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ON SOME NON-HYPERFINITE FACTORS OF TYPE III

BY
WAI-MEE CHING®

Introduction. In 1967, Powers [7] proved that there exists a one-parameter
family of pairwise non-isomorphic hyperfinite factors of type III. Powers’ result
on hyperfinite factors has been extended by Araki and Woods [1]. Connes [4],
and Williams [11], with different proofs, showed that there exists a continuous
family of mutually non-isomorphic non-hyperfinite factors of type III. Actually,
this result was also established by Ching [3] and Sakai [8] independently in 1970,
using a method derived from the classification of factors of type II;,. While the
construction of groups in [3] and [8] are highly complicated, the computations in
[11] are quite lengthy. On the other hand, Connes’ elaborate and deep analysis [4]
of factors of type III involves several sophisticated techniques in operator algebras
developed recently. In particular, his new algebraic invariants S and T are based
on the Tomita-Takesaki theory of modular operators of von Neumann algebras
[10]. In this note, we shall give an elementary proof of the existence of a continuous
family of mutually non-isomorphic non-hyperfinite factors of type III. In fact, we
shall prove a special case of the main result in Williams [11] by restricting the
finite factor in the tensor product to a group algebra. We follow the approach of
Schwartz [9], but shall not use infinite tensor product of factors of type I.

In the following, 1 denotes the function constantly equal to 1, e the identity
element in a group, N the set of natural numbers, J, the function on a set G with
6:(k)=1, and 6,(g)=0 for g5k, xg the characteristic function of a set S, B’ the
commutant of a set B of operators on a Hilbert space. All summations Y in this
paper are over certain finite sets of indexes, all functions are complex-valued unless
otherwise specified, and isomorphism means *-isomorphism.

Construction of RS, 0<A<1. Let X,={0, 1}. Let U be the measure on X
with us(0)=p, pe(1)=q, p+g=1, 0<p<q, and A=p/q. Let u be the completion
of the product measure u'=]],vu; on the Cartesian product X=T];cy X
where X;=X,, u;=pu, for i € N. Let A be the subset of X consisting of all functions
on N which take the value 1 only finitely many times. For a €A, ()=
max{i € N | a(i)=1} is called the height of «. For example, d, € A, and 4(d,)=n,
n € N. Define for i € N,

(x+y)(i) = x(i)+y(i)(mod 2), for x,yeX.
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A is then an abelian group where each element is its own inverse. For each « € A,
we define the following: a measurable transformation «:x+sx+o on X, a measure
B (E)=p(E+a) for all u-measurable subsets E of X. Let du,(x)/du be the Radon-
Nikodym derivative of u, with respect to u, and r,= (du,(x)/dr)*/%. We have

(1) rﬂ(x+°()ra(x) = raﬂ(x)'

Let H,=L*(X, u)®¢*(A). Since H, is generated by all F(x)®4,, F(x) € L¥(X, u),
« € A, for each f(x) e M(X), the algebra of all bounded u-measurable functions
on X, and § € A, the following uniquely define 4 bounded linear operators on H:

Ly(F(x) ® 6,) = f(x)F(x) ® 0, Up(F(x) ® 6,) = rp(x)F(x+p) ® Oy,

MF(x) ® 0) = f(x+0)F(x) ® &,  V4(F(x) ® 8,) = F(x) ® Oy
A subset S in X of the form {x € X [ x(i)=a;, (a;,=0o0r 1) k=1, , n} is called
a cylinder set, and h(S)=max{i, | k=1, n} is called the hezght of S. For
example, Cr={xeX | x(m)=i}, i=0,1,n EN, are cylinder sets, and we write
An for yci. Let S(X) be the algebra of all linear combinations of characteristic
functions of cylinder sets. For f=37_, ¢;zg, in S(X), h(f)=max{0, h(S;) | ¢;#0,
i=1, ..., n}is called the height of f. We note that if Sis a cylinder set and n>A(S),
then u(S N Cy)=qu(S). Hence, for f(x) € S(X) and n>h(f),

[ 1R du =g 171, where 1 s the Ltnorm.

From the observation that

rs,(x) = 271% for xeCl, i=0,1,

it is also not difficult to see that for each « € A, r,(x) assumes only finitely many
values on a cylinder set, all of the form A*™/2, m € N. Since the cylinder sets in X
generate the g-algebra of all y-measurable subsets of X, S(X) is dense in M(X) in
the strong operator topology. Operators of the form

Zl L, Uy, (resp. 21 M ,lVﬁl) ,

where f; € S(X), B; €A, i=1, ..., n form a self-adjoint algebra R (resp. R) of
operators on H,. Operators in R) commute with operators in R}. Let R, be the
strong closure of R;. By von Neumann [6], R, is a factor of type III, and the strong
closure of Rj is R). R, is isomorphic to the factor constructed in Powers [7] as
pointed out in §4[7].

Let <Z(G) be a countable discrete group. Let .«7(G) (resp. Z(G)’) be the von
Neumann algebra associated with the left (resp. right) regular representation of
G on £%(G). We denote L , (tesp. R, ) the left (resp. right) translation by g0
(resp. go) on 22(G). Let R =R, (G) be the tensor product of R, and £Z(G)
on HY T =H,0%G). R is purely infinite by Lemma 3 [2], where u is the identity
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representation, and RY =R,®s/(G). A vector in HY of the form &=
> oS e (X)®3,20,, where all f,,(x) € S(X) is called flat, and h(&), the height of &,
is defined to be the largest of the heights of f,;’s and «’s in the summation. Appar-
ently, flat vectors are dense in Hy.

For G and G; two countable discrete groups, and 4, 4, € (0, 1), we have the
following:

THEOREM. RY is not isomorphic to Rfll if A#2;.

Proof. Let
Jn=LpUs, ® L, K, = MyV; ®R,, neN.

Then J, € RS, K, € RY , and

(2) "Jn" = "Kn” = 1, for neN.
We claim that for each £ € HY,

@) IKA&1 = q' €1,

@ (T ,— 22K )| — O,

) [(AM2T* = K*)E| — 0.

Because of (2), we only need to show (3)-(5) for an arbitrary flat vector &=
> o0 f1(X)®0,006,. We first observe that for fe S(X), « € A, n>max{h(f), h(x)},
we have

fx+6,) =f(x),  gux+e)=zu(x), i=0,1,
and o (x+06,)=25(x), yo(x+08,)=72>(x) for all x € X. Hence, for n>h(£), we
have
IKAEN* = 3 1M;0V5, fu () @ 81°
= E ”xz(x"'a'l'én)faa(x) ® 5a+6,.”2
= z l%rlr,(x)f;m(x)l2 =dq "5”2’
(= A2K)EN? = 3 I(Ly2Us,— 2 °M 03 ) £ (X) ® 641°
= 2 I7nC)r (%) fag(6+0,)— AP+ a+8,) fo,(X)I2 = O,

AT 5= KDEN? = 3 (AU, Ly~ V5, M,9) foy (%) © 8o*
a,g

= D 1225 ()X +0,) fug(i+8,) — xa(x+ ) f(X) 12 = O.
This verifies (3)-(5).
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Now, suppose on the contrary that there is an isomorphism 6 from RS onto
Rf‘. It is easy to see that £,=1®4,®0, is a cyclic and separating vector for both
R?l and Rfl‘ in HY and Hfl‘ respectively. By Theorem 3 on p. 222 of Dixmier [5],
R and Rfll are then spacially isomorphic, i.e., there exists a unitary operator
W from HY to Hfil such that

©) 6(T) = WTW* forall TeR§.

Clearly, (6) also defines an isomorphism from R% onto Rfli. From (3)-(6), we
have for an arbitrary ((4/2)/2>)e>0, an n, € N such that

o) 10(K . )E0ll > 142,
8) 10 o= 272K 1 )&l < iq”z.
© 10(AY2T % — KX )&l < Z— g%

Since Rgl (resp. le) is strongly dense in R; (resp. R;‘) and operators of the form
>, ¢,L, (tesp. >, c,R,) are strongly dense in =7 (G) (resp. Z(G)'), by the Kaplansky
density theorem (Theorem 3, p. 43 [S]), the hermitian parts of Rgl and Rf'-11 are
dense in the hermitian parts of R, and R; respectively. Hence, after multiplying
2q71% on (7)-(9), we can find two operators P=>, L, U®L, and Q=
Do M, V.®R,, where f,, @,, € S(X), such that

(10 Q& > 1,
(11) I(P—2"2Q)&]l < e,
(12) I(A*P*—Q®)&| < e.

Without loss of generality, we can assume that the summations in P and Q are
over the same finite subset EX F of AX G, and furthermore, g € F implies g~* € F.
(11) and (12) are respectively the following:

(13) z (faq(x)ra(x) ® 60: ® 6‘,—}.1/2(})“()64-0{) ® 60: ® 60_1) l
- (z ufa,(x>ra(x)—z”2¢,,—x(x+a)u§) <e
(14) z (11/ 2r¢(x) fad(X+0) ® 6, ® 6,1— @,,(x) ® 3, ® J,)

1/2
= (z ll/l”zra(x)fn(x+°c)—%f‘(x)lli)

1/2
- (zg DAY, () = o) gk + a)nz) <e
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The last equality follows from

f Fxta) du(x) = f £ % () du),
X b'¢ du

and (1). By Minkowski inequality and (13), (14), we have

1/2
15) (z fxlra(x)—z“2|2~ o)+ Pyl d,u(x)) <2
and ,
. 1/2
(16) (= fxlra(XHF’“IZ' a4 )L ) < 26

Since r,(x)>0, (16) implies that

1/2
A= (Z [ ‘Pa,,—n(x+oc)——faa(x)||§) <202 < 1.

Hence,

2

1/
(17) (z 1 fuo )+ asmi ) 2

> 2(2 u qow—x(x+a)n§) —A =20k —A4 > 1.

Let Z be the finite collection of all cylinder sets whose characteristic functions are
in the linear expansions of f,,’s and ¢,.’s. (15) and (17) together yield that

min |r(x)—2"% < 2e.

xeSeF
ack

But r,(x) is always an integral power of Ai/ *forxe SeZF,acE. Since 0<4, A<l
and e can be arbitrarily small, we have A=A17 for some n € N. By symmetry,
Ay=A™ for some m € N. Hence, A=A4,. This shows that Rf is not isomorphic to
R if A,

COROLLARY. There exists a one-parameter family of non-isomorphic non-hyper-
finite factors of type III.

Proof. Let G=G,=,, the free group on two generators. R; and Ri are factors
of type III (Lemma 2 [2] with u the identity representation). By the same argument
as that in Lemma 9 [2], we see that RS and Rfl are non-hyperfinite, for otherwise
®, would admit a translation invariant measure of total mass 1. Hence, {RS |o<
A<1} is the required family of factors of type III.
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