi and the cross ratios. By Lemma 2.3
and the finiteness of T -unit equation solutions, it follows that, up to OS-equivalence, there
are only finitely many choices for the companion matrix ∆(F ) of a binary form F of degree r
satisfying D(F ) ∈ O×S .

Remark. Recall that we have identified Gal(M/Q) with a subgroup of Σr in such a way
that aσi = aσ(i) for every 1 6 i 6 r and every σ ∈ Gal(M/Q). As a consequence, the quantities
∆i,j , Ωi and [i, j, k, `] respect analogous formulae

∆σ
i,j = ∆σ(i),σ(j), Ωσi = Ωσ(i), [i, j, k, `]σ = [σ(i), σ(j), σ(k), σ(`)].

3. Isomorphism classes of Picard curves

Again let k0 be a field with characteristic that is not 2 or 3, and let C0/k0 be a Picard curve.
Let k/k0 be an extension containing a primitive cube root of unity, and set C = C0 ×k0 k. By
the Riemann–Hurwitz formula, the trigonal covering C → P1 branches at exactly five points
and, by Kummer theory, the extension k(C)/k(x) corresponding to the trigonal map must be
generated by the cube root of some element f ∈ k(x). Thus we may choose y ∈ k(C) such that
y3 = f(x) and k(C) = k(x, y). We may scale the rational function f(x) by any cube in k(x)
and so, without loss of generality, we may take f in the form

f(x) = λ

N∏
i=1

(x− αi)ai , λ ∈ k×, 1 6 ai 6 2, 4 6 N 6 5.

Since f is a polynomial, ∞ is a branch point if and only if 3 - deg f =
∑
i ai. Replacing f by∏

i(x − αi)3/f , if necessary, we may assume that deg f 6 6. Thus an affine model for C has
one of the forms

y3 = λ(x− α1)(x− α2)(x− α3)(x− α4), (4a)

y3 = λ(x− α1)2(x− α2)(x− α3)(x− α4), (4b)

y3 = λ(x− α1)2(x− α2)(x− α3)(x− α4)(x− α5), (4c)

with αi ∈ k. As the trigonal cover is defined over k0, it follows that the branch locus is
Gk0 -stable. Consequently, the monic polynomial λ−1f , in fact, lies in k0[x] and, due to the
appearance of the repeated root in the latter two forms, we are guaranteed that at least one
branch point of C is defined over k0.

Suppose that φ is an automorphism of k(x) (that is, a fractional linear transformation of P1
k),

and set g = φ(f). Then φ extends to an isomorphism

k(x, 3
√
f) −→ k(x, 3

√
g),
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giving an isomorphism between the affine models y3 = f and y3 = g. As the group Aut(P1
k0

) ∼=
PGL2(k0) is 3-transitive, we may always choose φ so that a k0-rational branch point for the
affine model y3 = g occurs at ∞. Consequently, we may assume that C has a projective
equation of the form

λY 3Z = Q(X,Z), Q ∈ k0[X,Z],

where Q is a square-free quartic form. In order to classify Picard curves with prescribed
reduction up to isomorphism, we must understand how an isomorphism of (integral separated
models of) Picard curves translates into equivalence of binary forms.

3.1. Picard curves over number fields

Let K be a number field. By [9], a Picard curve C/K always has a smooth projective model
(called a separated form) with equation Y 3Z = F (X,Z), where

F (X,Z) = a4X
4 + a3X

3Z + a2X
2Z2 + a1XZ

3 + a0Z
4, a4 6= 0, ai ∈ K

is a quartic binary form in K[X,Z]. There is a corresponding affine model,

y3 = F (x, 1),

which omits the single point (0 : 1 : 0) at infinity.
The curve C is said to have good reduction at the prime p if the special fiber Cp of C is

non-degenerate and smooth. Let S be a finite set of primes in K and suppose that C has good
reduction at all primes p 6∈ S. A normal form for C is an S-integral model

Y 3Z − F (X,Z) = 0

that satisfies F ∈ OS [X,Z], D(F ) ∈ O×S and a4 = 1†. By [9, Lemma 7.5], every Picard curve
over K with good reduction away from S admits a normal form.

Unfortunately, even if F,G ∈ OS [X,Z] are OS-equivalent binary forms with D(F ),
D(G) ∈ O×S , it does not follow that the Picard curves

CF : Y 3Z − F (X,Z) = 0, CG : Y 3Z −G(X,Z) = 0

are isomorphic over K, even when K possesses a cube root of unity. This may seem counter-
intuitive, so we explain in a bit more detail. If G = FU for some matrix U = (a bc d) ∈ GL2(OS),
we set f(x) = F (x, 1), g(x) = G(x, 1). Then f, g ∈ K(x), but the fractional linear
transformation

u : x 7→ ax+ b

cx+ d
, u ∈ Aut(K(x))

corresponding to U , satisfies g = (cx + d)4 · (f ◦ u). Thus we cannot expect the Kummer
extensions of K(x) generated by the cube roots of f and g to be isomorphic; but these are the
function fields of CF and CG, respectively!

Example. For an explicit example, the reader may take F = X4 − XZ3 and U = (1 1
2 1).

With G = FU , D(F ) = D(G) = −27, but CF 6∼= CG.

Notice, however, that if c = 0 we do obtain an isomorphism (up to a cubic twist by d). This
motivates the next definition.

†We drop the condition a3 = 0 from [9].
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Let R be a commutative ring with 1, and let F,G ∈ R[X,Z] be binary forms of degree r.
We say that F and G are R0-equivalent and write F ∼R0 G if there exists λ ∈ R× and

U =

(
a b
0 d

)
∈ GL2(R)

such that G = λFU . Of course, R0-equivalence implies R-equivalence, but the reverse is not
generally true.

3.2. Tschirnhaus transformations

We wish to describe the automorphisms of P2 which induce isomorphisms of Picard curves.
A Tschirnhaus transformation is an automorphism of P2

K given by an element τ ∈ PGL3(K)
of the form XY

Z

 = τ

X ′Y ′
Z ′

 , τ =

u3 0 r
0 u4 0
0 0 1

 , u ∈ K×, r ∈ K.

Fix a finite set of primes SQ in Q and suppose that F,G ∈ OSQ [X,Z] are quartic forms for
which CF and CG are isomorphic over Q. Then the isomorphism may be given as a Tschirnhaus
transformation τ , with u ∈ O×SQ

, r ∈ OSQ . (This follows from [9, Lemma 7.5 and Remark 7.7].)
As a consequence, G = FU , where

U =

(
1 u−3r
0 u−3

)
.

Thus F and G are O0
SQ

-equivalent. Moreover, the converse statement is true, up to a cubic
twist.

Lemma 3.1. Let SQ be a finite set of places of Q, with ∞ ∈ S. Then there is a finite subset
A ⊆ Q with the following property. Given any pair F,G ∈ OSQ [X,Z] of O0

SQ
-equivalent quartic

binary forms, there exists α ∈ A such that the curve CF is isomorphic over Q to CαG.

Proof. Suppose SQ = {∞, p1, . . . , ps}. Set

A :=

{
±

s∏
i=1

paii : 0 6 ai 6 2

}
.

As F , G are O0
SQ

-equivalent, there exists λ ∈ O×SQ
and

U =

(
a b
0 d

)
∈ GL2(OSQ)

such that G = λFU . Note that a, d ∈ O×SQ
. Consequently, λd ∈ O×SQ

also. Thus there exists

α ∈ A such that αλd ∈ Q×3. Let ξ denote the rational cube root of αλd. We define

φ =

a 0 b
0 ξ−1 0
0 0 d

 ∈ PGL3(Q).

The transformation φ gives an automorphism of P2; we need only check that it satisfies
φ(CαG) = CF . If P = (x : y : z) ∈ CαG, then

φ(P ) = (ax+ bz : ξ−1y : dz).
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Keeping in mind that P satisfies y3z − αλFU (x, z) = 0, we verify that φ(P ) lies on CF . Let
Ψ = Y 3Z − F (X,Z) ∈ Q[X,Y, Z]. Then φ(P ) ∈ CF (by definition) if Ψ(φ(P )) = 0. As

Ψ(φ(P )) = (ξ−1y)3 · (dz)− F (ax+ bz, dz)

=
y3dz

αλd
− αλ

αλ
FU (x, z)

= (αλ)−1(y3 − αλFU (x, z)) = 0,

we see that φ(CαG) ⊆ CF . Thus φ restricts to a morphism of curves CαG → CF . This is a non-
constant morphism, and thus is surjective. It is injective, as φ itself is injective. Thus φ|CαG
gives an isomorphism CαG → CF .

Corollary 3.2. Up to the cubic twists by α ∈ A, there is a one-to-one correspondence

PC :=


Q-isomorphism classes

of Picard curves C/Q
good away from SQ


/twists

∼=←→


O0
SQ

-equivalence classes

of binary quartic forms

good away from SQ

 .

Remark. In the case when SQ = {3,∞}, we may take A = {1, 3, 9}. The distinct twists in
this case will be isomorphic over the splitting field of x3 − 3.

3.3. Quintic-linear pairs

Unfortunately, a new problem arises: Smart’s methods to determine a representative from each
OS-equivalence class of binary forms are not guaranteed to produce one representative from
each O0

S-equivalence class! In this section, we demonstrate how to compute O0
S-equivalence

classes of quartics by rephrasing the problem in terms of OS-equivalence of quintic forms. In
brief, we construct a finite-to-one correspondence between the O0

S-equivalence classes of quartic
forms with good reduction away from S and a certain subset of the set of OS-equivalence classes
of quintic forms with good reduction away from S. This latter set can be computed by Smart’s
methods.

Let Br denote the set of OS-equivalence classes of binary forms of degree r defined over K
with good reduction outside S, and let B0

r denote the set of O0
S-equivalence classes of such

forms. Define the following subset of Br.

Br,1 := {[F ] ∈ Br : there exists L ∈ K[X,Z], L | F,degL = 1}.

Suppose Q,L ∈ OS [X,Z] are square-free binary forms with degQ = 5 and degL = 1. If
L | Q, we call (Q,L) a quintic-linear pair. Two such pairs (Q,L) and (Q′, L′) are OS-equivalent
if there exists λ ∈ O×S and U ∈ GL2(OS) such that Q′ = λQU and L′ = LU . This defines an
equivalence relation on the set of quintic-linear pairs with good reduction away from S. Let
QL denote the set of OS-equivalence classes of such pairs.

Remark. Any particular linear factor L of Q is unique only up to OS-unit. However, if
µ ∈ O×S , notice that (Q,L) and (Q,µL) are OS-equivalent by the choice λ = µ−5 and U = (µ 0

0 µ).

Notice that the forgetful map Φ : QL � B5,1 defined by [(Q,L)] 7→ [Q] is surjective
and finite-to-one, as every fiber of Φ has at most five classes. Also, given a class [Q] ∈ B5,1,
computing the classes in the fiber over [Q] is equivalent to factoring Q over K. In the remainder
of this section, we will construct a convenient set of representatives Z5,1 for the set QL and
demonstrate a bijection between B0

4 and QL. The following diagram may help the reader.
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The leftmost bijection is simply Corollary 3.2 and the bottom right inclusion is obvious. The
next proposition will establish the remaining bijections.

Proposition 3.3. (a) Every class in QL contains a representative of the form (ZG,Z) for
some quartic form G ∈ OS [X,Z].

(b) Let F,G ∈ OS [X,Z] satisfy D(F ), D(G) ∈ O×S . Then F and G are O0
S-equivalent quartics

if and only if (ZF,Z) and (ZG,Z) are OS-equivalent quintic-linear pairs.

Proof of (a). Suppose (Q,L) is a quintic-linear pair and Q has good reduction outside S.
By scaling L by an appropriate OS-unit, as necessary, we may assume that L is an S-proper
linear form over K. Write L(X,Z) = αX + βZ with α, β ∈ OS . By definition, (α, β)OS is the
unit ideal in OS , and so there exist a, b ∈ OS such that aα+ bβ = 1. Setting

U =

(
β a
−α b

)
∈ GL2(OS),

LU = Z. Consequently, (Q,L) is OS-equivalent to (QU , Z) and Z | QU , as required.

Proof of (b). First, suppose that F and G are O0
S-equivalent quartic forms. Then there exists

λ ∈ O×S and an upper-triangular matrix U = (a b0 d) ∈ GL2(OS) such that G = λFU . Clearly,
d ∈ O×S , and notice that Zd−1U = Z. It is simple to verify that

ZG = (λd4)(ZF )d−1U ,

and so (ZF,Z) and (ZG,Z) are OS-equivalent quintic-linear pairs.
Now suppose that (ZF,Z) and (ZG,Z) are OS-equivalent quintic-linear pairs with good

reduction outside S. Then there exist λ ∈ O×S and U = (a bc d) ∈ GL2(OS) such that

ZG = λ(ZF )U , Z = ZU .

However, ZU = cX+dZ, which implies that c = 0 and d = 1. Since (ZF )U = ZUFU , it follows
also that G = λFU . Thus F and G are O0

S-equivalent.

Remark. By part (a), we may select a representative of the form (ZF,Z) from each class
in QL; we construct the set Z5,1 by selecting one such representative from each class. By
definition, the sets QL and Z5,1 are in bijection and, by part (b), Z5,1 is in bijection with B0

4.
So the task of computing all Picard curves defined over Q with good reduction outside of S
is equivalent to finding Z5,1 for each potential field system. When S = {3,∞}, each F with
(ZF,Z) ∈ Z5,1 gives rise to the three Picard curves Y 3Z = αF for α ∈ {1, 3, 9}.

4. Quartic forms up to OS-equivalence

Notice that there cannot be an irreducible quintic form F ∈ Q[X,Z] with good reduction
outside SQ = {3,∞} because there are no quintic fields satisfying Lemma 2.1. Therefore,
following [23, § 7], we may build representatives of all OS-equivalence classes of quintic
forms inductively by first constructing representatives of all OS-equivalence classes of
quartic forms, then combining them with linear forms. The field systems we are concerned
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with are listed in Table 2. Let M0 = (M0, . . . ,Mm−1) be a field system with Mi unramified
away from {3,∞} for all i and

∑
i[Mi : Q] = 4. For technical reasons, in this section, we

order the fields in the field system so that if Mi = Q for a unique i, then i 6= 0 (see the
discussion after Lemma 4.2). Let M be the Galois closure of the compositum of the fields Mi,
let S = SQ = {3,∞} and let T be the set of places of M lying above the places in S.

We let ρ = (ρ0, ρ1, . . . , ρt) be a list of generators for O×T , chosen so that ρ0 generates the
torsion part and {ρ1, . . . , ρt} is a Z-basis for the free part. For any vector a = (a0, a1, . . . , at) ∈
Zt+1, we use the shorthand

ρa :=

t∏
j=0

ρ
aj
j .

If ε ∈ O×T has the form ε = ρa, then we call a the exponent vector of ε. Since multiplication
of T -units corresponds to the addition of exponent vectors, the following algorithm may be
carried out entirely inside the lattice Zt+1, after step (1).

The construction of a set of quartic forms containing a representative of each OS-equivalence
class of forms that are good away from S proceeds most naturally by considering each possible
field system in turn. So we introduce the notation

Br(M0) := {[F ] ∈ Br : F has field system M0}.

The following algorithm computes a set of representatives, F4(M0), for the set B4(M0). There
are four phases to constructing this set for each field system M0.

(1) Determine a complete set of solutions T(M) of the T -unit equation

τ0 + τ1 = 1, τi ∈ O×T .

This is the most computationally expensive step, and is explained in detail in § 6. For ease of
computation in the later steps, we record a dictionary of exponent vectors. Because τ0, τ1 are
related additively, there is no more efficient way to recover the exponent vector of τ1 given the
exponent vector of τ0. The finite set T(M) gives all possible values for a cross ratio appearing
in (3).

(2) Construct a finite collection Ω(M0) of possible lists (Ω1, . . . ,Ωr) of T -units which could
arise from an S-proper factorization of a binary form with field system M0. It is only required
to find such a list for one representative of each equivalence class. Thus, by Lemma 2.3, we may
assume that the exponents aj,i in (1) are bounded. Moreover, there are Galois constraints on
the Ωi: for any σ ∈ Gal(M/Q), Ωσi = Ωσ(i). This imposes various congruence conditions on the
exponent vectors of the Ωi. As a practical matter for computation, this allows the collection
Ω(M0) to be implemented as an iterator, rather than by a large and explicitly computed list
of lists.

(3) Compute a finite set D(M0) of matrices ∆ ∈ Mr×r(OT ), which may possibly be the
companion matrix to an S-proper factorization with field system M0. This proceeds as follows.

(a) Loop on (Ω1, . . . ,Ωr) ∈ Ω(M0).
(b) Loop on all possible choices for [i, j, k, `] ∈ T(M). These are constrained by Galois

compatibility and (2).
(c) Check: is the right-hand side of (3) a perfect (r − 1)(r − 2)th power for all 1 6 i <

j 6 r?
• If NO, iterate the loop in (b).
• If YES, compute all possible ∆ which satisfy (3) and add them to the collection
D(M0).

In practice, we may be more selective by also checking the Galois compatibility conditions on
the entries of each ∆. Even so, there is no guarantee that any given ∆ ∈ D(M0) actually
corresponds to an S-proper factorization.
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(4) Compute a set F4(M0) of binary forms with good reduction away from S and with field
system M0. The set will contain at least one representative from each OS-equivalence class
in B4(M0). The procedure is carried out as follows.

(a) Loop over ∆ ∈ D(M0).
(b) Compute β = detB and all possible Λ from Lemma 4.2 below.
(c) Loop over B′ ∈ Uβ , the finite computable set from Lemma 4.1 below†. From A′ = B′Λ

and ∆, construct the form G =
∏
〈a′i,X〉.

(d) Check whether D(G) ∈ O×S . If so, add G to the set F4(M0).

Remark. Step 4 depends on two lemmas from [23], which, for convenience, we include here.
We say two matrices E,E′ ∈M2×2(OS) are equivalent if there exists U ∈ GL2(OS) such that
E = UE′. For any δ ∈ OS , δ 6= 0, define

Uδ :=

{(
θ ψ
0 φ

)
∈M2×2(Z) : 0 < θ 6 |δ|S , θφ = |δ|S , 0 6 ψ 6 φ− 1

}
.

Lemma 4.1. Suppose E ∈M2×2(OS) and let δ = det(E). Then E is equivalent to a matrix
E′ ∈ Uδ.

This is proved in [23, Lemma 4].

Lemma 4.2. Suppose F ∈ K[X,Z] has an S-proper factorization

F =

r−1∏
i=0

〈ai,X〉, ai ∈ O2
T ,

with companion matrix ∆. Let A = (a0 a1) ∈ GL2(OT ). Then there exists Λ ∈ GL2(OT )
and B = (b0 b1) ∈ GL2(OS) such that A = BΛ. Moreover, both Λ and β = detB may be
determined from the matrix ∆ alone.

This is proved in [23, Lemma 5]. The proof is constructive. In fact, the matrix Λ may be
computed in a routine manner from ∆ and an integral basis for OM0

. However, this step
involves a search for a pair of linearly independent M0-linear combinations of a0 and a1, which
is impossible if M0 = Q and M1 6= Q; so we reorder the fields in M0, as necessary, to avoid
this. Once Λ is determined,

β =
∆0,1

det Λ

(see the proof in [23] for further details).
We now have the following observation. Suppose F has an S-proper factorization with

companion matrix ∆. The vectors ai appearing in the S-proper factorization of F satisfy
the relations

ai =
∆1,i

∆1,0
a0 +

∆i,0

∆1,0
a1, 0 6 i < r. (5)

Thus F may be reconstructed trivially if both A and ∆ are known; but, alas, A may not be
known! However, we have the relation A = BΛ and, by Lemma 4.1, there exists B′ ∈ Uβ with
B′ = UB for some U ∈ GL2(OS). Let A′ = B′Λ and note that A′ = UA. For 0 6 i < r, set
a′i = Uai. The relations (5) imply that

a′i =
∆1,i

∆1,0
a′0 +

∆i,0

∆1,0
a′1, 0 6 i < r.

†But see the Remark at the end of this section.
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Thus we may recover the individual factors in the binary form G =
∏
〈a′i,X〉 for any choice

of B′ ∈ Uβ . Necessarily, G is OS-equivalent to the form F whose companion matrix is ∆.
At the end of this process, we have obtained for each M0 a finite set F4(M0) with the

following properties. Every form in F4(M0) has field system M0 and good reduction outside S,
and every OS-equivalence class of binary forms with field system M0 and good reduction
outside S has at least one representative in the set F4(M0). We may screen for redundancies
among the representatives using the methods from [23, § 6].

Remark. Improvement in Step 4(c). The process of iterating through all matrices B′ ∈ Uβ

in Step 4(c) has the potential to be a serious bottleneck in the computation. For example, when
running this computation for the field system (K0,K3), there are 62 208 distinct companion
matrices to check and, for each such companion matrix, the set of matrices Uβ was often larger
than 150 000 (corresponding to |β|S = 101 194 in the most extreme case). In practice, however,
we were able to reduce the running time with the following trick. Recall that the matrices in
Uβ have diagonal entries θ and φ which are divisors of |β|S and the upper right entry ψ is an
integer satisfying 0 6 ψ 6 φ. After specifying θ and φ, we leave ψ as an unknown parameter
and continue the computation, obtaining a form Gψ with coefficients in the ring Q[ψ]. It is
then simple to solve for those integral values of ψ in the range 0 6 ψ 6 φ which yield binary
forms with coefficients in OS , if there are any.

5. Quartic forms up to O0
S-equivalence

Now that the OS-equivalence classes of quartic forms have been enumerated, the next step
is to create a list of quintic forms up to OS-equivalence. From this, we create a complete list
of quintic-linear pairs up to OS-equivalence, which yields a complete list of O0

S-equivalence
classes of quartic forms.

5.1. Quintic forms up to OS-equivalence

As before, we let M0 denote a field system (M0, . . . ,Mm−1) with
∑
i[Mi : Q] = 4 and we let

M be the Galois closure of the compositum of the Mi. Let M = (Q,M0, . . . ,Mm−1). Here we
construct a set F5(M ) which contains at least one representative of each OS-equivalence class
of quintic forms with the field system M . This is done inductively from the equivalence classes
in F4(M0), as in [23, § 7]. We briefly sketch the procedure here. Let G(X,Z) be a degree 5
binary form with field system M and D(G) ∈ O×S . Then, by Lemma 2.3, G ∼OS LH, where

L(X,Z) = u0X + u1Z ∈ OS [X,Z]

and the OS-ideal (u0, u1) = OS . Further, H is OS-equivalent to a form in F4(M0). Since
L ∼OS Z, without loss of generality, we may assume that G ∼OS ZUH, where U ∈ GL2(OS)
and H ∈ F4(M0). For each quartic H ∈ F4(M0), we seek all ZUH up to OS-equivalence.

Let T = T(M) be the set of T -unit solutions as in § 4. Since the compositum of the fields in
the field system M is M , the cross ratios [i, j, k, `] for ZUH must lie in T. Let

ZU = a0,0X + a1,0Z and H =

4∏
i=1

(a0,iX + a1,iZ).

Since H ∈ F4(M0), the values of ai,j and ∆j,k are known for j 6= 0. For any ZUH, any choice
of indices {i, j, k} ⊂ {1, 2, 3, 4} must satisfy

[0, i, j, k] =
∆0,i∆j,k

∆0,j∆i,k
. (6)
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Note that ∆0,h = a0,0a1,h−a1,0a0,h. Let [0, i, j, k] = τ ∈ T. By rewriting (6) we get the identity

(∆i,ka1,jτ −∆j,ka1,i)a0,0 − (∆i,ka0,j −∆j,ka0,i)a1,0 = 0

in the unknowns a0,0 and a1,0. The equation has solution set

a0,0 = c(∆i,ka0,j −∆j,ka0,i), a1,0 = c(∆i,ka1,jτ −∆j,ka1,i),

where c is a parameter in M . Now choose c such that a0,0, a1,0 ∈ OS with (a0,0, a1,0) = OS .
Let Z[τ ] = a0,0X + a1,0Z. Define

F5(M ) := {Z[τ ]H : H ∈ F4(M0), τ ∈ T, Z[τ ] - H}.

This set can be constructed exhaustively by looping over all possible choices of H ∈ F4(M0)
and cross ratios from T and attempting to compute Z[τ ], if possible. The resulting set contains
at least one representative of every class in the set B5(M ).

5.2. Quartic forms up to O0
S-equivalence

For every G ∈ F5(M ) and every L ∈ Q[X,Z] with L | G, consider the quintic-linear pair
(G,L). By Lemma 3.3, we may find an OS-equivalent pair (GU , Z). Select one such pair for
each possible choice of G and L to create a finite set Z5,1 of quintic-linear pairs. After screening
for equivalence, we may assume that Z5,1 contains a unique representative for each equivalence
class in QL.

Now, as described in § 3, a list of all Picard curves with good reduction away from 3 up to
Q-isomorphism will consist of the curves

Cα,F : Y 3Z = αF (X,Z),

where (FZ,Z) ∈ Z5,1 and α ∈ {1, 3, 9}. A complete list of these curves appears in Tables 5–7.

6. Solving S-unit equations

As a necessary step in our investigation, we must solve an S-unit equation over a finite
collection of fields. In this section, let K be a number field and let S be the set of places
of K which lie above the places in SQ = {3,∞}. Let µK denote the set of roots of unity in
K and let w = #µK . Let s be the number of finite places in S, let r1 be the number of real
embeddings of K and let r2 be the number of conjugate pairs of complex embeddings of K.
Let r be the rank of O×K ; so r = r1 + r2 − 1. Let t be the rank of O×S ; so t = s + r. We fix a
generator ρ0 ∈ µK for the roots of unity. The goal of this section is to find all unordered pairs
(τ0, τ1) which solve the following equation (the so-called ‘S-unit equation’).

τ0 + τ1 = 1, τi ∈ O×S . (7)

In the previous sections, these solutions are referred to as T -units. However, the literature on
this topic commonly refers to them as S-units, so we adjust our notation accordingly for this
section.

The general strategy for solving such a problem is to first fix a basis {ρi}ti=1 for the torsion-
free part of the Z-module O×S . Then the set {ρi}ti=0 generates all of O×S , and each solution
may be described by the exponents aj,i ∈ Z such that

τj =

t∏
i=0

ρ
aj,i
i .

Thus the tuple (aj,0, aj,1, . . . , aj,t) ∈ Z/wZ×Zt uniquely encodes the value τj . The number of
solutions to (7) is known to be finite. To construct them explicitly, we proceed in three steps.
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(1) Compute an explicit bound C0, via Baker’s theory, for which any solution must satisfy

|aj,i| 6 C0.

Such a bound is typically much too large to be used in an exhaustive search.
(2) Apply an LLL-type lattice argument to improve the bound by several orders of

magnitude. Although this step is crucial, it alone is not enough to trivialize the problem;
when the bound is C1 and the rank of O×S is r, the search space has size roughly (2C1)2r, and
this is still too large to carry out a brute-force search in practice.

(3) Use the arithmetic of potential solutions (such as symmetry arising from Galois action)
and an assortment of sieving methods to search for possible solutions efficiently.

In this section, we discuss the method in detail and explain an improvement in step (2).
(This improvement is a consequence of the special circumstances of the current problem and
is unlikely to be available, in general, for solving S-unit equations.)

We now assume that K is a number field from Table 1. Let p0 denote the unique prime of
K above 3. Thus s = 1 and t = r1 + r2. We have the real infinite places p1, . . . , pr1 and the
complex infinite places pr1+1, . . . , pt. We let ψ1, . . . , ψr1 denote the r1 distinct real embeddings
K ↪→ R and let

ψr1+1, ψr1+1, . . . , ψt, ψt

denote the 2r2 distinct complex embeddings K ↪→ C, with the stipulation that no two distinct
embeddings ψr1+k and ψr1+` may be conjugate. Once and for all, we relabel the embeddings
so that each ψi corresponds to the infinite place pi. We consider the valuations associated to
each place, given by

|α|pi :=


3−ord3 α if i = 0,

|ψi(α)| if 1 6 i 6 r1,

|ψi(α)|2 if r1 + 1 6 i 6 t.

Henceforth, we write α(i) as a shorthand for the image of α under the embedding ψi : K ↪→ C.

6.1. Linear forms in logarithms

The effective solution of S-unit equations rests on the observation from Baker’s theory that
the non-zero image of a linear form on linearly independent logarithms is bounded away from
zero. We give an explicit statement here, to be used in a certain proof later on in this section.
Further details may be found in [4].

We let h0 denote the standard logarithmic Weil height on Pt(K), defined as follows. For any
x = (x0 : . . . : xt) ∈ Pt(K),

h0(x) =
∑
p

log
(

max
j
{|xj |

np
p }
)
,

where the sum runs over all places of K and np denotes the local degree of p. By the product
formula, h0(x) is independent of the particular choice of coordinates for x. For any α ∈ K, we
take h0(α) = h0((1 : α)).

Let B be a number field of degree nB . Fix an embedding ιB : B ↪→ C. We will abuse notation
and write logα for log ιB(α) for any α ∈ B. We define the modified height of α ∈ B by

h′(α) =
1

nB
max(h0(α), |logα|, 1).

For a linear form in t+ 1 variables,

L(z0, . . . , zt) = a0z0 + . . .+ atzt, ai ∈ Z,
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we likewise define a modified height of L by

h′(L) := max{1, h0((a0 : a1 : . . . : at))}.

Since ai ∈ Z, |ai|p 6 1 for any finite place p. We may always take the coefficients to have no
common prime divisor, and so at least one coefficient ai has |ai|p = 1 for each finite place p.
Thus the finite places make no contribution to h′(L), and we have the following estimate. If
|aj | 6 H1 for all j, then h′(L) 6 logH1.

The following result gives an explicit bound, which we will use in the search for solutions to
S-unit equations.

Theorem 6.1 (Baker–Wüstholz, [4, p. 20]). Let L be a linear form in t + 1 variables and
let ρ0, . . . , ρt ∈ Q− {0, 1}. Let B be the subfield of Q generated by the ρi. If

Λ = L(log ρ0, log ρ1, . . . , log ρt) 6= 0,

then

log |Λ| > −C(t, nB)h′(L)

t∏
j=0

h′(ρj),

where the constant C(t, nB) is defined by

C(t, nB) = 18(t+ 2)!(t+ 1)(t+2)(32nB)(t+3) log(2(t+ 1)nB).

Note that we may be sure that Λ 6= 0 if the set {log ρi} is linearly independent over Q.

6.2. Avoiding the finite place

We introduce some definitions. For any τ ∈ O×S , we may write

τ =

t∏
j=0

ρ
aj
j .

The minimal absolute value of τ is

ν(τ) := min
j
{|τ |pj}.

The extremal index of τ is the largest index j which achieves the minimal absolute value: that
is,

ε(τ) := max{j : |τ |pj = ν(τ)}.

Lemma 6.2. Suppose τ ∈ O×S . Then ε(τ) = ε(τ−1) if and only if τ ∈ µK .

Proof. If τ is a root of unity, then every absolute value evaluates to 1 and the extremal
indices of τ and τ−1 necessarily coincide.

Conversely, if ε(τ) = ε(τ−1), then the minimal absolute value for τ must be achieved by
every pj ; under any other circumstance, the extremal indices of τ and τ−1 cannot coincide.
Thus |τ |pi = |τ |pj for all primes in S. However, as τ ∈ O×S , |τ |q = 1 for every q 6∈ S. By the
product formula, it follows that |τ |pi = 1 for every pi ∈ S also. This forces τ to be an algebraic
integer, all of whose conjugates have absolute value 1. So τ is a root of unity, as claimed.
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The maximum exponent of τ is the largest exponent in absolute value that appears when
expressing τ in terms of the torsion-free basis: that is,

H(τ) := max
j>1
{|aj |}.

If s = (τ0, τ1) is a solution to the S-unit equation, we extend the above definitions as follows.
The maximum exponent of s is

H(s) = max{H(τ0), H(τ1)}.

We choose b ∈ {0, 1} in the following way. If H(τ0) 6= H(τ1), then b is chosen so that H(s) =
H(τb). If H(τ0) = H(τ1), then b is chosen so that ε(τb) > ε(τ1−b). The extremal index of s
is defined to be ε(s) := ε(τb). Essentially, the extremal index of s is the same quantity as the
index h from [22, p. 822]. The selection of b is done so as to avoid ε(s) = 0, if at all possible.

We hope to reduce the bound on H(s) via a lattice reduction argument. However, this
approach generally requires two different reduction arguments: a p-adic lattice argument for
the case when the extremal index of s corresponds to a finite place of S and a complex lattice
argument for the case when the index corresponds to an infinite place. The following technical
lemma will allow us to reduce the search to those solutions whose extremal index occurs at an
infinite place. Thus we will only need the complex lattice argument in the subsequent work.

Let s = (τ0, τ1) be a solution to the S-unit equation. The cycle associated to s is the set
C(s) = {s, s′, s′′}, where

s′ = (τ−10 ,−τ−10 τ1), s′′ = (−τ0τ−11 , τ−11 ).

It is easy to see that s′ and s′′ are also solutions to the S-unit equation. Moreover, since a
solution is an unordered pair, the cycle is unaffected by swapping τ0 and τ1.

Lemma 6.3. Let s be a solution to the S-unit equation. Then at least one solution in C(s)
has an extremal index which is not equal to zero (and hence corresponds to an infinite place).

Proof. Suppose s = (τ0, τ1). If both τ0, τ1 ∈ µK , then ε(s) = t > 0. So we may now assume
that at least one τi is not in µK . Choose b ∈ {0, 1}, as above, and set d = 1 − b. We may be
sure that τb is not a root of unity, since H(τ) = 0 if and only if τ ∈ µK . For the sake of a
contradiction, suppose that ε(s) = ε(s′) = ε(s′′) = 0 and write s = (τb, τd).

SinceH(s) = H(τb), we know that ε(τb) = 0. But τb 6∈ µK , so ε(τ−1b ) 6= 0. The other solutions
in the cycle C(s) are t = (τ−1b ,−τ−1b τd) and t′ = (τ−1d ,−τbτ−1d ). If H(τ−1b ) > H(−τdτ−1b ),
then ε(t) > 0. So we may assume that H(τ−1b ) < H(−τdτ−1b ). But, from this,

H(t) = H(−τdτ−1b ) > H(τ−1b ) = H(τb) = H(s).

Moreover, the values in t′ satisfy

H(τ−1d ) = H(τd) 6 H(τb) = H(s)

and
H(−τbτ−1d ) = H(−τdτ−1b ) = H(t) > H(s).

Thus H(t′) = H(t) > H(s). However, C(t) = C(s), so, by repeating the same argument, we
may conclude that H(s) = H(t′) > H(t), which is a contradiction.

Remark. Notice that we are not using the fact that p0 is finite. Fix any place q ∈ S. The
argument can easily be modified (simply by reindexing the places in S) to prove that any cycle
has at least one solution whose extremal index does not correspond to q.
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Remark. In a later section, we will find a strong bound for H(s) in the special case when s
has an extremal index which is non-zero. Of course, recovering C(s) from s is trivial, and so
this is enough to capture all S-unit equation solutions.

6.3. A computable bound

The goal of this section is to prove the following proposition.

Proposition 6.4. Suppose s is a solution to the S-unit equation. If ε(s) 6= 0, then
H(s) < C0, an effectively computable constant which depends only on K and S.

The proof is similar to that of [22, Lemma 4], although the determination of the constant
C0 (labeled K1 in Smart’s presentation) will differ slightly.

Proof. Possibly after relabeling, we may assume that s = (τ0, τ1), b = 0 and

ε(s) = ε(τ0) = h > 0,

for some 1 6 h 6 r1 + r2. For j ∈ {0, 1}, write

τ ′j =

t∏
i=1

ρ
aj,i
i ,

so that τj = ρ
aj,0
0 τ ′j . Consider the set S∞ = {p1, . . . , pr1+r2} of infinite places of S, the first

r1 being the real places. As in [22], we define the following constants, depending on the value
1 6 h 6 r1 + r2.

c11(h) :=


log(4)

c3
if ph is real,

2 log(4)

c3
if ph is complex,

c12(h) := 2,

c13(h) :=

{
c3 if ph is real,

c3/2 if ph is complex.

The constant c3 is defined in [22, p. 823] and is derived from the regulator for the S-units
of K. For this project, we always have 0.1 < c3 < 0.3. From [22, Lemma 2], we know that
|τ0|ph 6 e−c3H(s). If we suppose that H(s) > c11(h), then, consequently,

|τ1 − 1|ph = |τ0|ph 6 1
4 .

For any z ∈ C satisfying |1− z| 6 1
4 ,

|log z| 6 2|1− z|,

and so
|log τ

(h)
1 | 6 2|τ1 − 1|ph = 2|τ0|ph 6 2e−c3H(s). (8)

On the other hand, let log denote the principal branch of the logarithm. Then

|log τ
(h)
1 | =

∣∣∣∣log((ρ
a0,1
0 )(h)) +

t∑
j=1

aj,1 log ρ
(h)
j +A12π

√
−1

∣∣∣∣, (9)
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where the term A12π
√
−1 arises as a consequence of demanding principal values for the

logarithms. In order to take advantage of Baker’s theory of linear forms of logarithms, we

need the various expressions to be independent over Q, but this is not true for log ρ
(h)
0 and

2π
√
−1. We must combine these terms, while still maintaining a bound on the coefficients. We

explain this step now.
We suppose that A =

∏N
i=1 αi we take principal arguments in the range [−π, π). Then∑

argαi ∈ [−Nπ,Nπ) and

argA =
∑

argαi +m · 2π,

where |m| 6 N/2. Also

logA =
∑

logαi +m · 2π
√
−1,

again with |m| 6 N/2. Thus, in (9), we have the bound

|A1| 6
1

2

(
1 +

t∑
j=1

|aj,1|
)
6

1

2
(1 + tH(s)).

Inside C, let ζ := exp(2π
√
−1/w), so that ζ = ρ

(h)
0 . There is an integer ` with −w/2 < ` 6 w/2

for which
(ρ
a0,1
0 )(h) = ζ`.

We adjust our branch of log slightly. We choose a branch whose argument always lies in the
range (−π+ ε, π+ ε) for some sufficiently small ε > 0, such that each of the expressions log ρj
for j > 0 and log ζ` agrees with its principal value. Now −1 = ζw/2 and so

log((ρ
a0,1
0 )(h)) +A12π

√
−1 = log ζ` + 2A1 log ζw/2 = (`+ wA1) log ζ.

Set a′0,1 = `+ wA1. We have the bound |a′0,1| 6 (w/2)(t+ 2)H(s), and we may rewrite (9) as

|log τ
(h)
1 | =

∣∣∣∣a′0,1 log ζ +

t∑
j=1

aj,1 log ρ
(h)
j

∣∣∣∣,
where the coefficients a′0,1 and aj,1 have been given explicit bounds.

Let L denote the linear form in t+ 1 variables

L(z0, z1, . . . , zt) := a′0,1z0 +

t∑
j=1

aj,1zi.

Then
log τ

(h)
1 = L(log ζ, log ρ

(h)
1 , . . . , log ρ

(h)
t ),

and the coefficients of L are all bounded by (w/2)(t+ 2)H(s). This observation gives

h′(L) 6 log

(
w

2
(t+ 2)H(s)

)
.

Now let us define

c′14(h) := C(t+ 1, nK) · 1

nK
· h′(ζ)

t∏
j=1

h′(ρ
(h)
j ).

By Theorem 6.1,

|log τ
(h)
1 | > exp

(
−c′14(h) log

(
w

2
(t+ 2)H(s)

))
.

https://doi.org/10.1112/S1461157016000413 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000413


402 b. malmskog and c. rasmussen

Combining this with the inequality (8) gives

2e−c3H(s) > exp

(
−c′14(h) log

(
w

2
(t+ 2)H(s)

))
.

Rewriting this inequality as one comparing H(s) and logH(s), and then applying a lemma of
Pethö and de Weger [17, Lemma 2.2], we obtain the bound

H(s) 6 c′15(h) :=
2

c13(h)

(
log c12(h) + c′14(h) log

(
w(t+ 2)c′14(h)

2c13(h)

))
.

This almost gives us the desired bound. However, we still do not know which index is given
by h. Finally, we take

C11 := max
16j6t

{c11(j)}, C15 := max
16j6t

{c′15(j)}, C0 := max {C11, C15},

and we may be sure that H(s) 6 C0, as desired.

The computation of these bounds is routine. The computation of the constant c3 is explained
in [22, p. 823]. Table 3 gives a (mild overestimate for a) value of C0 for each field under
consideration.

6.4. Improvement of C0 by lattice reduction

As in [22, § 4, pp. 828–830], we use the LLL algorithm to provide a substantial reduction in
the bound C0. For each embedding ψi : K ↪→ C, we explain how to reduce the bound C0 under
the assumption that the extremal index of some solution s is ε(s) = h 6= 0. The maximum of
these reduced bounds yields a replacement C ′0 for the constant C0.

Remark. The following calculation is sensitive to the choice of ordered Z-basis ρ1, . . . , ρt for
the free part of O×S . We require that the ρi are always chosen so that, in every embedding ψh, at

least one value ρ
(h)
j for 1 6 j 6 t is not a positive real number. This is not a serious restriction,

but it does allow us to always use the LLL algorithm as described by Smart in [22, § 4].

Fix a particular embedding ψh : K ↪→ C for some h 6= 0, and consider

Λ :=

t∑
j=0

ajκj , (10)

where a0 = a′0,1, aj = a0,j for j > 0 and κj = log ρ
(h)
j for j > 0. For κ0,

κ0 = log ζ =
2π
√
−1

w
.

We relabel the κj , as necessary, to ensure that Re κt 6= 0.

Table 3. Bounds C0, C′
0 for H(s) by field.

Field C0 C′
0

K0 4.916 825× 109 3
K1 8.018 712× 109 5
K2 2.067 269× 1019 217
K3 1.957 261× 1015 49
L3 2.137 374× 1019 243
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We may assume that |aj | 6 C0 for j > 0; |a0| 6 (w/2)(t + 2)C0. For any γ ∈ R, let [γ]
denote the integer closest to γ. For any z ∈ C, Re z and Im z denote the real and imaginary
parts of z, respectively. Let C � 0 be a large constant, whose value we will make precise in a
moment. We define

Φ0 :=

t∑
j=1

aj [C Reκj ],

Φ1 :=

t∑
j=1

aj [C Imκj ] + a0

[
C · 2π

w

]
.

Let B be the integral matrix

B :=



1 0 . . . 0 0 0

0 1 . . . 0 0 0

...
...

...
...

...

0 0 . . . 1 0 0

[C Reκ1] [C Reκ2] . . . [C Reκt−1] [C Reκt] 0

[C Imκ1] [C Imκ2] . . . [C Imκt−1] [C Imκt]

[
C · 2π

w

]


.

Let L be the lattice generated by the columns of B.
From [15, Proposition 1.11] (or [24, Lemma 3.4], where the proof is given in slightly more

detail), the Euclidean length of any non-zero lattice element in L is bounded below by C1 :=
2−t/2‖b0‖, where b0 is the shortest vector in the LLL-reduced basis for L . We define

SL := (C2
1 − (t− 1)C2

0 )1/2,

TL := 1
2 (w + 2 +

√
2)tC0.

Notice that C1 (and so SL ) depends on the choice of C, but C0 and TL do not. As a practical

matter, we choose C ≈ C(t+1)/2
0 , compute the reduced basis for L , and check whether

C2
1 > T 2

L + (t− 1)C2
0 , (11)

as this implies that SL − TL > 0. If not, we replace C by 2C and try again. Although there
is no proof that this procedure will terminate, we did find a constant C for each field which
forced SL − TL > 0. This is beneficial in light of the following result.

Lemma 6.5. Suppose there exists C > 0 such that (11) holds. Then every solution s to the
S-unit equation with ε(s) = h 6= 0 satisfies

H(s) 6 C ′0 := max

{
C11,

⌊
1

c13(h)
(log(Cc12(h))− log(SL − TL ))

⌋}
.

Proof. The proof is similar to the proof of Lemma 6 in [22].

6.5. Sieving for solutions

Since recovering every solution in a cycle is trivial if one solution is known, we are now left
with the following problem. Given a bound C ′0, determine all solutions s = (τ0, τ1) to the
S-unit equation, where

τi = ρ
a0,i
0

t∏
j=1

ρ
aj,i
j , 0 6 a0,i < w, |aj,i| 6 C ′0.

https://doi.org/10.1112/S1461157016000413 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000413


404 b. malmskog and c. rasmussen

In the worst case scenario, when M = L3, the rank of O×M,S is 3, and so the number of possible
solutions to check is roughly

(2C ′0 + 1)3 · w ≈ 4.62× 108.

This is still not manageable for a brute-force search. So a sieving method is used to accelerate
the exhaustive search for solutions. We describe briefly the approach, which is similar to some
of the techniques described by Smart in [23, § 8]. The entire computation was carried out in
Sage [20] in a matter of several minutes using a project on SageMathCloud.

Let τ = ρa with

a = (a0, . . . , at), 0 6 a0 < w, |aj | 6 C ′0 for j > 0.

Let q ∈ Z be a prime which is completely split in OM , say,

qOM = q0 . . . qn−1, n = [M : Q].

For each 0 6 i < n, we let ρ(i) denote the tuple

ρ(i) = (ρ0, ρ1, . . . , ρt) ∈ (OM/qi)
t+1 ∼= Ft+1

q ,

where the overline denotes reduction modulo qi. If τi = ρai satisfy τ0 + τ1 = 1, we obtain r
equations of the form

τ0 + τ1 = 1 ∈ Fqi .

Now suppose that the exponent vector a0 for τ0 has been fixed modulo q − 1. Each of the r
equations places a possibly different set of conditions on a1 modulo q−1. We write a procedure
to catalog the approximately qt results of the form: ‘if a0 modulo (q−1) is given by the vector
b0 ∈ Ft+1

q , then a1 modulo (q − 1) must come from an explicit finite set.’ Moreover, the
given finite set is often empty for many choices of b0. So, in practice, we obtain congruence
conditions modulo (q − 1) on the exponent vectors of τ0, τ1.

We now select a finite list of rational primes, q0, q1, . . . , qN , each of which splits completely
in M and is such that

lcm(q0 − 1, q1 − 1, . . . , qN − 1) > 2C ′0.

Then (essentially by a Chinese remainder theorem type argument), we restrict the possible
values for a0 to a set of searchable size and, for each such a0, we check whether the collected
congruence conditions on a1 actually yield a solution to the S-unit equation. With this
approach, we were able to produce all solutions to the S-unit equation for any field M which
is the Galois closure of the compositum of the fields in a field system attached to a quartic
binary form with good reduction outside SQ = {3,∞}.

For reference, we record the number of S-unit equation solutions that we found for each of
the fields Ki, L3 in Table 4.

The fact that there are no solutions s in the field K0 = Q has an important consequence.

Lemma 6.6. Let F (X,Z) ∈ Q[X,Z] be a binary quartic form with good reduction away
from that. Then the field system of F (X,Z) cannot be (K0,K0,K0,K0) or (K1,K1).

Table 4. Number of S-unit equation solutions s by field.

Field Solutions

K0 0
K1 4
K2 72
K3 0
L3 25
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Proof. Without loss of generality, we may assume an S-proper factorization for F . Now the
principal observation is that the equation (3) must hold. If the field system is (K0,K0,K0,K0),
then the cross ratios in the equation represent S-unit equation solutions lying in K0 = Q, and
no such solutions exist. On the other hand, if the field system is (K1,K1), then let σ denote
the non-trivial element of Gal(K1/Q). Then the cross ratio

[0, 1, 2, 3] =
∆0,1∆2,3

∆0,2∆1,3

satisfies
[0, 1, 2, 3]σ = [1, 0, 3, 2] = [0, 1, 2, 3],

so again this provides a contradiction: namely, a solution to the S-unit equation which lies
in Q.

7. Results and an application

7.1. Results

Using the process described in this paper, we found 63 distinct Q-isomorphism classes of
Picard curves defined over Q with good reduction outside of 3. Tables 5–7 give the coefficients
of integral affine models of the form

y3 = x4 + a3x
3 + a2x

2 + a1x+ a0, ai ∈ Z.

Table 5. Picard curves with field system (K0,K0,K1).

a3 a2 a1 a0

0 0 1 0
0 0 27 0
0 0 729 0

2 2 1 0
2 6 5 −14

14 114 455 −584

−2 0 1 −2
−2 −12 13 −140
50 816 4775 −5642

Table 6. Picard curves with field system (K0,K3).

a3 a2 a1 a0

0 0 3 0
0 0 81 0
0 0 2187 0

0 0 9 0
0 0 243 0
0 0 6561 0

−2 0 11 8
−18 108 27 0
−54 972 729 0

12 −6 1 0
36 −54 27 0

112 −156 85 352
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In each case, the given model itself has good reduction away from 3. Each table lists the curves
possessing one particular field system. Further, each table is broken into blocks of three curves
each. The curves in each block are cubic twists of one another and are isomorphic over Q( 3

√
3).

7.2. Relation to Ihara’s question

Let ` be a rational prime number and let K be a number field. We let K(µ`∞) denote the
maximal `-cyclotomic extension of K and let = (K, `) denote the maximal pro-` extension
of K(µ`∞) unramified outside `. An abelian variety A/K is said to be heavenly at ` if the field
K(A[`∞]) is a subfield of †.

Let GQ denote the absolute Galois group Gal(Q/Q), and let X = P1
01∞, the projective line

(over Q) with three points deleted. There is a canonical outer Galois representation attached
to the pro-` algebraic fundamental group of X = X ×Q Q,

Φ` : GQ −→ Out(πpro-`
1 (X)).

We let = (Q, `) denote the fixed field of the kernel of Φ`. It is well known that ⊆ , and
Ihara has asked, specifically in the case K = Q, whether or not the two fields coincide.

Now suppose that C/Q is a projective curve which satisfies the following two conditions:
(I1) C/Q has good reduction away from `; and
(I2) an open subset of C appears in the pro-` étale tower over P1

01∞.

Table 7. Picard curves with field system (K0,K2).

a3 a2 a1 a0

−3 0 1 0
−5 −21 4 19
−31 87 644 −701

0 −3 1 0
0 −27 27 0
0 −243 729 0

−2 −3 1 1
−14 33 31 −17
−38 177 1309 −284

−1 −3 2 1
13 33 −50 −71
31 87 −2102 −2159

−2 −3 3 3
18 81 27 0
−50 573 571 −53

−5 −3 4 1
−23 87 4 −107
−57 216 3051 −3078

−6 3 1 0
−18 27 27 0
−58 411 77 −431

a3 a2 a1 a0

3 −6 1 0
−13 −21 50 −17
−31 −399 158 271

9 6 1 0
−23 −21 4 1
−69 −189 108 81

6 −9 3 0
−22 −21 23 19
78 459 135 −162

0 −9 9 0
0 −81 243 0
0 −729 6561 0

9 18 −9 0
27 162 −243 0
93 2241 4482 −4293

24 3 −1 0
72 27 −27 0

216 243 −729 0

3 −24 1 0
9 −216 27 0

27 −1944 729 0

†This choice of notation and terminology is explained in more detail in [19]. The Japanese kanji and
are pronounced ten and san, respectively.
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To rephrase the second condition, there exists, over some field extension, a morphism
f : C → P1 branched only over {0, 1,∞}, whose Galois closure is of `-power degree. Let J
denote the Jacobian variety of C. Then Anderson and Ihara have given a necessary condition
on the morphism f [2, Corollary 3.8.1] which implies that Q(J [`∞]) ⊆ .

The Picard curves enumerated in the present article all have good reduction away from 3
and naturally admit a degree 3 morphism f0 : C → P1. Thus, in the spirit of [16] or [18], we
may use the criterion of Anderson and Ihara if there exists a morphism g : P1 → P1 such that
f = g ◦ f0 satisfies the conditions (I1) and (I2) above. For example, on each of the curves

y3 = x4 + 3sx, 0 6 s 6 8, (12)

there exists a degree 9 morphism f : C → P1 defined in affine coordinates by

(x, y) 7→ −3−sx3.

It is necessarily Galois over K = Q(µ3) as it corresponds to a composition of degree 3 Kummer
extensions: K(t) ↪→ K(t1/3) ↪→ K((t4/3 +3st1/3)1/3). The verification of Anderson and Ihara’s
criteria is immediate, and so we obtain the following corollary.

Corollary 7.1. Let C be one of the nine Picard curves over Q with good reduction away
from 3, possessing an affine integral model of the form (12). Let J denote the Jacobian of C.
Then Q(J [3∞]) ⊆ (Q, 3).
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10. S. Flon and R. Oyono, ‘Fast arithmetic on Jacobians of Picard curves’, Public key cryptography (PKC
2004), Lecture Notes in Computer Science 2947 (Springer, Berlin, 2004) 55–68.

11. S. D. Galbraith, S. M. Paulus and N. P. Smart, ‘Arithmetic on superelliptic curves’, Math. Comp. 71
(2002) no. 237, 393–405 (electronic).

12. K. Győry, ‘On the number of solutions of linear equations in units of an algebraic number field’, Comment.
Math. Helv. 54 (1979) no. 4, 583–600.

13. R.-P. Holzapfel, The ball and some Hilbert problems, Lectures in Mathematics ETH Zürich (Birkhäuser,
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