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Base matrices of various heights

Jörg Brendle

Abstract. A classical theorem of Balcar, Pelant, and Simon says that there is a base matrix of height
h, where h is the distributivity number of P(ω)/fin. We show that if the continuum c is regular, then
there is a base matrix of height c, and that there are base matrices of any regular uncountable height
≤ c in the Cohen and random models. This answers questions of Fischer, Koelbing, and Wohofsky.

1 Introduction

A collection A = {Aγ ∶ γ < ϑ} of mad (maximal almost disjoint) families of subsets of
the natural numbers ω is called a refining matrix of height ϑ if:
• Aδ refines Aγ for δ ≥ γ, i.e., for all A ∈ Aδ , there is B ∈ Aγ with A ⊆∗ B, and
• there is no common refinement of the Aγ , i.e., no mad family A refining all the Aγ .
A is a base matrix if it is a refining matrix and ⋃γ<ϑ Aγ is dense in P(ω)/fin, i.e.,
for all B ∈ [ω]ω , there are γ < ϑ and A ∈ Aγ with A ⊆∗ B. The distributivity number
h of P(ω)/fin is the least cardinal κ such that P(ω)/fin as a forcing notion is not
κ-distributive; equivalently, it is the least κ such that there is a collection A of size
κ of mad families without common refinement. Clearly, a refining matrix must have
height at least h, and it is easy to see that there is one of height h and none of regular
height > c. Furthermore, if there is a refining matrix of height ϑ, then there is one
of height c f (ϑ) so that it suffices to consider regular heights. A famous theorem of
Balcar, Pelant, and Simon [BPS] (see also [Bl, Theorem 6.20]) says that there is even a
base matrix of height h. It is natural to ask whether there can consistently be refining
(base) matrices of other heights, and in interesting recent work, Fischer, Koelbing,
and Wohofsky [FKW1] proved that it is consistent that h = ω1 and there is a refining
matrix of height ϑ ≤ c, where ϑ > ω1 is regular, all of whose maximal branches are
cofinal (see Section 2 for a formal definition). We show the following theorems.

Theorem A If c is regular, then there is a base matrix of height c.

Theorem B In the Cohen and random models, there are base matrices of any regular
uncountable height ≤ c.
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This answers Questions 7.5 and 7.7 of [FKW1]. Note that our results are incompara-
ble with the one of the latter work. Their construction does not give a base matrix (in
fact, by another result of Fischer, Koelbing, and Wohofsky [FKW2], a base matrix of
height > h always has some non-cofinal maximal branches, though one may still ask
whether one can get such a base matrix in which some maximal branches are cofinal),
whereas ours necessarily gives non-cofinal maximal branches. In fact, in the Cohen
and random models, h = ω1 is the only cardinal ϑ for which there is a refining (base)
matrix of height ϑ all of whose maximal branches are cofinal, and higher refining
matrices have no cofinal branches at all (this follows from Fact 1).

2 Preliminaries

The Cohen model (resp. random model) is the model obtained by adding at least ω2
many Cohen (resp. random) reals to a model of the continuum hypothesis CH [BJ].

For A, B ⊆ ω, we say A is almost contained in B, and write A ⊆∗ B, if A/B is
finite. A ⊊∗ B if A ⊆∗ B and B/A is infinite. For an ordinal ϑ0, {Aγ ∶ γ < ϑ0} is a ⊆∗-
decreasing chain of length ϑ0 if Aδ ⊆∗ Aγ for all γ < δ < ϑ0. ⊊∗-decreasing chains are
defined analogously. For a refining matrix A = {Aγ ∶ γ < ϑ} and an ordinal ϑ0 ≤ ϑ,
{Aγ ∶ γ < ϑ0} is a branch in A if it is a ⊆∗-decreasing chain and Aγ ∈ Aγ for γ < ϑ0. A
branch is maximal if it cannot be properly extended to a longer branch. A branch is
cofinal if ϑ0 = ϑ. Every cofinal branch is maximal, but there may be maximal branches
that are not cofinal.

Fact 1 (Folklore) There are no ⊊∗-decreasing chains of length ω2 in P(ω) in the
Cohen and random models.

This is proved by an isomorphism-of-names argument using the homogeneity of
the Cohen or random algebra.

For A, B ∈ [ω]ω , A splits B if both A∩ B and B/A are infinite. X ⊆ [ω]ω is a splitting
family if every B ∈ [ω]ω is split by a member of X. The splitting number s is the least
size of a splitting family. It is well known that h ≤ s ([Bl] or [Ha]).

Fact 2 (Folklore [see [Bl]; see also [Ha, Proposition 22.13] for Cohen forcing])
After adding at least ω1 Cohen or random reals to a model of ZFC, s = ω1. (In fact,
the first ω1 generics are a witness for s.)

We will prove the following.

Main Theorem 3 Assume ϑ ≤ c is a regular cardinal and
(A) either there is no ⊊∗-decreasing chain of length ϑ in P(ω),
(B) or s ≤ ϑ.
Then there is a base matrix of height ϑ.

Clearly, Theorem A follows from part (B) of the main theorem. (We note, however,
that splitting families and s ≤ c are not needed in this case [see the comment at the
beginning of the proof of Main Claim 5].) Theorem B follows from either (A) or (B)
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in view of Facts 1 and 2. Note that part (B) implies that in many other models of set
theory there are base matrices of height ϑ for any regular ϑ between h and c, e.g., in
the Hechler model (this satisfies s = ω1 by [BD]; see also [Bl]), or in any extension
by at least ω1 Cohen or random reals (Fact 2). The former is, and the latter may be
(depending on the ground model), a model for the failure of (A). We do not know
whether (A) +¬ (B) is consistent but conjecture that it is. This clearly implies s ≥ b++,
where b is the unbounding number (which is known to be consistent; see [BF]).

3 Proof of main theorem

By recursion on α < c, we shall construct sets Ωγ ⊆ c and families Aγ = {Aγ ,α ∶ α ∈
Ωγ}, γ < ϑ, such that:
(I) All Aγ are mad.
(II) If γ < δ < ϑ and β ∈ Ωδ , then there is α ≤ β in Ωγ such that Aδ ,β ⊆∗ Aγ ,α .
(III) For all B ∈ [ω]ω , there are γ < ϑ and α ∈ Ωγ such that Aγ ,α ⊆∗ B.
This is clearly sufficient. In case (B), let {Sζ ∶ ζ < ν} be a splitting family with ν ≤ ϑ. Let
{(Xα , ξα) ∶ α < c} list all pairs (X , ξ) ∈ [ω]ω × ϑ. At stage α of the construction, we
will have sets {Ωγ ∩ α ∶ γ < ϑ}, ordinals {ηβ ∶ β < α} below ϑ, and families {{Aγ ,β ∶
β ∈ Ωγ ∩ α} ∶ γ < ϑ} such that:
(iα) Aα

γ ∶= {Aγ ,β ∶ β ∈ Ωγ ∩ α} is almost disjoint for γ < ϑ.
(iiα) For all β < α, the set {γ ∶ β ∈ Ωγ} is the interval of ordinals [ηβ , max(ηβ , ξβ)]

and
– for γ ∈ [ηβ , max(ηβ , ξβ)], Aγ ,β = Aηβ ,β , and
– for γ < ηβ , there is β′ < β in Ωγ such that Aηβ ,β ⊊∗ Aγ ,β′ .

(iiiα) For all β < α, Aηβ ,β ⊊∗ Xβ and, in case (B), Aηβ ,β ⊆∗ Sζ or Aηβ ,β ⊆∗ ω/Sζ ,
where ζ is minimal such that Sζ splits Aγ ,β′ whenever γ < ηβ and β′ ∈ Ωγ ∩ β
are such that Aηβ ,β ⊊∗ Aγ ,β′ .

Let us first see that this suffices for completing the proof: indeed, (II) and (III) follow
from (iiα) and (iiiα), respectively. To see (I), fix γ < ϑ and Y ∈ [ω]ω . Then there is α < c
such that (Y , γ) = (Xα , ξα). So Amax(ηα ,ξα),α = Aηα ,α ⊆∗ Y by (iiα+1) and (iiiα+1) and
Amax(ηα ,ξα),α ⊆∗ Aγ ,β for some β ≤ α by (iiα+1). Thus Y ∩ Aγ ,β is infinite, as required.

Next, we notice that, for α = 0 and for limit α, there is nothing to show. Hence it
suffices to describe the successor step, that is, the construction at stage α + 1, and to
prove that (iα+1) through (iiiα+1) still hold. Assume Y ⊆∗ Xα ∩ Aγ ,β for some γ < ϑ
and β ∈ Ωγ ∩ α, and let δ be such that γ < δ < ϑ. We say that Y splits at δ if:
• for all γ′ with γ ≤ γ′ < δ, there is β ∈ Ωγ′ ∩ α such that Y ⊆∗ Aγ′ ,β , and
• there is no β ∈ Ωδ ∩ α such that Y ⊆∗ Aδ ,β .
We say Y splits below γ0 > γ if there is δ with γ < δ < γ0 such that Y splits at δ. For
infinite Y ⊆ Xα , call Aα

γ ↾Y mad if {Y ∩ Aγ ,β ∶ β ∈ Ωγ ∩ α and ∣Y ∩ Aγ ,β ∣ = ℵ0} is a
mad family below Y. The following is crucial for our construction.

Crucial Lemma 4 Let γ0 ≤ ϑ be an ordinal, and let Y0 ⊆ Xα be infinite. Assume
(mad) Aα

γ ↾Y0 is mad for all γ < γ0.
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Then there are γ < γ0, β ∈ Ωγ ∩ α, and an infinite Y ⊆∗ Y0 ∩ Aγ ,β that does not split
below γ0.

Proof We make a proof by contradiction. Assume
(split) if Z ⊆∗ Y0 ∩ Aγ ,β , for some γ < γ0 and β ∈ Ωγ ∩ α, then Z splits below γ0.
By recursion on n ∈ ω, we construct infinite sets (Y 0

s ∶ s ∈ 2<ω) and (Ys ∶ s ∈ 2<ω), as
well as ordinals (δ0

s ∶ s ∈ 2<ω) and (δn ∶ n ∈ ω) such that:
(a) Ys ⊆ Y 0

s and Y 0
sˆi ⊆ Ys for i ∈ {0, 1}.

(b) δn =max{δ0
s ∶ ∣s∣ = n} < γ0 and δ0

sˆi > δ∣s∣ for i ∈ {0, 1}.
(c) Ys splits at δ0

s and there are distinct β, β′ ∈ Ωδ0
s
∩ α such that Y 0

sˆ0 = Ys ∩ Aδ0
s ,β

and Y 0
sˆ1 = Ys ∩ Aδ0

s ,β′ (in particular, Y 0
sˆ0 ∩ Y 0

sˆ1 is finite).
(d) Ysˆi = Y 0

sˆi ∩ Aδ∣s∣ ,β for some β ∈ Ωδ∣s∣ ∩ α, for i ∈ {0, 1}.
We verify that we can carry out the construction. In the basic step n = 0 and s = ⟨⟩,
by (mad), let Y⟨⟩ = Y 0

⟨⟩ ∶= Y0 ∩ A0,β for some β ∈ Ω0 ∩ α such that this intersection is
infinite. By clause (split), we know that there is δ0 = δ0

⟨⟩ with 0 < δ0 < γ0 such that Y⟨⟩
splits at δ0.

Suppose Y 0
s , Ys , and δ0

s have been constructed for ∣s∣ = n and δn =max{δ0
s ∶ ∣s∣ =

n} < γ0 are such that (a) through (d) hold. We thus know that Ys splits at δ0
s and, by

the definition of splitting and clause (mad), we can find distinct β, β′ ∈ Ωδ0
s
∩ α such

that Y 0
sˆ0 ∶= Ys ∩ Aδ0

s ,β and Y 0
sˆ1 ∶= Ys ∩ Aδ0

s ,β′ are infinite. Using again (mad), we see
that for i ∈ {0, 1} there is β ∈ Ωδn ∩ α such that Ysˆi ∶= Y 0

sˆi ∩ Aδn ,β is infinite. Again by
(split), there is δ0

sˆi , i ∈ {0, 1}, with δn < δ0
sˆi < γ0 such that Ysˆi splits at δ0

sˆi . Finally,
let δn+1 ∶=max{δ0

sˆi ∶ ∣s∣ = n and i ∈ {0, 1}} < γ0. This completes the construction.
Let δω = ⋃n δn . Clearly δω ≤ γ0 is a limit ordinal of countable cofinality. Next, for

f ∈ 2ω , let Yf be a pseudointersection of the Yf ↾n , n ∈ ω. If possible, choose β f ∈ Ωδω ∩
α such that Yf ∩ Aδω ,β f is infinite. By (a) and (c) in this construction and by (iiα),
we see that if f ≠ f ′ then β f ≠ β f ′ . However, Ωδω ∩ α has size strictly less than c, and
therefore there is f ∈ 2ω for which there is no such β f . Since Yf ⊆∗ Y0 by construction,
this implies thatAα

δω
↾Y0 is not mad and, by (mad), γ0 = δω . This means, however, that

any Yf contradicts (split). This completes the proof of the crucial lemma. ∎

We next show:

Main Claim 5 There is γ < ϑ such that Aα
γ ↾Xα is not mad.

Proof Note that, in case ϑ = c, there is nothing to show because by (iiα) we see that
a tail of the sequence (Ωγ ∩ α ∶ γ < ϑ) is empty, and therefore so is Aα

γ (in fact, the
proof of Theorem A is quite a bit simpler than the general argument: there is no need
to list the ξα , we may simply let ξα = α, ηα will always be ≤ α, and the splitting family
is unnecessary).

Hence assume ϑ < c. By way of contradiction, suppose all Aα
γ ↾Xα are mad. By the

crucial lemma with γ0 = ϑ and Y0 = Xα , we know that there are γ < ϑ, β ∈ Ωγ ∩ α
and an infinite Y ⊆∗ Xα ∩ Aγ ,β that does not split below ϑ. This means for all δ with
γ ≤ δ < ϑ there is β ∈ Ωδ ∩ α such that Y ⊆∗ Aδ ,β . By (iα) and (iiα), we see that there
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must be a strictly increasing sequence (βε ∶ ε < ϑ) of ordinals below α such that for
ε′ > ε,
• ηβε′

>max(ηβε , ξβε) and Y ⊊∗ Aηβε′
,βε′
⊊∗ Aηβε ,βε .

In case (A), this contradicts the initial assumption that there are no ⊊∗-decreasing
chains of length ϑ in P(ω). So assume we are in case (B). Define a sequence (ζε ∶ ε <
ϑ) of ordinals below ν such that
• ζε is minimal such that Sζε splits all Aηβε′

,βε′
for ε′ < ε.

Using (iiiα), we see that Sζε does not split Aηβε ,βε . Therefore, the sequence must be
strictly increasing, which is impossible (and thus contradictory) in case ν < ϑ. If
ν = ϑ note that there cannot be any ζ such that Sζ splits Y, contradicting the initial
assumption that the Sζ form a splitting family. This final contradiction establishes the
main claim. ∎

We now let ηα ∶=min{γ ∶ Aα
γ ↾Xα is not mad} < ϑ. Choose Y0 ⊆ Xα infinite and

almost disjoint from all members of Aα
ηα

. Note that Aα
γ ↾Y0 is mad for all γ < ηα . Thus,

by the crucial lemma with γ0 = ηα , we know there are γ < ηα , β ∈ Ωγ ∩ α, and an
infinite Y ⊆∗ Y0 ∩ Aγ ,β that does not split below ηα . Then,
(⋆) for all δ with γ ≤ δ < ηα , there is β = βδ ∈ Ωδ ∩ α such that Y ⊆∗ Aδ ,β .
Choose infinite Aηα ,α ⊊∗ Y . In case (B), choose ζ < ν minimal such that Sζ splits all
Aδ ,βδ with γ ≤ δ < ηα . If Y ∩ Sζ is infinite, additionally require Aηα ,α ⊊∗ Y ∩ Sζ . (If
not, we will automatically have Aηα ,α ⊊∗ ω/Sζ .)

Next, for all γ with ηα ≤ γ ≤max(ηα , ξα), we let Aγ ,α = Aηα ,α . Also put

Ωγ ∩ (α + 1) = { Ωγ ∩ α, if γ < ηα or γ >max(ηα , ξα),
(Ωγ ∩ α) ∪ {α}, if ηα ≤ γ ≤max(ηα , ξα).

Then clauses (iα+1) and (iiiα+1) are immediate, and (iiα+1) follows from (⋆). This
completes the proof of the main theorem.

4 Further remarks and questions

Obviously, the main remaining problem is whether the spectrum of heights of base
matrices can be non-convex on regular cardinals.

Question 6 Is it consistent that for some regular ϑ with h < ϑ < c there is no base
(refining) matrix of height ϑ?

The simplest instance would be h = ω1 and c = ω3 with no base (refining) matrix
of height ω2. By (B) in Main Theorem 3, this would imply s = ω3.

As the referee remarked, another constellation for a nontrivial spectrum, which
would be convex, might be a model where s = c is singular and there is a regular
cardinal κ ≥ h with κ < c such that the spectrum consists exactly of the regular
cardinals in the interval [h,κ]. It is unknown, however, whether s = c singular is
consistent at all. The consistency of singular s was shown by Dow and Shelah [DS],
but in their model, c is at least s+.

https://doi.org/10.4153/S0008439523000310 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000310


1242 J. Brendle

The proof of Main Theorem 3 may look a little like cheating because we do not
refine our mad families everywhere when going to the next level. Thus, let us say
A = {Aγ ∶ γ < ϑ} is a strict base (refining) matrix if it is a base (refining) matrix and
for any γ < δ < ϑ and any A ∈ Aδ there is B ∈ Aγ with A ⊊∗ B. We then obtain the
following.

Proposition 7 Assume ϑ ≤ c is a regular cardinal such that there are ⊊∗-decreasing
chains of length α in P(ω) for any α < ϑ and
(A) either there is no ⊊∗-decreasing chain of length ϑ in P(ω),
(B) or s ≤ ϑ.
Then there is a strict base matrix of height ϑ.

Proof sketch Modify the proof of Main Theorem 3 by attaching a ⊊∗-decreasing
chain of length ζβ + 1 to the set {γ ∶ β ∈ Ωγ} = [ηβ , max(ηβ , ξβ)], where ηβ + ζβ =
max(ηβ , ξβ). This is clearly possible by assumption. ∎

To analyze this a bit further, let ds denote the least ordinal α such that there is no
⊊∗-decreasing chain of length α in P(ω). It is easy to see that ds is a regular cardinal
with b+ ≤ ds ≤ c+. Put ϑ0 =min{ds, c}, and assume ϑ0 is regular. Then:
(1) there are strict base matrices of heights h and ϑ0, and
(2) all strict refining matrices have height between h and ϑ0.
To see (1), use the previous proposition for height ϑ0, and note that the original
construction of [BPS] gives a strict base matrix of heighth. (2) is obvious. We leave it to
the reader to verify that Proposition 7 implies the corresponding versions of Theorems
A and B.

Corollary 8 If c ≤ ω2, then there is a strict base matrix of height c.

Corollary 9 Let ϑ be a regular uncountable cardinal. In the Cohen and random
models, the following are equivalent:
(i) ϑ ∈ {ω1 , ω2}.
(ii) There is a strict base matrix of height ϑ.
(iii) There is a strict refining matrix of height ϑ.

To see, e.g., Corollary 9, note that by Fact 1, ds = ω2 in either model, and use (1)
and (2) above.
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