[ 564 ]

STUDIES IN THE VARIABILITY OF POCK COUNTS

By P. ARMITAGE

Statistical Research Unit of the Medical Research Council, London School
of Hygiene and Tropical Medicine

(With 2 Figures in the Text)

1. INTRODUCTION

The titration of viruses of the pox group is frequently performed by making counts
of focal lesions, or ‘pocks’, produced on the chorio-allantoic membranes of chick
embryos (Beveridge & Burnet, 1946). Workers using this technique commonly
observe great variation between pock counts caused by samples of the same virus
suspension in different eggs. McCarthy, Downie & Armitage (1958) have investi-
gated the variation observed in neutralization tests with variola virus, and have
found a particularly simple relationship between the variance of a set of replicate
counts, and their mean (the variance being, on the average, about thirteen times
the mean). It seemed worth while to continue this investigation, using counts
made by other workers and with other viruses. I have analysed some published
series, but much of the data is unpublished and was kindly put at my disposal by
the workers concerned.

The purposes of the analysis were:

(a¢) To see whether the simple type of relationship between variance and mean,
found by MecCarthy et al. (1958), was generally valid.

(b) If the relationship varied from one set of data to another, to see whether
it was characteristic of the individual laboratory, or of the virus used.

(¢) To shed light, if possible, on the mechanism causing the variability in the
counts.

(d) To formulate proposals for the statistical treatment of pock counts.

2. DATA

I have analysed eight different sets of data, details of which are given below.
A-D seemed to be among the most extensive sets of data in the literature ; Z-H are
unpublished.

A. Experiments by Burnet & Lush (1939) with herpes virus

(Neutralization experiments on the chorio-allantoic membrane, using virus
suspensions with or without the addition of immune serum.) These have been
divided into two series:

(i) Four groups of replicate counts from the stock suspension of virus (from

table I of Burnet & Lush, 1939).

(ii) Twenty-seven groups of counts from various serum-virus mixtures (from

tables IT, III, V and VI, Burnet & Lush, 1939). )
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I have included the low counts bracketed by the authors, and where a group
contains a membrane for which a count was ‘impossible owing to secondary foci’
the remaining counts have been used. Groups with only two counts have not been
used, since they provide very little information for present purposes. The remaining
groups consisted of between 3 and 16 counts, and the mean count per group varied
from 0-3 to 61-8.

B. Ezxperiments by Fenner, Marshall & Woodroofe (1953, table 1) with
MYroma virus

(Neutralization tests with sera taken from three rabbits, 1 and 15 months after
recovery from myxomatosis, in the absence of re-infections.) These have been
divided into two series:

(i) Twenty-three groups of counts using either immune sera taken in March 1951

(1 month after recovery) or non-immune sera (for control tests).

(i1) Nineteen groups of counts using immune sera taken in May 1952, 15 months

after recovery.

The groups consisted of between 3 and 6 counts, and the mean count per group
varied from 4-5 to 87-0.

C. Experiments by French & Reeves (1954) with five viruses isolated from
mosquitoes, and fowl-pox
(Neutralization tests with fowl serum immune to virus CF-2 (table 1 of French &
Reeves), CF-3 (their table 2) and fowl-pox (their table 3)). The data have been
divided into six series:
(i) Twelve groups of counts from mixtures of virus CF-2 and the three immune
sera.
(ii) Eleven groups of counts from CF-3 and immune sera.
(iii} Twelve groups of counts from CF-4 and immune sera.
(iv) Twelve groups of counts from CF-6 and immune sera.
(v) Thirteen groups of counts from CA-1 and immune sera.
(vi) Ten groups of counts from fowl-pox and immune sera.
The groups consisted of between 3 and 6 counts, and the mean count per group
varied from 0-2 to 62:8.

D. Ezxperiments by McCarthy et al. (1958) with variola virus

{Neutralization tests with mixtures of virus and immune serum or virus and
non-immune serum.) There were six series, with altogether 92 groups of counts.
Each group contained 3, 4 or 5 counts, and the mean count per group varied from
11-0 to 200-2.

E. Experiments with cowpox virus

Sixty-six groups of counts, made in the course of titrations of sixteen suspensions
of cowpox virus. Each suspension was prepared from a single lesion from the
previous titration. The groups consisted of between 3 and 10 counts, and the mean
count per group varied from 0-1 to 413-3.
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F. Experiments with vaccinia virus

Eighty-one groups of counts, made over a period of about a year. They consisted
of between 4 and 39 counts per group, and the mean count per group varied from
1-0 to 96-2,

G. Expertments with viruses of cowpox, alastrim, vaccinia and variola
(Mostly inoculations of supernates of lightly centrifuged preparations from
infected chorio-allantoic membranes):
(1) Eleven groups of counts with cowpox (fhe mean count per group varying
from 2-0 to 56-8).
(ii) Twelve groups of counts with alastrim (mean count varying from 1:6 to
191-2).
(iii) Ten groups of counts with vaccinia (mean count varying from 1-6 to 91-2).
(iv) Sixteen groups of counts with variola (mean count varying from 0-8 to
150-0).
The number of counts per group was either 4 or 5.

H. Ezxpertments with vaccinia virus

(1) 115 groups of counts on the Lister Institute strain, passed alternately in
rabbits and sheep.
(ii) 162 groups of counts on the Lister Institute strain, adapted to rabbits.
The experiments took place over a period of almost 2 years. The groups consisted
of between 3 and 6 counts, and the mean count per group varied from 0-4 to 93-4.

3. STATISTICAL ANALYSIS

The analysis for.each set of data followed the method used by McCarthy et al.
(1958), which is described in detail in their paper. The first step is to calculate, for
each group of counts, the mean, Z, and the estimate of variance, s* (the sum of
squares about the mean divided by one less than the group size). The object of the
analysis is to estimate a supposedly linear relationship between the logarithm of
o? (the expected value of s? for a given Z) and the logarithm of z. Log o? is

estimated by
y=log s?+c,,

where c, is a small correction term depending on the number, r, of counts in the
group. The regression line of y on log Z is then calculated, each value of y being
weighted by a factor, w,, which depends on » and is inversely proportional to the
variance of y. Differences between the positions or slopes of the regression lines
for different series are tested by standard methods of regression analysis.

If, for any set of data, log o2 is uniquely determined by a linear relationship in
terms of log Z, the values of y should vary about the fitted line to a predictable
extent. In fact, if the counts are normally distributed, the residual weighted mean
square about the regression line should be unity, apart from sampling fluctuations.
In practice the counts are far from normally distributed, and a correction for the
skewness and kurtosis of their distribution may be applied (see §4 below).
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As explained in §4, for data F it was necessary to fit a quadratic regression line
relating y to log Z. This was carried out by standard methods, using the same
weights as before.

4. RESULTS

The sets of data 4, B, C, D, G and H were each subdivided into a number of series
as indicated in §2. In no instance were there significant, or even suggestive,
differences in the slopes or positions of regression lines of y on log Z, fitted separately
to the different series within a set, and consequently a single regression line has
been fitted for each set of data.

For most sets of data it was clear that the regression was effectively linear, but
in a few doubtful cases a quadratic term was included and tested for significance.
In only one instance, for set E, was the quadratic regression coefficient significant
at the 59, level, and for all the other sets the linear regression has been taken.
As an illustration of the scatter diagrams of y and log z, Fig. 1 shows those for sets
A and E, with the fitted regression lines.

The equations of the regression lines are given in Table 1 together with the
expected coefficient of variation (standard deviation expressed as a percentage of
the mean), at mean counts of 5, 20 and 100. These values are obtained by calcula-

Table 1. Regression lines relating log variance to log mean, and coefficient of
variation for mean counts of 5, 20 and 100, for eight sets of data

Coefficient of variation, from
regression line, at mean count of

r A N
Data Regression line 5 20 100
A Y= 0148+1-2641logz 65-6 39-4 —
B Y=—0-142+1-657 logx 64-4 50-8 —_
C = 0:090+1-209 log = 587 339 —
D = 0-852+1-148logx — 745 37-5
E Y= 0044+ 1-242 log Z+0-197 (log z)?  63-9 49-6 45-5
F = 0-011+1-518log % 687 49-2 —
aq = 0-349+1-303 log = 85-4 57-7 30-1
H Y= 0-257+1-560log z 94-3 69-5 —
Poisson distribution with same mean (44-7) (22-4) (10-0)

(coefficient of variance = 100/,/Z)

tion of 100 (antilog $Y)/Z, where Y is the value of y predicted by the regression
line for the value of Z considered. Coefficients of variation have been calculated
only for values of Z covered by the ranges of mean counts given in §2. In Fig. 2
the regression lines are drawn, over the observed ranges of log Z.

Table 2 gives the regression coefficients of y on log Z, arranged according to the
type of virus used. For sets C' and G, slopes are given separately for the different
viruses used by the same worker. The slopes for each set as a whole are given in the
last column. For set Z, for which a quadratic line was required, the slope of the
best fitting straight line is given, for comparison with the other values. There is no
obvious evidence from Table 2 that the slope depends on the type of virus used,
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a perhaps surprising observation in view of the differences in size of lesions caused
by different viruses. Nor is there any suggestion in the results of the analysis that
the slope is affected by the presence in the inoculum of immune serum. On the
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Fig. 1. Scatter diagrams showing relationships between y (the estimated log variance) and
log z (the log of the mean count), for sets 4 and E.

other hand, there are very definite differences in slope between the different sets of
data; excluding %, a test of heterogeneity of the slopes gives y*=41-2 on 6 D.¥.;
P <10-5 It seems, then, that the variability of pock counts, for a given mean
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count, is characteristic of a particular laboratory, and may not vary appreciably
from one occasion to another in the same laboratory, even when different viruses
are being used.

X=log X
Fig. 2. Relationship between Y (the predicted value of y, the estimated log variance) and

X(=log Z, the log of the mean count). Regression lines for sets of data A-H. — - —~ Theo-
retical relationship for Poisson distribution. —.—.— Theoretical relationship for model (b),
with A=0-25 and 0-50.

McCarthy et al. (1958) pointed out that the slope for their data was not signi-
ficantly different from unity, a value which would imply that the variance was
proportional to the mean. Table 2 shows, however, that all the calculated slopes
are greater than unity, and all except one of the pooled values significantly so.

The residual mean square about the regression line fitted to each set of data is
shown in Table 3. The point of interest raised by these residual mean squares is

36 Hyg. 55, 4
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that a value significantly above its expectation suggests that the variability, in
that set of data, cannot be uniquely related to the mean count, as it apparently
changes from one occasion to another. On the other hand, a residual mean square
not significantly above its expectation provides no evidence of such changes in the
variability. As stated in §3, these mean squares would have an expectation of
unity if replicate counts were normally distributed, and if, for any set of data,

Table 2. Regression coefficients of log variance on log mean ( + standard errors)

Mosquito

Herpes  Vaccinia  Variola  Alastrim Myxoma Cowpox Fowlpox  viruses Total
1-:26+0-10 — 1-:26+0-10
— — 1-66+0-11
1-:31+0-14 1-194+0-07 1-21+0-06
— 1-154+0-12

(1-59)*
1-52+ 0-05
1-30+0-12
1-56 +0-04

|

— 1-66+0-11 -

1-154+0-12

P

1524005  —
110+ 0-37 148+ 0-22 1-25+0-23
156+ 004  — —

[

1-46 + 0-31

N RUQW N
P
[T
LT

P

* The slope of the best fitting straight line. The coefficients in the quadratic regression equation ¥ =a + b, log 7
by (log Z)? are b; =1-24 + 0-10 and b, =0-20 & 0-05.

Table 3. Restdual mean squares in the weighted analyses of variance of y

Residual
mean square
Data (D.F.)

1-159 (29)
0-697 (40)
0-746 (68)
0-719 (90)
1-449 (63)
1-801 (79)
2044 (47)
0-989 (274)

DNy Qk

y were distributed about an expected value log o2, uniquely determined by a linear
relationship with log Z. In general, however, distributions of pock counts are
appreciably skew (positive skewness leads to a positive correlation between y and
log z in samples from a given population, and tends to decrease the residual
variation of y), and have excessive kurtosis (which tends to ¢ncrease the residual
variance). The effect of non-normality was examined in some detail by McCarthy
et al. (1958, appendix). In the notation of their paper, the corrected expectation
of the residual mean square of ¥ is (1— 52) (1+ 3¢%), which (for the four series
considered there) takes values of 0-99, 1-20, 0-86 and 1-09. These values are, on
average, sufficiently near unity to suggest that the correction for non-normality is
not very large, and the matter has not been pursued in the present investigation.
Of the values shown in Table 3, it seems likely that only those for sets F and G,
and possibly that for £, would be significant.
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5. MODELS FOR VARIABILITY

It is of some importance to discover why pock counts vary as much as they do, for
a knowledge of the mechanism of variability might suggest some way of reducing
it. I shall first discuss the relevance of the present results to two particular models
purporting to explain variability.

Suppose that (a) Poisson theory

(i) Each lesion is caused by infection of the membrane by only one particle.

(ii) The inocula received by a group of membranes are samples of equal size from
a suspension of randomly spaced virus particles.

(iii} All membranes are equally susceptible to infection, in the sense that the
probability that a randomly chosen particle will initiate a lesion is independent
of which membrane it falls on. (Note that it is not specified here whether the
failure of some particles, and the success of others, in initiating infection is due to
inherent differences between particles, or to variations in susceptibility of different
cells on a given membrane, or to some random feature of the interaction of particle
and cell.) :

(iv) Particles act independently, so that the chance that a particular particle
initiates infection does not depend on how many other particles do so.

Under these assumptions, the numbers of lesions formed on replicate membranes
will follow a Poisson distribution. Not only are the mean and variance of the
distribution of counts equal, but the expectation of s% for a given Z (which we have
denoted by ¢?) is equal to Z. Hence, the theoretical regression of y on log 7 is

Y =log Z. 1)

The expected value of the slope, b, of the regression line is therefore unity.

As is pointed out above, there is a general tendency for b to exceed unity, and
Fig. 2 shows that all the regression lines lie well above the dotted line representing
(1). Table 1 shows the extent to which the coefficients of variation (calculated from
the regression line) exceed that expected on Poisson theory.

The fact that pock counts usually show variation in excess of that expected on
a Poisson theory is, of course, well known. The only authors consistently able to
avoid this excessive variability appear to be Reid, Crawley & Rhodes (1949), who
report pock counts with fowlpox which show smaller variation than that expected
on Poisson theory. This effect might in general be due to some sort of overcrowding
phenomenon, preventing the formation of high numbers of lesions, but this
explanation seems unlikely to be true for this particular set of data. Westwood,
Phipps & Boulter (1957) were able to approach the lower limit of Poisson variability
by meticulous care in the technique of egg handling. These authors maintain that
excessive variability is due primarily to a number of abnormally low counts, the
occurrence of which may be related to the presence of non-specific lesions or
albumin-sac encroachment. The removal of these technical difficulties would
therefore be expected to increase the mean count. Burnet & Faris (1942) similarly
maintain that under optimum conditions most of the virus particles present in the
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inoculum will give rise to lesions, and that low counts are obtained on a few ‘non-
responsive’ membranes. They further say that ‘abnormally high counts beyond
the range of random sampling will only be obtained as a result of technical error
or a failure to recognize secondary foci as such’. This view seems to imply that,
unless secondary lesions are counted, the distributions of counts will be negatively
skew, except perhaps for groups of counts with low means (when the reduction of
a few counts may have very little effect on the skewness).

Table 4. Distribution of the sign of (mean—median) for 10 groups of counts
selected at random from each set of data

Direction of skewness

~ A )

Data — 0 +
A 4 1 5
B 5 2 3
C 6 0 4
D 7 0 3
E 5 0 5
F 4 0 6
G 3 0 7
H 4 2 4
38 5 37

One has the impression, on looking through the data analysed in the present
paper, that negative skewness is not markedly more frequent than positive skew-
ness even when the counts are fairly high. A full analysis of the whole data would
be rather lengthy, but to check the first impression I have taken a random sample
of ten groups of replicate counts from each set of data, omitting groups with means
less than five. As a simple indication of the direction of skewness I have recorded
the sign of the difference between the mean and the median. Positive and negative
signs indicate, respectively, positive and negative skewness. The distribution of
signs shown in Table 4 confirms the impression recorded above, that there is no
strong tendency for counts to show negative skewness. It is difficult to investigate
precisely the shape of the distribution of counts when, as in most of the data
examined here, the number of replicate counts is small. However, in four of the
six series of data D, there were no significant differences between the means of
different groups. (The groups of counts in Series IIT were made with samples of the
same virus suspension added to different normal sera; those in each of the other
three series were made with samples from the same virus-serum mixture.) On
pooling the groups within each series the distributions shown in Table 5 are
obtained. Three of the four series show marked positive skewness.

Departure from a Poisson distribution implies that at least one of the assump-
tions on which the Poisson theory is based is incorrect. The assumptions which
might be invalid are:

(1) A lesion is caused by one virus particle. Excess variability would occur for
instance if secondary lesions were counted, even though the primary lesions might
follow a Poisson distribution. Secondary lesions are normally not counted.
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(2) Particles act tndependently. The most likely way in which this assumption
might be invalidated seems to be the possibility of some sort of overcrowding
‘effect, preventing the full development of high numbers of lesions.

(3) All membranes receive equal inocula. Variations in size of the value of fluid
inoculated into the egg are probably too small to explain the high variability of
counts, but the amount reaching the chorio-allantoic membrane might vary
considerably.

Table 5. Distributions of counts in four series of experiments from set D

Frequency

A
r~ Bl

Count Series... II II1 Iv
0- 1
10— 6
20— 14
30— 14

<
e

[\
(S §
—
aw

3
I I R O R Y RPN

OO MMONNFOPRIPEBRIORONERTWWHRDO O -
l |
LTTHT Il meccomvrvannass

240-
80

[e ]
-3
-3
[0 ]
-3
=]

(4) The membranes are equally susceptible. Susceptibility might vary for genetic
reasons, in which case one might hope to improve matters by decreasing genetic
variation in the hens. It might be influenced by the environment to which the
egg has been exposed, and this also might be made more uniform. Or it might vary
as a result of technical accidents, such as damage to the membrane during inocula-
tion. The ability of Westwood et al. (1957) to reduce variability by technical
modifications suggests that this may be so.

Paragraphs (3) and (4) above may be summarized by saying that the Poisson
model assumes that each membrane has the same expected number of lesions, the
additional variation being caused by the random distribution of infective particles,
whereas it may be true that the expected number varies from one membrane to
another. A model allowing for such variation may now be considered.

36-3
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(6) Variation in expected counts

Suppose that, for any population of egg membranes, the coefficient of variation
(i.e. standard deviation expressed as a percentage of the mean) of the expected
counts is constant, irrespective of the density of virus particles in the inoculum.
If the variation were caused by differences in susceptibility, for instance, this
condition would be met if the expected counts on any two membranes bore the
same ratio to each other, for all viral densities. The observed count on any one
membrane follows a Poisson distribution about its expected value.

This model has been proposed by Polissar & Shimkin (1954) in a study of the
distribution of induced pulmonary tumours in mice, and by Fenner & McIntyre
(1956) in a study of myxomavirus.

Let the distribution of expected counts have mean m and variance Am? (the
coefficient of variation thus being 100,/A %). Then it may be shown that the
variance of the observed counts is

V =m-+ Am2.

(This is equivalent to equation 9 of Polissar & Shimkin (1954) and that given by
Fenner & McIntyre (1956, p. 251), and was obtained by Newbold (1927, p. 521) in
a study of accident proneness.)

Defining ¢2 in terms of s% and Zz, as in §3, we shall have approximately,

0 =F + AZ2. (2)

The accuracy of this approximation would presumably depend on the form of the
distribution of expected counts, but we may note that when A=0 we have the
Poisson model, and then, as pointed out above, V=m and o%=7% exactly.

For small vules of Z, (2) approaches the equation ¢?=Z7 appropriate for the
Poisson distribution. This means that the variation in expected counts becomes
increasingly unimportant, in comparison with the Poisson contribution, as the
mean decreases. For large values of %, (2) approaches the equation o2=Az?,
showing that in this extreme the Poisson contribution becomes negligibly
important.

Polissar & Shimkin (1954) found that (2) provided a good fit to the observed
relationship between s2 and Z for tumour counts, with an estimated value of A of
0-265. For comparisons with our previous regression analyses it is convenient to
transform (2) to provide the relationship between Y =log 62 and X =log z. We have

Y =log (x + Ax?)
=X +log (1+ A antilog X). (3)

For small values of Z, (3) approaches the equation ¥ =X, and for large values of z,
the equation ¥ =log A+ 2X. The curve relating Y to X thus has as a lower asymp-
tote the dotted line shown in Fig. 2 corresponding to the Poisson distribution,
which has a slope of 1, and as an upper asymptote a line with a slope of 2. As an
illustration, the curves for A=0-25 and 0-50 are shown by partly dotted lines in
Fig. 2. The curve will be non-linear, with a positive curvature. Positive curvature
was detected in only one of my sets of data, but it might well have been obscured -
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by sampling fluctuations. A straight line fitted to a series of points with a true
regression curve given by (3) would be expected to have a slope somewhere near
the value of dY/dX evaluated at the observed means of X and y. From (3) it is

readily shown that
dY[dX =2—antilog (X - Y),

and the expected regression slope would therefore be approximately b=2— antilog
(X —%). Taking X as fixed, the sampling variance of b would be

var (b) ={2-3026 antilog (X —7))? var (),

where var () is the variance of ¥, calculated in the usual manner. To compare the
observed slope, b, with the expected value b we could take, approximately,
t=(b—b) [{var (b)+ var (5)}% on the number of degrees of freedom shown in Table 3.
The comparisons, excluding set E, are made in Table 6. In each case b is lower
than b, and in all but one instance the difference is highly significant.

It is clear from Fig. 2, however, that the quadratic line fitted to data E is quite
close to the theoretical curve for A= 0-25. This impression is confirmed by calcula-
tion of the observed and expected gradients at the point on the quadratic regression
line where X is equal to the mean value for this set of data, 0-77780. Substitution
of this value of X in the regression equation gives ¥ =1-12962, and b=2— antilog
(X —Y)=1-56. The actual gradient of the regression line at this point is 1-55.

The general conclusion is, then, that in at least six of the eight sets of data, the
variability in counts fails to increase with the mean as rapidly as would be expected
by the model.

Table 6. Regression coefficients of log variance on log mean, expected on the hypo-
thesis (b) of proportionate expected counts, and their differences from the observed

regression coefficient
Expected slope
Al

A A \I\
Data b+s.E. (b) (b—b)+s.E. (b—b)
A 1-61 + 0-06 —0-34+0-11
B 1-84 + 0-02 —0-18+0-11
c 1-42 + 0-04 —0-21+ 007
D 1-92 + 0-01 —0-77£0-12
E —_ J—
F 1-72 + 0-01 —0-21+0-06
P 1-83 + 0-03 —0-52+0-12
H 1-84 + 0-01 —0-28 + 0-04

Whether excess variability is due to differences in susceptibility of membranes or
to technical hazards, it seems that these factors exert proportionately less influence
at high than at low counts. This would be expected if, for instance, high counts tend
to be inhibited by some sort of overcrowding effect. An alternative explanation
may be the tendency not to record some high counts when the pocks become
confluent. In this connexion it may be relevant that when counts are high, the
mean counts, at successive dilutions, may differ by a smaller ratio than that of the
dilution step (Burnet & Faris, 1942).

https://doi.org/10.1017/50022172400037451 Published online by Cambridge University Press


https://doi.org/10.1017/S0022172400037451

576 P. ArRMITAGE

6. ANALYSIS OF TITRATION EXPERIMENTS

I shall consider here the statistical analysis of an experiment in which counts are
made at different dilutions. The main object is to express the activity of the
preparation by estimating the mean number of lesions, Z, at a particular dilution.
Multiplication by the reciprocal of the dilution factor gives an estimate of the
density of ‘effective’ particles in the inoculum, and the reciprocal of this figure may
be used as an estimate of the dilution required to produce, on the average, one
lesion. A secondary object may be to check whether the mean count decreases in
proportion to the dilution.

The choice of a method of analysis will depend on the type of variability observed
If model (@) of §5 were valid, a very simple method of analysis based on the theory
of Poisson and binomial distributions could be applied. However, this model seems
to be quite inappropriate, at least for most experiments.

If model (b) of §5 were valid, the use of the logarithm of the count would present,
two advantages. First, the variance of log count would be approximately constant,
a desirable feature in most statistical analyses. Secondly, the mean log count
would be approximately linearly related (with a slope of unity) to the log dilution.
Unfortunately, the frequent presence of zero counts would necessitate some
modification (such as the calculation of log (x+ 1)), since the logarithm of zero is
minus infinity, and this might appreciably affect the linearity at high dilutions.
In any case model (b) of §5 appears to be generally inappropriate, and if the
logarithmic transformation were applied to any of the data examined in this paper
the variance of the log count would decrease with its mean.

Kleczkowski (1949), examining the distribution of counts of lesions on half
leaves, caused by plant viruses, found that the standard deviation was related
linearly to the mean, and that the transformed variate log (count+c) had a
variance virtually independent of the mean for any value of ¢ between about 15
and 80.

An alternative procedure for pock counts is to analyse the untransformed counts,
making empirical use of the observed variability. As an example, we consider the
following counts of fowlpox lesions, taken from table III of French & Reeves

(1954):
Dilution
4 A R}
10-8 10-5
5 18
6 32
2 14
5 37
5 42
0 38
Mean 3-8333 30-1667

Simple estimates of the mean count at 10-8, with 959, confidence limits, can be
made either from the observed counts at 10-¢, or from those at 105 (if we assume
for the moment that the expected means at the two dilutions will differ by tenfold). .
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If Z is the mean of a group of n counts, and s2=2(x — Z)?/(n — 1), the sample estimate
of variance, 959, confidence limits for the mean are given by

Z + lo.058// s
where #,..; is the tabulated value of the #-distribution corresponding to P=0-05
and n—1D.F. For both groups in our example, =6 and #,,;=2-571, and the

calculations give
95 9%, confidence

Sample variance limits for mean
Dilution 52 Tt to.058/+/n
10-¢ 5-3667 1-40 and 6-26
10-8 132-1667 18-1 and 42-2

Dividing the values obtained at 10-5 by 10, we obtain two estimates of (and limits
for) the mean count at 10-6: 3-83 (1-40-6-26) and 3-02 (1-81-4-22).

For a given n, more precise estimates will usually be obtained from the lower
dilutions, since the coefficient of variation usually decreases as the mean increases.
A more efficient way of analysing the data, though, is to obtain a combined estimate
by using all the available results. There is no standard statistical solution to this
problem. The method recommended below is based on a number of approximations.
In particular, counts are assumed to be normally distributed, but this should not
be a serious drawback.

Let u,; be the ratio of the concentration of virus, at the ¢th dilution, to that at
the ‘standard dilution’ to which the count is to refer. Let Z; and s% be the mean
and sample variance (defined as above), and n; the number of counts. Let z;=Z,/u,
be the estimate of the expected count, Z, at the standard dilution. Let W, =n u3/s2.
W, is the reciprocal of the estimated sampling variance of z; and is the appropriate
weight to attach to z;. The combined estimate of Z is

Z=SWz,/SW,.

The variance of zZ cannot be determined exactly because the weights are defined
only in terms of estimated variances. The best available estimate of the variance
of Z appears to be that given by Cochran & Carroll’s (1953) modification of a
result due to Meier (1953):
1 k1
var Z)=a={1+4 X 5 6,(1-6,);,
O=g |1 +4 35,0000

where k is the number of groups,

4(k—2
RS
and 0, = W, /=W,

Note that for k=2, as in the present example, v;=n;— 1, the number of degrees of
freedom for s2.
Approximate 95 9, confidence limits for Z are given by

Z +tygsa/{var (2)},
k
where #,.; is the tabulated value of ¢t for P=0-05 and f= l/: > 6%(n, — 1)} D.F.
i=1
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The full calculations for the present example (in which k= 2) are as follows:

Dilution

e A hl

10-¢ 10-8 Total
Uy 1 10 —
ny 6 6 —
Z; 3-8333 30-1667 —
z; 3-8333 3-0167 —
82 5-3667 132-1667 —
W, 1-1181 4-5397 5-6578
Wz, 4-2860 13-6949 17-9809
0, 0-1976 0-8024 1-0000
vy 5 5 —
0,(1-06,)/v; 0-03171 0-03171 0-06342
02/(n;—1) 0-00781 0-12877 0-13658

z2=17-9809/5-6578 =3-1781,

1
var (2) = gz {1+4(0:06342)) = 0-2216,

f=1/0-13658 =17-32.

95 9%, confidence limits for Z: 3-178 + (2-35),/(0-2216) =2-07 and 4-28. (The factor
2-35 is obtained by interpolation between the entries for 7 and 8 p.¥.)

The confidence range for Z, 2-07—-4-28, is, as we should expect, slightly narrower
than that of 1-81-4-22 given above, which is based on the data for the lower
dilution. An alternative method is given by James (1956), but this involves the
first few terms of an asymptotic series which is only accurate for reasonably large
degrees of freedom. It should be noted that Meier’s method also may be inaccurate
for small samples.

It is rather more difficult to provide a satisfactory statistical solution to the
second problem—that of testing whether the observed mean counts are pro-
portional to the virus concentration (i.e. whether the different values of z; are
consistent with each other). As a first approximation we could ignore the sampling
error in the estimates of variance, s?. If these variances were known precisely, for
k=2 we could regard

p=__ AAT%
V(si/ny + s§/ms)

as a normal variate, with a critical value of 1-960 at the 5 %, significance level.
To allow for the sampling errors of the s2 two somewhat controversial solutions
have been proposed. One, due to W. V. Behrens and R. A. Fisher, is the basis of
a table by Sukhatme (Fisher & Yates, 1953, table VI) for P=0-05 and 0-01. The
other, due to B. L. Welch, is the basis of a table by A. A. Aspin (Pearson & Hartley,
1954, table II) for P=0-10 and 0-02, and of that by Trickett, Welch & James
(1956) for P=0-05 and 0-01. However, none of these tables allows degrees of
freedom less than 6,* and in that by Trickett ef al. (1956) the lowest value for

* Tables for using the Behrens test with small degrees of freedom are to appear in the fifth
edition of Fisher & Yates’s tables (cf. Fisher & Healy, 1956). )
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degrees of freedom is 8. They will consequently be of limited use for pock count
data where groups of five readings or less are common. In the present example,
v=0-7734, which is undoubtedly non-significant.

For k> 2, as a first approximation we could regard

Q=2W,(z; -2 =ZW;2} — (ZW;2,)*[ZW,

as a ¥% variate on k—1 degrees of freedom. For equal n;, Cochran (1937) gives a
second approximation, but the use of his formula is inadvisable for values of n;
below about 7. An alternative approximation is given by James (1951) and Welch
(1951). According to their result, the critical value of @ exceeded with a probability

Pis Qp=x§)l:l +§x2§?;r£c$ 2z (71&_—05)]

i=1

where x2 is the tabulated value of 2 of k—1 D.F., corresponding to the same
probability, P. This approximation will get worse as the n; become smaller, and
it is not at all certain how accurate it is for small values.

The calculations for k=3 are illustrated on the following data, which are counts
of cowpox lesions from set E. Note that, since k=3, vi=n,— 1 —(4/2)=n;—3.

Dilution
~ A N
10-5 104 10-3 Total

U 1 10 100 —

0 9 64 —

0 13 69 —

1 13 81 —

1 14 104 —

1 20 130 —

2 26 — —

92 — —_ —

2 — — —
7y 8 6 5 —
z 1-1250 15-8333 89-6000 —
2 1-1250 1-5833 0-8960 —
85 0-69643 37-3667 748-300 —_
W, 11-487 16.057 66-818 94-362
Wz, 12-923 25-423 59-869 98-215
Wz} 14-51 40-25 53-64 108-43
; 0-1217 0-1702 0-7081 1-0000
1--6; 0-8783 0-8298 0-2019 —
v; 5 3 2 —
8,(1—8,)v; 0-02138 0-04708 0-10335 0-17181
O3 /(n;—1) 0-00212 0-00579 0-12535 0-13326
(1-6%)/(n;—1) 0-11020 0-13771 0-02130 0-26921

Logically, the first step is to test the consistency of the three groups. For a test
at the 59, significance level, the tabulated value of 2 on 2 D.F. is x3=5-991.

Hence, Qp=5991 [1+£(17-973 +4) (0-26921)]
=(5-991) (1-3697) = 8-21.
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The value of @ is

108-43 — (98-215)%/(94-362) = 6-20,
which falls below the critical value, @p. It is concluded that there is no strong
evidence of inconsistency between the three groups of counts. Proceeding with

the calculations:
z= 98'215/94-362 = 1-0408,

var (z)= {1+ 4(0-17181)} = 0-01788,

1
94-362
f=1/0-13326 =17-50.

95 %, confidence limits for Z: 1-041 + (2-33)4/(0-01788)=0-729 and 1-353.

SUMMARY

1. The relationship has been examined between the variance and the mean of
pock counts made by a number of different workers.

2. In all cases the variance was considerably greater than that expected if the
distributions were of the Poisson form. Recent work of Westwood et al. (1957)
suggests that variation approaching the Poisson expectation can be achieved by
appropriate technical measures.

3. With one exception, there appeared to be a linear relationship between the
logarithm of the variance and the logarithm of the mean. The slope of this line
varied from one laboratory to another, but not, apparently, from one occasion
to another in any one laboratory.

4. The hypothesis that for any set of egg membranes the expectations of the
pock counts bear constant ratios to each other, irrespective of the virus density,
was untenable: the observed variances increase less rapidly with high counts than
would have been expected on this theory.

5. Statistical methods are proposed for comparing and combining sets of counts
at different dilutions. If Poisson variability were achieved, simpler methods would
be available.

I am much indebted to Dr L. Collier, Prof. A. W. Downie, Dr C. Kaplan and
Dr F. 0. McCallum for permission to use their unpublished data; to Dr J. C. N.
Westwood for discussing with me his (then) unpublished work ; to Miss Irene Allen
for computing assistance; and to Mrs G. M. Young for the preparation of the
diagrams.
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