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PERMUTATIONS RELATED TO SECANT, TANGENT AND
EULERIAN NUMBERS

BY

MORTON ABRAMSON

1. Introduction. It is well known that

n

(1) Z ——'—secx+tanx

where A, denotes the number of “up-down’ or alternating permutations

2) e1<e,>ez<e>- -

of 1,2,...,n The numbers A,, and A,,., arc known as the secant and
tangent numbers respectively and A,, =(—1)"E,,, where E, is the Euler
number.

A brief history of the numbers A, is given by Gould [63] who notes that
alternating permutations were enumerated in closed form by D. André [7] as
long ago as 1879 and that a detailed exposition of the method is given by E.
Netto [69, pp. 105-112] where various references in the literature are given.
By first obtaining a recurrence relation and then solving a differential equation,
Blundon [9] gives a short self-contained derivation of (1).

The familiar Eulerian numbers A,(n) given explicitly by

3) A(n)—Z( 1) <n+1)(r+1-l)"

i=0

with the generating function

S r -y
“) Z Z Ay =~
e =0 e y
enumerate those permutations e,e, - - - e, of 1,2,..., n containing precisely r
rises, a rise being a pair e¢;<e_,, i=1,...,n—1. (Often an initial rise is

considered to occur at e; but this is not done here.) The Eulerian numbers
were discussed in 1755 by Euler [54]. Discussions of the Eulerian numbers are
also given by Carlitz and Scoville [38], Comtet [45], Foata and Schiitzenberger
[56] and Riordan [72].
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The sec-tan and Eulerian numbers, their properties, combinatorial interpreta-
tions as permutation problems, related numbers and problems, generalizations,
extensions and refinements have been studied extensively in the literature.
Papers involving both numbers, include [22, 23, 26, 58]. Papers relating more
to the sec-tan numbers include [7H10] incl., [17, 19, 20, 24, 25,27, 29, 31, 32,
36, 37, 46, 49, 51, 52, 53, 55, 57, 59, 64, 74, 78]. Papers relating more to
Eulerian numbers include [1] to [6] incl., [11]-{16] incl., [18, 21, 24, 28, 29,
30, 33, 34, 35], [38H44] incl., [47, 48, 50, 60, 62, 65, 66, 67, 68, 71, 73,75, 79,
80, 81].

Stanley [76], [77] and Gessel [61] in his Ph.D. thesis under the supervision of
Stanley unify many disparate topics in combinatorics. Included in their works
are generalizations of the sec-tan and Eulerian numbers which contain as special
cases many results obtained by others. More precisely, a general theory for the
enumeration of order-reversing maps of finite ordered sets into chains is
developed in [76], a unified method involving Mobuis functions associated with
binomial posets for enumerating permutations of sets and multisets is given in
[77] and a general theory of enumeration of finite sequences by generating
functions is developed in [61].

In this paper, we give a simple, elementary and purely combinatorial
derivation of the following generalization of the sec-tan and Eulerian numbers.
This is done by noting a natural relationship between the restricted permuta-
tions considered and corresponding restricted distributions of distinct objects
into distinct cells.

In a permutation e;e, - - - ¢, of 1,2,..., n we define a run of length [=1 to
be a sequence

€1 <€ <+ <€y

satisfying e;,>e,,,, €4,>¢€ .., With ec=n+1, e,,.,=0. For example, the
permutation 341 6 2 7 9 8 5 contains precisely five runs,

3<4,1<6,2<7<9,8,5,

of lengths 2, 2, 3, 1, 1 respectively.

Note that a permutation of 1,2,...,n with precisely r runs contains pre-
cisely n—r rises and precisely r—1 falls, a fall being a pair ¢ >¢;.,, i=
1,2,...,n—1.

Denote by A,(k, n, t,,t,), 0<r=mn, k, t,, t,=1, the number of permutations
of 1,2,...,kn+t,+t, with (a) precisely n+2—r runs, (b) the lengths of the
first and last runs not less than t; and t, respectively and congruent to
t, (mod k) and t, (mod k) respectively and (c) the lengths of all the other n—r
runs congruent to 0 (mod k). That is, A,(k, n, t;, t,) is the number of permuta-
tions of 1,2,..., kn+t, +t, satisfying

(5) el<e2<'"<em,>em,+1<eml+2<"'<e >Seee>e e

my+m,
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with
6) Hh=m;=t(mod k), t,=m, ,_,=t, (mod k), 0<m, =0(mod k),

i=2,...,n+1—r where m; is the length of the ithrun,i=1,2,... ., n+2—r.
We define A, . (k,n,t,t,)=1.
In §2 we give an explicit formula (19) for A, (k, n, t,, t,) and also show that

o n+l kn+t +t,
A (k n,t, t,)y —mm—
(7) n;o r;() r( 7n, 1> 2)}’ (kn+t1+t2)!
'[1(x7 ) tz(x’ )
— (| BN ()]
Y~ @rolx, y)
where
© (y_l)fx:ﬂk
=2 T oo =0,1,2,....
(8) @re(x,y) ,;) o S012

The special cases Ay(k,n—1,k,t) and Ay(k,n—1,k, k) noted in §4 are
results of Carlitz [25]. These special cases involve the Olivier functions
¢ (x,0) defined by (8) with y=0. See Carlitz [10] for some arithmetic
properties of these functions.

2. Distributions of 1,2,...,nk+t,+1, into distinct cells. Denote by
g(k,n, t,, t,,p), n=p—2=0, t;=1, t,=1, the number of distributions.

(9) e, <e,<:---: <em1 l eml+1< e <em1+m2| e l .. <ekn+tl+t2|
cell 1 cell 2 s cell p

of the integers 1,2,...,kn+t,+t, into p distinct cells such that
(10) t;=m;=t, (mod k), t,=m,=t, (mod k) and 0<m; =0 (mod k)
for i=2,...,p—1, where m; denotes the number of objects in cell i. Integers
in a cell are arranged in rising order. Then
(11) g(k9 n, tl’ t29 p)

= Z (kn +t;+ )V (i k + ) (k) (3k)! - - - (i, k) (i k +1,)!

where the summation is over all i;=0, i,=0, i,>0, i;>0,...,i,_,>0 satisfy-
ing iy +---+i,=n and the exponential generating function is

i kn-+t +t,
(12) gk, n, ty, t,p) ————
n=p—2 v (kn+t1+t2)'

t,+ik o xt2+lk

o xF\ T E x
- (i; (ik)!) ,.ZO (t+ik)! & (b + k)

We define g(k, n, t;, t,, 1) =1.
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In a distribution (9) satisfying (10) define the distribution property P; to be,
“e, i and e, ;. are in the same cell”, i=0,1,2,...,n.

LemMMA. The number of distributions (9) satisfying (10) and satisfying pre-
cisely j of the n+ 1 distribution properties Py, Py, . .., P, is g(k, n, t,, t,, n +2—7j).

Proof. Suppose a distribution (9) satisfying (10) satisfies precisely j of the
n+1 properties with cell i satisfying precisely j,(=0) of the properties. Then
cell i contains (j; + 1)k integers, i=2,...,p—1, cell 1 conzains j; k +¢t; integers
and cell p contains j,k+t, integers. Since j;+---+j, =] and
(hk+t)+ G+ Dk +(z+Dk+- - -+ (G, + Dk +(jk +t,)=kn+t,+t, it fol-
lows that p=n+2—j.

3. The numbers A, (k, n, t;,t,). There are (kn+t,+1t,)!/(k!)"t,! t,! linear ar-
rangements

(13) €162 Cppie e,

of 1,2,...,kn+t;+t,, n=0, k, t,, t,=1 satisfying
e <e,<---<e,,
1€, »<' " <€ i

(14) €kt <€k " <€ k2

€ikn—1+1 <€ iktn-1+2<"" <€ tin

€ ikntl << er,+kn+2< < €t +kntiye

Denote by A,(k, n, t,,t,) the number of arrangements (13) satisfying (14)
and satisfying precisely r of the n+1 arrangement properties

(15) e:, < et1+13 e:,+k < etl+k+17 e:|+k2< ez|+k2+1a cses et,+kn < et,+kn+l

denoted by P,, P,,...,respectively.

Denote by N(P,,P,, ..., P,) the number of arrangements (13) satisfying
(14) and satisfying the j arrangement properties P, ,..., P, (and possibly
other of the properties). Let

(16) s()=Y, N(P,,P,,...,P,)

where the summation is taken over all j-combinations O0=u, <u,<---<uy; <
n. By the general principle of inclusion and exclusion we have

n+l—r
(17) Akt t)= Y (—1>f(';“’)s(r+f>
i=0

with s(0)=(kn+t,+,)!/(k!)"t,! t,!. We now show that

(18) s(D=glk,n, t;, t,,n+2—]).
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Proof of (18). Upon removing the bars of a distribution (9) satisfying (10)
and also satisfying precisely the j distribution properties P, , ..., P, we obtain
an arrangement counted by N(P,, ..., P,) where the arrangement properties
P,,...,P, correspond to the distribution properties P,,...,P,. Further
every arrangement counted by N(P,, ..., P,) can be obtained this way. Using
the Lemma in §2, (18) follows.

Hence, (17) and (18) give the formula

n+l-r

(r+ .
(19) Ar(k, n, th t2) = Z (_ 1)1 (r] i) g(k3 n’, tl) t2’ n +2_ r_]),
i=0
and the ordinary generating function is
n+1 n+1 .
(20) z Ar(k7 n, t17 t2)y' = Z g(k’ n, tly t2> n +2—])(y - 1)'

r=0 j=0

Proof of (7). From (20), the left side of (7)

o xk"+‘x+‘2 © n+2 xkn+tl+t2
— _1n+1 + k, ,t,t, _1n+27m
nz=:0 &y ) (kn+t;+1,)! ngo mz::2 glk. m, 11, 2, m)(y ) (kn+t,+1t,)!
© o kn+tl+12
== Do+ 2 2 glknty, b, m) (y—prezm

(kn+t,+1t,)!

m=2n=m=2

= (y - 1)‘Pk,tl+t2(x7 Y) + Z (‘Pk,O(x’ Y) - 1)m—2

X @ (X, Y@ (X y)(y =12 (by (12))
e y—-1
= (y 1)‘Pk,r,+12(x’ Y) + y— @k,o(x, y) (Pk,tl(x, Y)‘Pk.t2(xa Y)

=right side of (7).
We also note the relation

A (k,nt, )= A _(k,n—1,t,k+t,)
(kn +t,+t,

. )A,(k, n—1,t;,k)—A,(k,n—1,t,k+t,)
2

where both sides are equal to the number of permutations counted by
A, (k, n, t, t,) with the last run of length exactly t,.

4. Special Cases. The special case Ay(k, n, t;, t,) counts those permutations
of 1,2,...,kn+t,+t, with the first and last runs of lengths ¢, and ¢, respec-
tively and each of the other runs of length k. By (7), with y =0, we have

kn+t +t,

— ¢ k.tl(x) 0)(pk.!2(x’ 0)
(kn +1t,+1,)! @ro0(x, 0)

(21) z AO(k7 n, th t2) + (Pk,,ﬁ.,z(x, 0)
n=0
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Eulerian numbers. The number of permutations of 1,2,...,n containing
precisely r rises (or precisely n—r runs) is the well-known Eulerian number
A,(n) =A,(1,n—2,1,1). Noting that

B e(y—l)x -1
(22) (pl,l(xa Y)_ y_l s
and by (7), we obtain the known generating function (4). From (12) it follows

that g(1,n—2,1,1, p)=p!S(n, p) where
p—1 (p
st =2 1 (7)o-irp!
i=0

is the Stirling number of the second kind. By (19), use of a simple identity, and
the fact that A,(n) has the symmetric property A,(n) = A, _,_,(n) we obtain the
familiar explicit formula

(23) A, (n)= Z: (—1i(r:—i>(n—r—i)! S(n,n—r—i)
="—1_r(—1)i<n_;1>(n—r—i)".
(—1)‘(nj1>(r+1—i)".

The numbers A, (k, n, k, t). Using notation similar to that of Carlitz [25] we
let A, (kn+t)=A,(k,n—1,k, ¢t) and define A, ,(kO+¢t)=1. Then, for 0=
r=n-—-1, A, (kn+t) is the number of permutations of 1,2,..., kn+t with
(a) exactly n+1—r runs and (b) the length of each of the first n—r runs
congruent to O (mod k) and the length of the last run not less than t and
congruent to t (mod k). Let A, ;. (kn+t)=1. Letting t, =k and t, =t in (7) and
noting that

_ @rolx, y)—1
Pr.k (x,y) v—1
(24) ‘
1 X
Prepere(X, y) = v=1 (%,:(X, Y)_ﬁ)
we obtain
oo n kn+t
, (Y= D (x, y)
25 A, (kn+t) = ! .
25) nz;o r;o e Y (n+ 1)1 Y~ @0l y)
Letting t =k in (25) we obtain
oo n xkn+k y— 1
26 1+ A, (kn+k)y" =
(26) ngo go ek Y kn 1) y—@ro(x v)
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with A, (kn+k) being the number of permutations of 1,2,...,k(n+1)
having exactly n +1—r runs and with the length of each run a positive multiple
of k.

In the case r=0, by (21) or (25), we obtain

kn+t

= A X — P z(x5 O)
(27) EO oes(kn +1) (kn+1)! @ o(x, 0)

and letting ¢t =k in (27) we have

© kn+k 1
28 1+ Y Agur(kn+k) == = .
(28) L Aok G o 0
where A, (kn+t) is the number of permutation of 1,2, ..., kn+t with the

last run of length ¢t and each of the other runs of length k. Both (27) and (28)
are results of Carlitz [22] and [25] where he notes that ¢, (x, 0) are the Olivier
functions. See also Gessel [16, p. 51, example 2] and Stanley [74].

Permutations with runs of even length. The number of permutations of
1,2,...,2n+2 with precisely n+1—r runs and with each of the runs of even
length is A,,,(2n+2) and by (26),

2n+2

SRS -1
(29) 1+ A0 +2)y = =Y
nz=:0 rgo 22 y 2n+2)! y— @20(%, y)
_ y—1
y —cos(xV(1—y))’
The number of permutations of 1,2,...,2n+1 with precisely n+1—r runs

and with each of the first n—r runs of even length and the last run of odd
length is A,,;(2n+1) with A, ,;(2n+1)=1 and by (25) it follows that

2n+1

x _O=Deralx y)
Crn+1)!  y—er0(x,y)
V(1 —y)sin(xV(1-y))
T cos(xV(1—y)—y

(30) Y Y AL.Crt1)y
n=0r=0

Let A,, denote the number of permutations of 1,2,...,n with precisely
[(n+1)/2]—r runs and with each of even length if n is even and all but the last
run even if n is odd. By combining (29) and (30) we obtain

NG x" (1+‘Pz l(xa Y))
1 1+ Ay = (y—1) 2 2arb V)
(31) ZoL AW =D e

Up-down permutations. The cases Ay,,(2n+2) and Ay, ;(2n+1) are the
numbers of up-down permutations for the even and odd cases respectively and
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(29) and (30) reduce, respectively, to

. x2n+2
(32) 1+ 'Z,O Ap2-(2n+2) Gnil secant x
and
e 2n+1
(33) Z’o Ap21(2n+1) ol tangent x.

Combining (32) and (33) and defining A,=1 we obtain (1).
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