PURE SUBFIELDS OF PURELY INSEPARABLE FIELD EXTENSIONS

JAMES K. DEVENEY

1. Introduction. The notion of pure subgroups is due to Prufer [7]. It has proven extremely useful in establishing structural properties of abelian groups. In a recent paper [9], Waterhouse introduced the concept of a pure subfield of a purely inseparable extension. Let L be a purely inseparable modular extension of k, and let K be an intermediate field. K is called *pure* if K and $k(L^{p^n})$ are linearly disjoint over $k(K^{p^n})$ for all n. Waterhouse used this concept to establish the existence of basic subfields [9]. The purpose of this paper is to examine the properties of pure subfields, and in particular to determine when a pure subfield is a tensor factor of L/k, i.e. when there exists an intermediate field K' such that $L = K \bigotimes_k K'$. Theorem 4 states that if K is pure and L/Kis of bounded exponent, then K is a tensor factor of L/K. This result yields an elementary proof that a finite dimensional modular extension is a tensor product of simple extensions. A further application gives a simple proof of a theorem in [3].

Theorem 8 states that if *K* is pure and of bounded exponent over *k*, then *K* is a tensor factor of L/k. Theorem 8 is used to establish a conjecture in [**2**] regarding the distinguished intermediate fields of the purely inseparable Galois theory developed in [**1**]. Assume *L* is a finite dimensional modular extension of *k*. If there exists a subbase $T = T_1 \cup \ldots \cup T_n$ for *L* over *k*, the elements of T_i being of exponent *i* over *k*, such that $K = K \cap k(T_1) \otimes \ldots \otimes K \cap k(T_n)$, then *K* is also modular over *k*; and moreover, there exists a subbase $\{x_1, \ldots, x_n\}$ for *L* over *k* such that $K = k(x_1^{pr_1}) \otimes \ldots \otimes k(x_d^{pr_d})$.

2. Pure subfields. L is a modular extension of k if L^{pn} and k are linearly disjoint. We assume throughout that L is a purely inseparable modular extension of k. We will use the following definition originally due to Waterhouse [9].

Definition 1. Let K be a subfield of L containing k. Then K is *pure* if and only if K and $k(L^{p^n})$ are linearly disjoint over $k(K^{p^n})$ for all n.

We will need the following two results.

THEOREM 2 [8, p. 206]. Let L/k be purely inseparable, and let K be an intermediate field. The following are equivalent.

a) K and $k(L^{p^n})$ are linearly disjoint over $k(K \cap L^{p^n})$ for all (positive) n, and L is modular over k.

Received April 7, 1975.

b) $K \cap L^{p^n}$ and k are linearly disjoint for all n and L is modular over K.

THEOREM 3 [5, Proposition 3.3, p. 94]. Let $L \supseteq K \supseteq k$ be fields and assume L is of exponent e over K. The following conditions are equivalent.

a) There exists an intermediate field J of L/k such that $L = K \bigotimes_k J$ and J is modular over k.

b) There exists a canonical generating system $B = B_1 \cup \ldots \cup B_e$ of L over K such that $B_i^{pi} \subseteq (L^{pi} \cap k)((K(B_{i+1}, \ldots, B_e))^{pi}).$

The following result was first observed by Waterhouse; however, a proof is given here for completeness.

LEMMA 3. If L is modular over k and K is pure, then L is modular over K.

Proof. Consider the following chain of fields: $k(K^{p^n}) \subseteq k(K \cap L^{p^n}) \subseteq K \cap k(L^{p^n})$. If K is pure, these fields must all be equal. Theorem 2 shows L is modular over K.

Note that if K is pure in L over k, then K is also pure in L' over k where $L \supseteq L' \supseteq K$. Thus any such L' which is modular over k must also be modular over K. The following result gives the first condition for a pure subfield to be a tensor factor. It corresponds to the result in abelian group theory which states: If B is a pure subgroup of the p-group A and A/B is of bounded order, then B is a direct summard of A.

THEOREM 4. Let L be a purely inseparable modular extension of k and let K be an intermediate field such that L/K is of bounded exponent. Then K is pure if and only if K is a tensor factor of L over k (i.e. $L = K \bigotimes_k K'$ for some K').

Proof. Assume $L = K \bigotimes_k K'$. Then K and K' are linearly disjoint over k. By [4, Lemma, p. 162], K and $k(K^{p^n})(K')$ are linearly disjoint over $k(K^{p^n})$, and this implies K and $k(K^{p^n})(K'^{p^n}) = k(L^{p^n})$ are linearly disjoint over $k(K^{p^n})$. Thus K is pure.

Conversely, assume K is pure. By Lemma 3, L/K is modular. Since K is pure, $k(K \cap L^{p^n}) = k(K^{p^n})$ and by Theorem 2, we can conclude $K \cap L^{p^n}$ and k are linearly disjoint over $k \cap L^{p^n}$ for all n. Let $B_1 \cup \ldots \cup B_n$ be a cannonical generating system for L/K (that one exists follows since L/K is of bounded exponent [5, Corollary 1.35, p. 30]), where the elements t_i of B_i are of exponent i over K. In view of Theorem 3, it suffices to show $t_i^{p^i} \in (L^{p^i} \cap k)(K^{p^i})$. Since K is pure, $t_i^{p^i} \in k(K^{p^i})$ i.e. $t_i^{p^i} = \sum a_r y_r^{p^i}$. We may assume $\{y_r^{p^i}\}$ is linearly independent over k.

Then $\{t_i^{p^i}\} \cup \{y_r^{p^i}\}$ is a subset of $K \cap L^{p^i}$ which is dependent over k, and hence must be dependent over $k \cap L^{p^i}$. Since $\{y_r^{p^i}\}$ is independent over k and hence over $k \cap L^{p^i}$, this relation shows $t_i^{p^i} \in (k \cap L^{p^i})(K^{p^i})$, and hence there exists J such that $L = K \bigotimes_k J$. (Note that J is also modular over k.)

COROLLARY 5. Assume L is modular over k of bounded exponent. Let $x \in L$

be of exponent e over k. Then k(x) is a tensor factor of L over k if and only if $x^{p^{o-1}} \notin k(L^{p^o})$.

Proof. This follows by direct application of Theorem 4.

Theorem 4 and its corollary provides an elementary proof that a finite dimensional modular extension L of k is a tensor product of simple extensions. Pick an element x in L of maximal exponent over k. The condition of Corollary 5 must then automatically be satisfied, and we can write $L = k(x) \bigotimes_k J$ and, as noted after Theorem 4, we may assume J is modular over k. By induction, the result now follows since [J:k] < [L:k].

Theorem 4 also provides a simple proof of the following known result.

COROLLARY 6 [3, Theorem 11, p. 339]. Any modular field extension L over k where, for some finite n, $k(L^{p^n}) = k(L^{p^{n+1}})$, is isomorphic to $\bigcap k(L^{p^i}) \otimes_k M$ where M is a modular subfield of L of finite exponent.

Proof. Since $k(L^{p^n}) = k(L^{p^{n+1}})$, $k(L^{p^n}) = \bigcap k(L^{p^i})$. It is straightforward that $k(L^{p^n})$ is thus a pure subfield. Since $L/k(L^{p^n})$ is of exponent *n*, Theorem 4 applies.

We now wish to establish the analogue to the result that a bounded pure subgroup is a direct summand.

LEMMA 7. Let K be a pure subfield of L of exponent n over k. Then $K(L^{p^n})$ is pure in L over $k(L^{p^n})$.

Proof. We need to show $K(L^{p^n})$ and $k(L^{p^n})(L^{p^s})$ are linearly disjoint over $k(L^{p^n})(K^{p^s})$. If $s \ge n$, this is obvious. If s < n, $k(L^{p^s}) \supseteq k(L^{p^n})(K^{p^s}) \supseteq k(K^{p^s})$. Since K is pure, K and $k(L^{p^s})$ are linearly disjoint over $k(K^{p^s})$. By applying the familiar theorem on linear disjointness [4, Lemma, p. 162] to the following diagram, we obtain the desired result.

THEOREM 8. Let L be modular over k and let K be a subfield of bounded exponent over k. Then K is pure if and only if it is a tensor factor of L over k.

Proof. The if part follows as in Theorem 4. Now let *n* be the exponent of *K* over *k*. Since *K* is pure in L/k, *K* and $k(L^{p^n})$ are linearly disjoint over $k(K^{p^n}) = k$. Thus $K(L^{p^n}) = K \bigotimes_k k(L^{p^n})$. By the previous lemma, $K(L^{p^n})$ is pure in *L* over $k(L^{p^n})$. Since this extension is of bounded exponent by Theorem 4, $L = K(L^{p^n}) \bigotimes_{k(L^{p^n})} K'$. Thus $L = K \bigotimes_k k(L^{p^n}) \bigotimes_{k(L^{p^n})} K' \approx K \bigotimes_k K'$.

This result was proven by Waterhouse [9, Proposition 2.6] under the added assumption that K is modular over k.

As an application of the theorems on pure subfields, we consider the following problem. In [2], L is called an *equiexponential modular extension of* k if there exists a subbase for L over k each of whose elements has the same fixed exponent over k. It was shown in [2, Theorem 4.4] that if L is a finite dimensional equiexponential modular extension of k, and K is an intermediate field such that L is modular over K, then K must also be modular over k, and moreover there must exists ome subbase $\{x_1, \ldots, x_t\}$ for L over k such that $K = k(x_1^{p^r_1})$ $\otimes \ldots \otimes k(x_t^{p^r_t})$. Thus the intermediate fields over which L is modular are completely determined in the equiexponential case.

The obvious way to generalize this result for non-equiexponential modular extensions is to consider intermediate fields K (L/K modular) for which there exists a subbase $T = T_1 \cup \ldots \cup T_n$ of L over k, the elements of T_i being of exponent i over k, such that $K = K \cap k(T_1) \otimes \ldots \otimes K \cap k(T_n)$. (Such fields are called *homogeneous*.) Then by considering the "pieces" $k(T_i) \supseteq K \cap k(T_i) \supseteq k$, these fields could be characterized. However, as seen in the following example, $k(T_i)$ need not be modular over $K \cap k(T_i)$.

Example 9. Let P be a perfect field (char. $p \neq 0$) and let $\{x, y, z\}$ be algebraically independent over P. Consider the following diagram

Elementary calculations show $L = k(T_1) \otimes k(T_2)$ and L is modular over K. However $K(T_2)$ is not modular over $K \cap k(T_2) = K$. However, if we replace $T_2 = \{x, y^px + z^p\}$ by $T_2' = \{x, y^p\}$, then $K = K \cap k(T_2')$ and $k(T_2')/K$ is now modular. We shall now show that if K is homogeneous, then we can always find some T_i' such that $K = K \cap k(T_1') \otimes \ldots \otimes K \cap k(T_n')$ where $k(T_i')$ is modular over $K \cap k(T_i')$. Thus, using [2, Theorem 4.4], the homogeneous intermediate fields will be completely determined.

THEOREM 10. Let L/k be a finite dimensional purely inseparable modular extension and let K be a homogeneous intermediate field. Then K is also modular over k and there exists a subbase $\{x_1, \ldots, x_t\}$ for L over k such that $K = k(x_1^{pr_1})$ $\otimes \ldots \otimes k(x_t^{pr_t})$. *Proof.* Since K is homogeneous, $K = K \cap k(T_1) \otimes \ldots \otimes K \cap k(T_n)$. Let $K_i = K \cap k(T_i)$. Since L is modular over both K and $k(T_i)$, L is modular over K_i [9, Proposition 1.2]. Let $K_i' = k(T_1) \otimes \ldots \otimes k(T_{i-1}) \otimes k(T_{i+1}) \otimes \ldots \otimes k(T_n)$. Since $k(T_i)$ and K_i' are linearly disjoint over $k, k(T_i)$ and $K_i(K_i')$ are linearly disjoint over $K_i, k(T_i)$ and $K_i(K_i')$ are linearly disjoint over K_i . Thus $L = k(T_i) \otimes_{K_i} K_i(K_i')$. By Theorem 8, $K_i(K_i')$ is pure in L over K_i , and hence $L = J \otimes_{K_i} K_i(K_i')$ where J is modular over K_i . Now since K_i and K_i' are linearly disjoint over $k, K_i(K_i') = K_i \otimes_k K_i'$. Thus $L = J \otimes_{K_i} (K_i \otimes_k K_i') \approx J \otimes_k K_i'$. Since L is equiexponential modular over K_i' , a degree argument shows that J is equiexponential modular over k of exponent i. Thus by [2, Theorem 4.4], K_i is modular over k and there exists t_{i_1}, \ldots, t_{i_s} such that $K_i = k(t_{i_1}^{pr_1}) \otimes \ldots \otimes k(t_{i_s}^{pr_s})$. The result now follows.

This theorem answers a conjecture given in [2] and also gives a new description of the distinguished intermediate fields for the Galois theory in [1] and [2].

References

- N. Heerema and J. Deveney, Galois theory for fields K/k finitely generated, Trans. Amer. Math. Soc. 189 (1974), 263–274.
- J. Deveney, An intermediate theory for a purely inseparable Galois theory, Trans. Amer. Math. Soc. 198 (1974), 287–295.
- L. A. Kime, Purely inseparable modular extensions of unbounded exponent, Trans. Amer. Math. Soc. 176 (1973), 335–349.
- N. Jacobson, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory (Van Nostrand, Princeton, New Jersey, 1964).
- J. Mordeson and B. Vinograde, Structure of arbitrary purely inseparable extensions fields, Lecture Notes in Math., Vol. 173 (Springer-Verlag, Berlin and New York, 1970).
- 6. ——— Generators and tensor factors of purely inseparable fields, Math. Z. 107 (1968), 326-334.
- H. Prufer, Untersuchungen uber die Zerlegbarkeit der abzahlbaren primaren abelschen Gruppen, Math. Z. 17 (1923), 35-61.
- 8. M. E. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410.
- 9. W. C. Waterhouse, *The structure of inseparable field extensions*, Trans. Amer. Math. Soc. 211 (1975), 39–56.

Virginia Commonwealth University, Richmond, Virginia