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T O M A T H E M A T I C A L P R O G R A M M I N G 

BY 
S. H. TIJS A N D J. M. B O R W E I N 

ABSTRACT. A theorem on the barycentre of a measure is proven 
which leads to generalization of Carathéodory's theorem and to 
extension of various results. A mathematical programming problem 
is examined in application. 

1. Introduction. In theorem 1 of this paper we present a result concerning 
the placement of the barycentre of a probability measure, which is used in 
theorem 2 to generalize Carathéodory's theorem. Theorem 3 then applies this 
result to CS-closed sets. Theorem 3 is then itself applied to produce an 
extension of a recent result of Cook [2], which can also be seen as a 
generalization of Carathéodory's theorem. The final section of this paper 
considers a very general linear programming application of theorem 2. 

2. Notation and preliminaries. All discussion takes place in the setting of a 
normed linear space X over IR (although many results can be extended to a 
more general setting). The space of continuous linear functional of X is 
denoted by X*. If V is an arbitrary subset of X, then Ve is the complement of 
V in X, conv V is the convex hull of V, cl V is the closure of V, int V is the 
interior of V and, if C is convex, ri C is the relative interior of C with respect 
to the smallest closed affine subspace containing C A measure /UL on X will be 
a non-negative regular Borel measure on the cr-ring generated by the open 
subsets of X. A probability measure on X is a measure /ut with JLL(X)= 1. The 
support supp (/ut) of a measure JLI on X is defined by 

supp (jit) = {x e X : fi(U) > 0 for each open neighbourhood U of x}. 

The probability measure with mass 1 at x will be written ex. The barycentre 
b(^) of a probability measure /UL is defined by 

**0>0*)) = x*(x) di±(x) for all x*c:X* 

if such a point b(ix) exists. Further S50 will denote the set of infinite sequences 
{qn} of non-negative terms with Zn=i^fn = l- Finally IR = IR U {-<*, oc} and 
77; :Rm —*>M is the i-th coordinate functional (i = 1, 2 , . . . , m). 

The following proposition will be used. 
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PROPOSITION 1. Let n be a probability measure on X. 
Then ju,(supp(ju,))= 1. 

Proof. Since supp(jui) is closed, this set is measurable and also its comple
ment. Let us suppose that supp(jm)c has positive measure. Then, by the 
regularity of fx, some compact subset K of supp(jn)c also has positive measure. 
Now each point in K belongs to an open set of measure zero. Since K is 
compact some finite number of such open sets covers K. But then K has 
measure zero, which is impossible. Hence supp(/x)c has measure 0, 
/x(supp(ju,))=l. • 

3. Central results. Our first theorem says something about the placement of 
the barycentre of a probability measure. 

THEOREM 1. Let ^ be a probability measure on X with bary centre b((i). 
Suppose V is a subset of X satisfying 

(3.1) supp0*) = cl V, 

(3.2) ri c o n v V # 0 . 

Then b(fx)eri conv V. 

Proof. Suppose that b(ju,)£ri conv V. Let M be the closed affine span of V 
and suppose, by translation, that M is a subspace. If b(/x) lies in M, one may 
separate b(jLt) from the non-empty open set ri conv V in M. The extension to X 
of the separating functional on M produces some x * e X * with 

(3.3) * * ( M M ) ) < x*(y) for each y e ri conv V. 

In case b(fi) does not lie in the closed subspace M, (3.3) can still be supposed to 
hold. It follows from (3.3) that there is a v e V such that x*(b(/u,))<x*(û). But 
then there is an open set U containing v and some s > 0 such that 

(3.4) x*(b(n))<x*(u)-e for each ueU. 

Moreover, JLL(U)>0 because ûesupp(ju) by (3.1). Also, by (3.3) and (3.1), we 
have 

(3.5) x*(b(ju,))<x*(s) for each sesupp(/x). 

But then, in view of (3.4) and (3.5), we have 

x*(fc(^))=f x * ( x ) < ^ « > 
•'x 

X*(x)djLt(x) 
L/nsupp(/x) 

+ [ x*(x)dM(x)> ju(l/nsupp( j tt))(x*(M/*)) + e) 
*'L/cnsupp(/x) 

+ ju(L/cnsupp( ju))x*(MM)) 

= ju,(supp(/x))x*(b(n)) + e/Li(L/nsupp(M)). 
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Since ja(supp(jn)) = 1 by proposition 1 and thus ju,(L/nsupp(jui)) = JLL(U)>0, we 
have derived the contradiction that x*(Mju,))>x*(b(ja)) + ejti(LO. Hence b(/x)e 
ri conv V. • 

Now we recall Carathéodory's theorem: Let V be a subset of Um and let 
c G conv V. Then there exists a finite subset W of V with at most m + 1 
elements such that c 6 conv W. 

We note that 

(3.6) c 6 conv V iff there is a probability measure JU, such that 

supp(jit) is a finite subset of V and b(jLt) = c. 

[Suppose <jf > 0, v(i) G V (i = 1 , . . . , s) and £- = 1 qf = 1. Then the element c = 
Ei = i <&u(0 in conv V corresponds with the probability measure /ut =X?=i % ev(o 
and b(ix) = c ] 

Now we can reformulate Carathéodory's theorem as follows: For each 
probability measure fi on (Rm with a finite support in Vc[Rm, there is a 
probability measure v on Um such that supp(v) is a subset of V with at most 
m + 1 elements and such that the barycentres of [i and v coincide. In view of 
this reformulation the following theorem can be seen as a generalization of 
Carathéodory's theorem. 

THEOREM 2. Let JJL be a probability measure on Rm such that J7rf(x) dn(x)eU 
for i = 1, 2 , . . . , m. Let V be a subset of Um such that supp(jLt) = c/( V). Then 
there exists a probability measure v on Um with 

b(it) = Hv) = 7T2(X) d f l (x ) , 7Tm(x) dix(x)j 

and supp(^) is a subset of V with at most m + 1 elements. 

Proof. It is obvious that b(yu) exists and that (b(fx))i = / ^ (x ) d/x(x) for 
i — 1 , . . . , m. Since it is well-known that each non-empty convex set in a 
finite-dimensional space has a non-empty relative interior and since supp(ju-) = 
cl(V), we can apply theorem 1 and conclude that b(jn)eri conv Vcconv V. In 
view of (3.6) and the reformulation of Carathéodory's theorem there exists a 
probability measure v with the desired properties. • 

Recall that a convex set C is said to be CS-closed (cf. Jameson [7], p. 114) if, 
for any sequence {c(n)} in C and {qn}e S°° the convex sum £n = i qn c{n) is in C 
whenever the sum converges. Clearly, closed convex sets are CS-closed. We 
shall use theorem 1 to provide a proof of the known result that all finite 
dimensional convex sets are CS-closed. 

THEOREM 3. Suppose C is a convex subset of IRm. Let YZ=\ <\n c(n) be a 
convergent convex sum with c(n) e C for each neN. Then Xn=i Qn c(n) is also 
a convex combination of at most m + 1 elements of C Particularly, C is 
CS-closed. 
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Proof. Put c = YZ=iqn c(n), V = {c(n):qn >0} and fi =X~= 1 qn ec(n). Then p 
is a probability measure on Um with supp(ju) = cl V, b(fi) = c and ri conv V ^ 
0 . So we may conclude from theorem 1 that c G conv V<=C. Hence C is 
CS-closed. The other conclusion of the theorem follows from Carathéodory's 
theorem. • 

It is apparent on inspection of the proof of theorem 1 that it continues to 
hold if (3.1) is replaced by 

(3.1)' supp(ju)c:clconv V; ri conv Vnsupp(ju)^ 0 , 

which is not strictly comparable to (3.1). Consider V = {0, 1}<=!R, JJL =^s0 + ^e1 

which satisfies (3.1) and not (3.1)'. Conversely, if V = {0, 1}<=R and JJL is 
Lebesgue measure on [0, 1], (3.1)' holds and (3.1) fails. 

One may use theorem 1, under condition (3.1)', to show as in theorem 3 that 
relatively open convex sets in a Banach space are CS-closed. 

This theorem 3 is proven in a number of places (Blackwell and Girshick [1], 
p. 48, Cook and Webster [4] and ter Morsche [8]) without reference to 
CS-convexity. What these authors in fact prove is that conv{c(n)} is CS-
closed. In these terms the result is intrinsically finite dimensional as the 
following simple proposition shows. Applications of theorem 3 to game theory 
can be found in Blackwell and Girshick [1], p. 50 and in Tijs [9], pp. 34, 38, 46. 

PROPOSITION 2. In any infinite dimensional Banach space X one can find a 
sequence {xn} with conv {xn} not CS-closed. 

Proof. We may pick an infinite dimensional separable closed subspace X0 of 
X and a sequence {xn} dense in the unit ball of X0. The Baire category theorem 
shows that conv{xn} has no non-empty interior in X0 while clconv{xn} 
certainly has a non-empty interior. CS-closed convex sets in Banach spaces 
have the same interiors as their closures do (cf. [7], p. 183). Thus conv{xn} is 
not CS-closed. • 

We now use theorem 3 to extend a recent result of Cook [2]. Of course, this 
extension can be seen as a generalization of Carathéodory's theorem. 

Let D=[dij] be an upper bounded or a lower bounded fcxoo- matrix 
of real numbers and let d = (d1? d2,..., dk)eUk. Put S(D, d) = 
{p = (PuP2,--.)eS~:Dpen\Dp<d}. 

THEOREM 4. Let x0, x l5 x2,... be an infinite sequence in Um and let q = 
(q1, q2,.. .)eS(D, d) such that x0 — Y^=iq^j- Then there exists an r = 
(r1? r 2 , . . . ) G S(D, d) such that at most m + k + 1 coordinates of r are non-zero 
and such that x0 = YJJ=i ̂ . 

Proof. Note that DpeUk for each peS(D, d) if D is lower bounded, and 
that Dpe(MU{-œ})k if D is upper bounded, (a) First suppose that DqeUk. 
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Then (x0, Dq) = Y^=i ty-Ofy £>;)> where D, is the /th column of the matrix D. It 
follows from theorem 3 (with conv{(xJ5 Dy)} in the role of C and the (m + k)-
dimensional space IRm xUk in the role of Um) that there is an r e S°° with at most 
(m + k) + l coordinates unequal to zero and such that 

00 / 00 \ 

(x0, Dq) = X rfa, D,.) - ( £ rjXj, Dr). 

But then reS(D,d) because Dr = D q < d , and x0 = Y,T=irjxr Thus we have 
proved the theorem for the case that DqeUk. (b) Now suppose that Dq<£Mk. 
Then D is upper bounded. 
Let s be a positive upper bound for the elements of D and let I be the 
non-empty set {i e { l , . . . , k}:X°°=1 d^ = -<*}. Take a f eN such that 

X d ^ < di — s for each i e I. 
J = I 

Let E = [etj] rbe the k x oc- matrix with 

eiy = max{0, ^ j if i G I and / > f, 

and 

eiy = dtj otherwise. 

Put S(E, d) = {peSos:Epe Mk, Ep < d}. Then it is straightforward to show that 
q e S(E, d) and that Eq eUk. In view of part (a) of this proof (with E in the role 
of D) we may conclude that there exists an reS(E, d) with at most m + k + 1 
coordinates unequal to zero such that x0 = £°°= x r^. Now Dr<Er< d. Hence 
r e S(D, d) and we have proved the theorem. • 

Proposition 2 shows that there is no straightforward extension of theorem 4 
to infinite dimensional spaces. 

W. D. Cook [2] proved the above theorem under the two additional 
assumptions: 

(1) The sequence D1? D 2 , . . . of columns of D is a closed bounded sequence in 
Uk. 

(2) xl5 x 2 , . . • is a closed bounded sequence in Um. 

In his proof he used a duality theorem of semi-infinite programming theory. 
Our proof is considerably simpler and our result much more general. 

Without going into details we note that those results of the paper of Cook, 
Field and Kirby [3] which were obtained by using Cook's theorem can be 
strengthened by using theorem 4. 

4. An application in mathematical programming theory. Let Y be a set and 
meN. Let fi,f2,--',fm be real-valued lower bounded functions on Y, let fm+1 

be a real-valued bounded function on Y and let b = (bu b2,..., bm)eUm. By ^ 
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we denote the smallest a-algebra of subsets of Y such that /1? / 2 , . . . , fm+1 are 
measurable functions. Let Rt be the family of those finite measures /x on the 
measurable space ( Y, $)) for which 

(4.0) fi(y)dii(y)^bi for i = l , 2 , . . . , m. 

Let C be the convex cone generated by the set of probability measures 
{sy : y G Y}, where ey is the point measure with mass 1 at y. Let R2 be the 
subset of those elements /x of C for which (4.0) holds. For i = 1,2 we look at 

PROBLEM i. Find the value 

vt = inf / m + i ( y ) ^ ( y ) 

and (if possible) an element of the solution set 

Q = jLteK,: /m+i(y)d/i(y) = Ui|. 

Note that the problems 1 and 2 coincide if Y is a finite set and that then 
essentially we have a standard finite linear programming problem. 

The following theorem shows that both problems are feasible if one of them 
is so; that the values of both problems are equal and that both solution sets are 
non-empty if one of these sets is. Theorem 2 plays a crucial role in the proof of 
this theorem. 

THEOREM 5. With terminology as above let 

Oi(8) = \iJLeRi: fm+i(y)d^i(y)^vi + 8j 

for i — 1,2 and for each 8>0. Then 

(4.1) « ! # 0 iff R2*0 

(4.2) Vl = v2 

(4.3) for each 8^0:0,(8)^0 iff O 2 ( S ) # 0 . 

Proof. Since R2
c:R1, we may conclude that 

(4.4) i ? ! # 0 if R2*0 and v1<v2. 

Note that the theorem holds if Rx = 0. Suppose now that we can show that 
for each neRx, there is a £LeR2 such that 

(4.5) fi(y)dn(y) = fi(y)dil(y) for i = 1, 2 , . . . , m + 1. 

Then we may conclude that (4.1) holds and that u2 —ul5 and thus v2 = vx in 
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view of (4.4). Furthermore, /x G 02(6) if fi e O^ô), while it is also obvious that 
02(Ô)c=01(Ô); thus (4.3) holds. Hence, all that remains is the proof of (4.5). 

Take jtx G RX. If JJL(Y) = 0, then take |I = |XG R2, and (4.5) holds. Suppose now 
that JLL(Y)>0. Note that 

miju(Y)< Ifidjx^bi for i = l , . . . , m 

and 

m+1fx(Y)< / m + 1 ^ < M ^ ( Y ) 

where mt =infyeY/i(y)G[R for i = 1 , . . . , m + 1 and M = supy e Y /m + 1(y). 
Hence J/^JLLGIR for i = 1, 2 , . . . , m + 1. Let T:Y->IRm + 1 be the map with 
Ty = (/i(y),/2(y), ••• ,/m+i(y)) for each yeY, and let p be the probability 
measure on IRm+1 defined by 

p(A) = (jit( Y))" V(T _ 1 (A)) for each Borel subset A of Um+1. 

Then, in view of theorem C in Halmos [6] p 163, we have 

v{Y)\ TTM dp(x) = | ir,(Ty) dji(y) = 

for i = 1, 2 , . . . , m + 1. Hence 

/,(y)d|Li(y)ell 

Mp): xdp(x) = (iit(Y))-1 Tyd|ui(y)eO 

Let V = T(T_1(supp(p))). Then cl V = supp(p). Hence, in view of theorem 2, 
there exists a probability measure v on Um with a finite support in V and with 
b(p) = b{v). Let supp(^) have k members, then there are y(l), y ( 2 ) , . . . , y(k)G 
Y such that supp(i/) = {Ty(l), Ty(2) , . . . , Ty(k)}. Moreover, there is a 
(Pi> P2> • • •, Pk)G^k> with p, > 0 for each j = 1, 2 , . . . , k and X/k=i Py = 1> such 
that b(v) = l^lPjTy(j). Put A = fL(Y)Ii

k.1pJ.eyC/)€l?2. Then 

' /i(V)dMy) /i(y) dA(y) = MY) X ^(yO)) = MY)(M*))É = MY)(fc(p)), = 
j = l 

for i = 1, 2 , . . . , m + 1 and thus (4.5) holds. • 

REMARKS. Theorem 5 may be viewed as an extremal principle for Problem 1. 
The continuous version of theorem 5 in which Y is a compact Hausdorff space 
and / 0 , / i , . . . , / m are continuous functions in C(Y) shows this more clearly. 
The theorem then says that equation (4.5) takes the same values on the Borel 
measures on Y, M(Y), as it does on finite convex combinations oi point 
evaluations in M(Y). These point evaluations are the extreme points of the 
positive unit ball in M(Y) = C(Y)*. The theorem thus says such extremal 
combinations suffice. 
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We want to conclude with an economic interpretation of problems 1 and 2 
(cf. Gale [5], pp. 5-8). We look at a linear production system in which m goods 
G l5 G 2 , . . . , Gm are involved and where Y is the set of possible activities. We 
suppose that there is a fixed supply bt of goods Gt (i = 1, 2 , . . . , m) and that 
activity y e Y operated at intensity 1 needs /i(y),/2(y), • • • , /m(y) units of 
goods G l5 G2 , . . . , Gm, respectively. Then elements of JRX can be seen in this 
context as feasible production schedules and elements of R2 as finite feasible 
schedules e.g. production schedules using only a finite number of activities. Let 
~~/m+i(y) be the income associated with activity y at intensity 1. Then problem 
1 (problem 2) corresponds with the problem of finding a production schedule 
(a finite production schedule) which maximizes the total income without exceed
ing the given supplies. Now it follows from (4.5) that for each feasible /x e # ! 
there is a feasible production schedule /I as good as JJL, while /2 uses only a 
finite number of activities. Thus we may conclude that we can restrict our 
attention to production schedules in which only a finite number of activities are 
involved. Note that even ?n+l activities suffice. 

It will be obvious that in other economic situations theorem 5 may also be 
useful. 
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